A quantitative gamma-ray spectrometric and aeromagnetic airborne geophysical survey was completed by Fugro Airborne Surveys east of Schefferville, over areas located in Newfoundland and Labrador and Quebec. The survey was flown from May 24th to Aug 30th, 2009 using two Cessna 208B Caravan aircraft (C-GNCA and C-GFAV) and one Cessna 404 Titan aircraft (C-FYAU). The nominal traverse and control line spacings were, respectively, 200 m and 1200 m, and the aircraft flew at a nominal terrain clearance of 80 m at an air speed between 200 and 270 km/h. Traverse lines were oriented 180° with orthogonal control lines. The flight path was recovered following post-flight differential corrections to raw data recorded by a Global Positioning System.

The airborne gamma-ray measurements were made with an Exploranium GR820 gamma-ray spectrometer using ten (C-GFAV and C-FYAU) or fourteen (C-GNCA) 102 x 102 x 406 mm NaI (TI) crystals. The main detector array consisted of eight (C-GFAV and C-FYAU) or twelve (C-GNCA) crystals (total volume 33.6 litres and 50.4 litres, respectively). Two crystals on all aircraft (total volume 8.4 litres), shielded by the main array, were used to detect variations in background

Un levé géophysique aérien combinant l'acquisition de données quantitatives de spectrométrie gamma et de données magnétiques a été réalisé, par la société Fugro Airborne Surveys, à l'est de Schefferville, dans des régions de Terre-Neuve et Labrador ainsi qu'au Québec. Le levé a été effectué du 24 mai au 30 août 2009, à bord de deux avions Cessna 208B Caravan immatriculé C-GNCA et C-GFAV ainsi qu'un avion Cessna 404 Titan immatriculé C-FYAU. L'espacement nominal des lignes de vol était de 200 m et celui des lignes de contrôle de 1 200 m, alors que l'altitude nominale de levé était de 80 m au-dessus du sol et que la vitesse était de 200 à 270 km/h. Les lignes de vol étaient orientées à 180° et les lignes de contrôle leur étaient perpendiculaires. La trajectoire de vol a été

Les mesures du rayonnement gamma ont été effectuées à l'aide d'un spectromètre gamma Exploranium GR820 utilisant dix (C-GFAV et C-FYAU) ou quatorze (C-GNCA) cristaux de Nal (Tl) de 102 x 102 x 406 mm. Le principal réseau de capteurs se composait de huit (C-GFAV et C-FYAU) ou douze (C-GNCA) cristaux (volume total de 33,6 et 50,4 litres respectivement). Deux cristaux (volume total de 8,4 litres), protégés par le réseau principal, ont été utilisés pour déceler les variations du rayonnement naturel causées par le radon atmosphérique. Le dispositif permettait de faire un suivi constant des pics du thorium pour chacun des

Le potassium est mesuré directement d'après les photons gamma de 1 460 keV émis par le K⁴⁰, tandis que l'uranium et le thorium sont mesurés indirectement d'après les photons gamma émis par des produits de filiation (Bi²¹⁴ pour l'uranium et Tl²⁰⁸ pour le thorium). Bien que ces radionucléides de filiation se trouvent loin dans leur chaîne respective de désintégration, on présume qu'ils sont en équilibre avec leur radionucléide père; ainsi, les mesures spectrométriques du rayonnement gamma de l'uranium et du thorium sont désignées comme des équivalents d'uranium et des équivalents de thorium, soit éU et éTh. Les plages d'énergie utilisées pour mesurer le potassium, l'uranium et le thorium sont respectivement : de 1 370 à 1 570 keV, de 1 660 à 1 860 keV et de 2 410 à 2 810 keV.

Les spectres du rayonnement gamma ont été enregistrés pendant des intervalles d'une seconde. Pendant le traitement, les spectres ont été soumis à un étalonnage énergétique et les coups ont été cumulés dans les plages décrites ci-dessus. Les coups obtenus à l'aide des capteurs de radon ont été enregistrés dans la plage de 1 660 à 1 860 keV et le rayonnement à des énergies supérieures à 3 000 keV a été enregistré dans la plage du rayonnement cosmique. Les coups enregistrés dans les plages ont été corrigés pour tenir compte du temps mort, du rayonnement de fond dû au rayonnement cosmique, de la radioactivité de l'aéronef et des produits de désintégration du radon atmosphérique. Les données pour les plages ont ensuite été corrigées pour tenir compte de la diffusion spectrale dans le sol, l'air et les capteurs. Les corrections pour les écarts à la hauteur de vol prévue et les variations de température et de pression ont été effectuées avant la conversion en concentrations équivalentes au sol du potassium, de l'uranium et du thorium, en utilisant des facteurs déterminés par une comparaison avec des résultats obtenus lors de vols effectués au-dessus d'une bande d'étalonnage à Breckenridge, Québec. Les facteurs déterminés pour le potassium, l'uranium et le thorium étaient respectivement de 137,63 cps/%, 16,60 cps/ppm, et 7,57 cps/ppm pour C-GNCA; 79,86 cps/%, 7,32 cps/ppm, et 4,18

Un filtre a été appliqué aux données corrigées, qui ont ensuite été interpolées suivant une grille à maille de 50 m. Les résultats d'un levé aérien de spectrométrie gamma représentent les concentrations moyennes des éléments à la surface, lesquelles sont influencées par la proportion relative de l'étendue des affleurements, du mort-terrain, de couverture végétale et d'eau de surface. Par conséquent, les concentrations mesurées sont habituellement plus faibles que les concentrations réelles dans le substratum rocheux. Le débit total de la dose absorbée par l'air, en nanograys à l'heure, a été déterminé d'après les coups

Le champ magnétique a été échantillonné 10 fois par seconde à l'aide d'un magnétomètre à vapeur de césium à faisceau partagé (sensibilité = 0,005 nT) rigidement fixé à l'aéronef. Les différences de valeur du champ magnétique aux intersections des lignes de contrôle et des lignes de levé ont été analysées par ordinateur afin d'obtenir un jeu de données sur le champ magnétique mutuellement nivelées sur les lignes de vol. Ces valeurs nivelées ont ensuite été interpolées suivant une grille à maille de 50 m. Le champ géomagnétique international de référence (International Geomagnetic Reference Field, IGRF) défini à l'altitude moyenne de 617 m au dessus de la mer fournie par les données GPS pour l'année 2009,5 a été soustrait. La soustraction de l'IGRF, qui représente le

La dérivée première verticale du champ magnétique représente le taux auquel varie le champ magnétique suivant la verticale. Le calcul de la dérivée première verticale supprime les composantes de grande longueur d'onde du champ magnétique et améliore considérablement la résolution des anomalies rapprochées les unes des autres ou superposées. L'une des propriétés des cartes de la dérivée première verticale est la coïncidence de l'isogamme de valeur zéro et des

champ magnétique du noyau terrestre, fournit une composante résiduelle essentiellement reliée à la magnétisation de l'écorce terrestre.

cristaux et, au moyen d'un algorithme d'ajustement gaussien par la méthode des moindres carrés, de compenser le gain pour chacun des cristaux.

restituée par l'application après le vol de corrections différentielles aux données brutes enregistrées avec un récepteur GPS.

cps/ppm pour C-FYAU; et 91,10 cps/%, 10,18 cps/ppm, et 4,92 cps/ppm pour C-GFAV.

Données de spectrométrie gamma

mesurés dans la plage de 400 à 2 810 keV.

contacts verticaux aux hautes latitudes magnétiques (Hood, 1965).

Hood, P.J., 1965. Gradient measurements in aeromagnetic surveying;

Données sur le champ magnétique

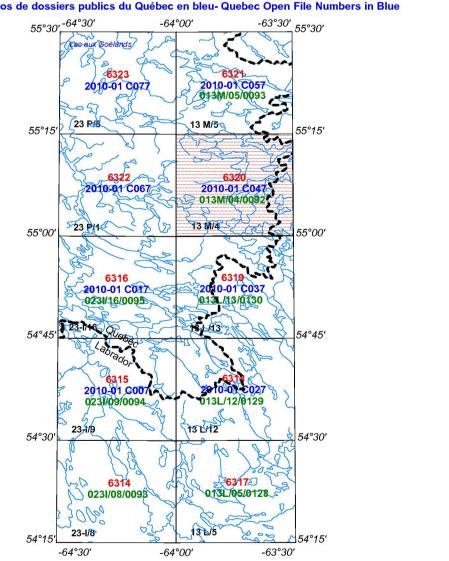
Geophysics, v. 30, p. 891-902.

radiation caused by atmospheric radon. The system constantly monitored the natural thorium peak for each crystal, and using a Gaussian least squares algorithm, adjusted the gain for each crystal. Potassium is measured directly from the 1460 keV gamma-ray photons emitted by K⁴⁰, whereas uranium and thorium are measured indirectly from gamma-ray assumed to be in equilibrium with their parents; thus gamma-ray spectrometric measurements of uranium and thorium are referred to as equivalent uranium and equivalent thorium, i.e. eU and eTh. The energy windows used to measure potassium, uranium and thorium are, respectively; 1370 - 1570 keV, 1660 - 1860 keV,

Gamma-ray spectra were recorded at one-second intervals. During processing the spectra were energy calibrated, and the counts were accumulated into the windows described above. Counts from the radon detectors were recorded in a 1660 - 1860 keV window and radiation at energies greater than 3000 keV was recorded in the cosmic window. The window counts were corrected for dead time, background activity from cosmic radiation, radioactivity of the aircraft and atmospheric radon decay products. The window data were then corrected for spectral scattering in the ground, air and detectors. Corrections for deviations from the planned terrain clearance and for variation of temperature and pressure were made prior to conversion to ground concentrations of potassium, uranium and thorium, using factors determined from flights over the Breckenridge, Quebec calibration range. The factors for potassium, uranium, and thorium were, respectively; 137.63 cps/%, 16.60 cps/ppm, and 7.57 cps/ppm for C-GNCA; 79.86 cps/%, 7.32 cps/ppm, and 4.18 cps/ppm for C-FYAU; and 91.10 cps/%, 10.18 cps/ppm, and 4.92 cps/ppm for C-GFAV.

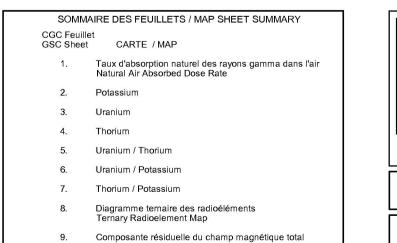
Corrected data were filtered and interpolated to a 50 m grid interval. The results of an airborne gamma-ray spectrometer survey represent the average surface concentrations that are influenced by varying amounts of outcrop, overburden, vegetation cover, soil moisture and surface water. As a result the measured concentrations are usually lower than the actual bedrock concentrations. The total air absorbed dose rate in nanograys per hour was produced from measured counts between 400 and 2810 keV.

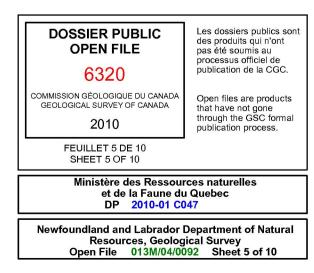
and 2410 - 2810 keV.


The magnetic field was sampled 10 times per second using a split-beam cesium vapour magnetometer (sensitivity = 0.005 nT) rigidly mounted to the aircraft. Differences in magnetic values at the intersections of control and traverse lines were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 50 m grid. The International Geomagnetic Reference Field (IGRF) defined at the average GPS altitude of 617 m above sea level for the year 2009.5 was then removed. Removal of the IGRF, representing the magnetic field of the Earth's core, produces a residual component related essentially to magnetizations within the Earth's crust.

The first vertical derivative of the magnetic field is the rate of change of the magnetic field in the vertical direction. Computation of the first vertical derivative removes long-wavelength features of the magnetic field and significantly improves the resolution of closely spaced and superposed anomalies. A property of first vertical derivative maps is the coincidence of the zero-value contour with vertical contacts at high magnetic latitudes (Hood, 1965).

Hood, P.J., 1965. Gradient measurements in aeromagnetic surveying; Geophysics, v. 30, p. 891-902.


> SYMBOLES PLANIMÉTRIQUES PLANIMETRIC SYMBOLS Chemin de fer...... Ligne de transport d'énergie...... Power Line


Numéros de dossiers publics de la CGC en rouge- GSC Open File Numbers in Red Numéros de dossiers publics de Terre-Neuve et Labrador en vert- Newfoundland and Labrador Open File Numbers in Green Numéros de dossiers publics du Québec en bleu- Quebec Open File Numbers in Blue

SYSTÈME NATIONAL DE RÉFÉRENCE CARTOGRAPHIQUE ET INDEX DES CARTES GÉOPHYSIQUES NATIONAL TOPOGRAPHIC SYSTEM REFERENCE AND GEOPHYSICAL MAP INDEX

LEVÉ GÉOPHYSIQUE DU LAC RAMUSIO RÉGION DE SCHEFFERVILLE LAKE RAMUSIO GEOPHYSICAL SURVEY SCHEFFERVILLE REGION

Dérivée première verticale du champ magnétique First Vertical Derivative of the Magnetic Field LOCALISATION DE LA CARTE - MAP LOCATION

Residual Total Magnetic Field

Notation bibliographique conseillée : Dumont, R., Fortin, R., Hefford, S., Dostaler, F., 2010. Série des cartes géophysiques, SNRC 13 M/4, Levé géophysique du lac Ramusio région de Schefferville Commission géologique du Canada, Dossier public 6320 Ministère des Ressources naturelles et de la Faune du Québec, DP 2010-01, Newfoundland and Labrador Department of Natural Resources, Geological Survey, Open File 013M/04/0092, échelle 1/50 000.

Recommended citation:
Dumont, R., Fortin, R., Hefford, S., Dostaler, F., 2010. Geophysical Series, NTS 13 M/4, Lake Ramusio Geophysical Survey Schefferville Region; Geological Survey of Canada, Open File 6320; Ministère des Ressources naturelles et de la Faune du Québec, DP 2010-01, Newfoundland and Labrador Department of Natural Resources, Geological Survey, Open File 013M/04/0092,

LEVÉ GÉOPHYSIQUE DU LAC RAMUSIO RÉGION DE SCHEFFERVILLE

LAKE RAMUSIO GEOPHYSICAL SURVEY SCHEFFERVILLE REGION

URANIUM /THORIUM

Authors: R. Dumont, R. Fortin, S. Hefford and F. Dostaler

Les versions numériques de cette carte peuvent être téléchargées gratuitement à partir du site internet des dossiers publics du Geological Survey of Newfoundland and Labrador

http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/openfiles/ et sur la page de Geoscience

Digital versions of this map can be downloaded, at no charge, from Natural Resources Canada's Geoscience Data Repository (MIRAGE) at http://gdr.nrcan.gc.ca/mirage/. Corresponding digital profile and gridded data as well as similar data for adjacent airborne geophysical surveys are

available from the Natural Resources Canada's Geoscience Data Repository for aeromagnetic

data at http://gdr.nrcan.gc.ca/aeromag/. The same products are also available, for a fee, from the

Geophysical Data Centre, Geological Survey of Canada, 615 Booth Street, Ottawa, Ontario, K1A

This map and the digital geophysical data may also be obtained from the "Online Products and

Services" section of the Ministère des Ressources naturelles et de la Faune du Québec web site

at http://www.mrnf.gouv.qc.ca/english/products-services/mines.jsp or by phone at (418)627-6278

Digital versions of this map can also be downloaded, at no charge, from the Geological Survey of

Newfoundland and Labrador web site's Open File page at

http://www.nr.gov.nl.ca/mines&en/geosurvey/publications/openfiles/ and Geoscience Online page

Online page at http://gis.geosurv.gov.nl.ca/.

at http://gis.geosurv.gov.nl.ca/.

0E9. Tel: (613) 995-5326, email: infogdc@agg.nrcan.gc.ca.

or 1 800 363-7233, email: service.mines@mrnf.gouv.qc.ca

Data acquisition, compilation and map production by Fugro Airborne Surveys, Ottawa, Ontario. Contract and project management by the Geological Survey of Canada, Ottawa, Ontario.

Auteurs: R. Dumont, R. Fortin, S. Hefford et F. Dostaler L'acquisition, la compilation des données ainsi que la production des cartes furent effectuées par Fugro Airborne Surveys, Ottawa,

Ontario. La gestion et la supervision du projet furent effectuées par la Commission géologique du Canada, Ottawa, Ontario.

Échelle 1/50 000 - Scale 1:50 000 NAD83 / UTM zone 20N Universal Transverse Mercator Projection North American Datum,1983 © Her Majesty the Queen in Right of Canada 2010 Projection transverse universelle de Mercator ystème de référence géodésique nord-américain, 1 © Sa Majesté la Reine du chef du Canada 2010

Données topographiques numériques de Géomatique Canada, Ressources naturelles Canada Digital Topographic Data provided by Geomatics Canada, Natural Resources Canada