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Abstract: The compositions of minerals in pelitic and mafic rocks can be approximated in the chemical 
system SiO

2
, TiO

2
, Al

2
O

3
, Fe

2
O

3
, FeO, MgO, CaO, Na

2
O, K

2
O, H

2
O. By rearranging the components and 

restricting the consideration to mineral assemblages including quartz, plagioclase of constant composi-
tion, magnetite, and ilmenite, the remaining minerals are represented in the triangular prism AKFM, with

K = K
2
O·Al

2
O

3

F = FeO – (Fe
2
O

3
 + TiO

2
)

M = MgO

as the base and

A = Al
2
O

3
 – (CaO + Na

2
O)

as the vertical axis. The partial Gibbs energy of H
2
O is assumed to be close to that of steam at lower grades 

but would be reduced at higher grades.

Reactions in pelitic and mafic rocks can be combined into one grid if it is assumed that the plagioclase 
composition remains constant or varies smoothly with pressure and temperature. Similarly, a consistent 
grid would require the partial Gibbs energy of H

2
O to be a smooth function of pressure and temperature.

Résumé : La composition des minéraux des roches pélitiques et mafiques peut être représentée de façon 
approximative dans le système chimique SiO

2
,
 
TiO

2
, Al

2
O

3
,
 
Fe

2
O

3
,
 
FeO, MgO, CaO, Na

2
O, K

2
O, H

2
O. En 

modifiant l’arrangement des composants et en limitant l’examen aux associations de minéraux compre-
nant du quartz, du plagioclase de composition constante, de la magnétite et de l’ilménite, les minéraux 
restants sont représentés dans le prisme triangulaire AKFM, dont 

K = K
2
O·Al

2
O

3

F = FeO – (Fe
2
O

3
 + TiO

2
)

M = MgO

constituent la base et

A = Al
2
O

3
 – (CaO + Na

2
O)

représente l’axe vertical. On suppose que l’énergie partielle de Gibbs de H
2
O est proche de celle de la 

vapeur pour les grades de métamorphisme plus faibles, mais elle serait réduite à des grades plus élevés. 

Les réactions dans les roches pélitiques et mafiques peuvent être combinées en une seule grille pétrogé-
nétique si l’on présume que la composition du plagioclase demeure constante ou varie de façon régulière 
en fonction de la pression et de la température. Pour s’en tenir à une même grille, il faudrait aussi que 
l’énergie partielle de Gibbs de H

2
O soit une fonction continue de la pression et de la température.
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INTRODUCTION

In many metamorphic rocks, it is possible to deduce 
compatible mineral assemblages by textural observation. 
The inference that textural equilibrium reflects chemical 
equilibrium provides the basis for an attempt to apply the 
principles of heterogeneous equilibrium to compatible min-
eral assemblages.

A compatible mineral assemblage has a limited stabil-
ity range in terms of pressure and temperature. If several 
mineral assemblages share the same pressure-temperature 
condition, as might be inferred from their field occurrence, 
this pressure-temperature condition lies within the overlap 
of the pressure-temperature ranges of individual mineral 
assemblages. It is, therefore, appealing to use an associa-
tion or ensemble, to use Thompson’s (1957) expression, of 
mineral assemblages as pressure-temperature indicators. In 
many areas, pelitic and mafic rocks occur in close proximity, 
and it is advantageous to consider associations of mineral 
assemblages in such rocks and represent them on the same 
diagram.

The advantage of using mineral assemblages as indica-
tors of relative metamorphic grade lies in the fact that this 
information is readily obtained from field observations and 
petrographic study. For some purposes, such knowledge 
might suffice; otherwise, it can serve as a point of departure 
towards more precise evaluation of metamorphic conditions 
based on experimental calibration of mineral assemblages 
and the distribution of elements among coexisting minerals.

THEORY

The consideration of associations of mineral assem-
blages requires a representation in a common chemical 
system of components. In view of their chemical complexity, 
some compromise is required in approximating the compo-
sitions of minerals. In dealing with minerals in pelitic and 
mafic rocks, at least the following components must be rec-
ognized: SiO

2
, TiO

2
, Al

2
O

3
, Fe

2
O

3
, FeO, MgO, CaO, Na

2
O, 

K
2
O, and H

2
O.

At constant pressure and temperature and at stable equi-
librium, a particular composition within the chemical system 
(thermodynamic system) is characterized by a minimum 
Gibbs energy, which is given by the summation

i

i
i n̂

n
n

 ∂=  ∂ 
∑ G

G

 

� (1)

where G is the total Gibbs energy of the thermodynamic sys-
tem, n

i
 is the number of moles of component i, and in̂  is the 

number of moles of all components other than i. The partial 
derivative is the partial Gibbs energy iG  of a component. In 
this summation, one can choose either n or G  for 

each component as the independent variable (Korzhinskii, 
1959). If one distinguishes j-components as those having 
independent n, and k-components as those having indepen-
dent G , one can write

j j k kG n G n= +∑ ∑G  � (2)

A function L can be defined as

k k( )G n= − ∑L G  � (3)

Since G is at a minimum, if all values of kG  are kept 
constant, L also is at a minimum and equal to

j jG n= ∑L  � (4)

Dividing by jn∑  gives

j jL G X= ∑  � (5)

where L is the molar value of the function L, and X
j
 is the mole 

fraction of a j-component. The function 
k k( )G n− ∑G  

was derived by Korzhinskii (1959) and has been discussed by 
Thompson (1970), who used the designation L and the group-
ing into j- and k-components.

The minimum value of  L can be plotted as a surface 
in space defined by axes L and the mole fractions X of the 
j-components. A projection of the L surface onto the com-
position base expressed in terms of the mole fractions X of 
the j-components results in a phase diagram.

GRAPHIC REPRESENTATION

In view of these relations, it is advantageous to recast the 
components to be used as follows:

j-components

A = Al
2
O

3
 – (CaO + Na

2
O) 

K = K
2
O·Al

2
O

3
 

F = FeO – (Fe
2
O

3
 + TiO

2
) 

M = MgO 

k-components

SiO
2

CaO·Al
2
O

3
·2SiO

2

Na
2
O·Al

2
O

3
·6SiO

2

FeO·Fe
2
O

3
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FeO·TiO
2

H
2
O

One way to keep kG constant, at constant pressure and 
temperature, is to specify the presence of a phase with a com-
position equal to that of the component. Thus, the presence 
of quartz, magnetite, and ilmenite would keep kG  of SiO

2
, 

FeO·Fe
2
O

3
, and FeO·TiO

2
 constant. The presence of plagio-

clase of constant composition would insure theconstancy of 
kG  of CaO·Al

2
O

3
·2SiO

2
 and Na

2
O·Al

2
O

3
·6SiO

2
. A phase of 

approximately pure H
2
O may be present at lower grades but, 

at higher grades, one has to assume that 
2H OG  is some func-

tion of pressure and temperature.

Minerals, in terms of j-components, can be plotted in a 
prism with a triangular base of

K = K
2
O·Al

2
O

3

F = FeO – (Fe
2
O

3
 + TiO

2
)

M = MgO

and a vertical axis of

A = Al
2
O

3
 – (CaO + Na

2
O)

Non-potassic minerals can be plotted on the AFM face 
of this prism. Mineral assemblages lying inside the prism, 
with one potassic mineral, coexist with three minerals on the 
AFM face. Two potassic minerals coexist with two minerals 
on the AFM face connected by a tie line, and three potassic 
minerals coexist with one AFM mineral having a fixed com-
position. As a consequence, it is possible to indicate areas 
on an AFM diagram that coexist with a particular potassic 
mineral. For example, Figure 1 is an AFM diagram that 
corresponds to a metamorphic grade above the biotite-silli-
manite-almandine isograd just to the left of invariant point 9 
(Fig. 2), with superimposed fields of muscovite and biotite. 
This method of dealing graphically with a fourth component 
has been used previously by Albee (1965).

THE GRID

A thermodynamic system has c + 2 independent vari-
ables, where c is the number of components and 2 stands 
for pressure and temperature. The choice of either n or G  
as the independent variable of a component is subject to the 
requirement of choosing at least one extensive variable, i.e. 
n, for each phase. Thus the maximum number of indepen-
dent intensive variables, P, T, and G ’s, is given by the Gibbs 
phase rule

f = c + 2 - p

where f is the variance and p is the number of phases.

In the phase diagram of the AFM chemical system  
(Fig. 1), there are nine components. For a thermodynamic 
system with three coexisting phases, extensive variables 
(n’s) for at least three components must be chosen. This has 
been done for the three j-components by stipulating that 

j 1n =∑  
and stating any two mole fractions of the j-com-

ponents. The variance of this system is eight, given by the 
values of P, T, and the G ’s of the six k-components. If it is 
assumed, as an additional restriction, that the G ’s of the 
k-components are functions of P and T, the system is bivari-
ant in P and T. In order to determine the state of the system, 
values of P and T must be chosen within the range over 
which the phases are stable.

Figure 1. AFM diagram of mineral assemblages above the biotite-
sillimanite-almandine isograd, just to the left of invariant 9 (Froese, 
2010; modified to show the association cordierite-hornblende). 
j-components: A = Al2O3 – (CaO + Na2O); F = FeO – (Fe2O3 + 
TiO2); M = MgO. k-components: G  of SiO2 = G of quartz; G  of 
CaO·Al2O3·2SiO2 = G  of CaAl2Si2O8 in plagioclase of constant 
composition; G  of Na2O·Al2O3·6SiO2 = G  of 2NaAlSi3O8 in plagio-
clase of constant composition; G  of FeO·Fe2O3 = G of magnetite; 
G  of FeO·TiO2 = G of ilmenite; G  of H2O = function of P and T. For 
mineral abbreviations see Figure 2.
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With four phases in stable equilibrium, there is one 
fewer independent intensive variable, and the variance of 
the thermodynamic system is reduced by one. Retaining the 
restriction that the G ’s of the k-components are functions of 
P and T, the system is univariant in P and T. Only one can 
be freely chosen and the stability of a univariant four-phase 
assemblage can be plotted as a line on a P-T diagram. At any 
point along this univariant line, there is a particular compos-
ition that can be expressed by alternative combinations of 
phases to achieve the same minimum value of L. Graphically 
this relationship can be shown either by crossing tie lines or 
by tie lines joining one phase to three surrounding phases. 
Such relationship can also be expressed by a univariant 
reaction involving the four minerals and some amounts of 
k-components, e.g.

staurolite + orthoamphibole + SiO
2
 = cordierite + 

almandine + H
2
O,

which divides the P-T diagram into two stability fields of the 
alternative phase assemblages. These univariant reactions 
can be combined into a grid and intersect at invariant points, 
with five stable phases and five univariant reactions extend-
ing from each point.

Within the AKFM system, univariant reactions are 
expressed by five phases and some amounts of k-compo-
nents. There are six stable phases at invariant points and six 
univariant reactions extending from each invariant point. 
Reactions are designated by one of the six phases not partici-
pating in the reaction. However, the biotite-absent reaction 
is not shown in Figure 2 in order to provide more room on 
the grid, thus reducing the number of reactions extending 
from an invariant point to five. Reactions in pelitic rocks are 
shown in Figure 2a and reactions in both pelitic and mafic 
rocks are shown in Figure 2b.

The sequence of reactions around an invariant point 
must be consistent with Schreinemakers’ rules (Zen, 1966). 
Lindsley et al. (1968) suggested the following convenient 
procedure to check the consistency of the arrangement of 
reactions around an invariant point. Reaction equations are 
written onto the reaction boundary such that reactants and 
products straddle the boundary. If a reaction is designated 
by the absent phase, its metastable extension must fall into a 
sector in which the “half-reactions” include the absent phase.

SOURCES

In Figure 2, the stability fields of the aluminum silicates 
have been calculated from the thermodynamic database of 
Berman (1988).

The reaction shown as

muscovite + SiO
2
 + Na

2
O·Al

2
O

3
·6SiO

2
 = 

aluminum silicate + K-feldspar + H
2
O

is the reaction

muscovite
ss
 + quartz + albite

ss
 = 

aluminum silicate + K-feldspar
ss
 + H

2
O

where ss refers to a solid solution of K and Na end members, 
taken from Chatterjee and Froese (1975).

All invariant points selected in the preparation of the grid 
shown in Figure 2 have been identified in earlier studies. As 
discussed below, the positions of some have been accepted 
here; the positions of others have been changed to ensure an 
overall conformity with Schreinemakers’ rules.

The grid of Hess (1969) included invariant points 1–4. 
Invariant point 5 is taken from the grid of Korikovskii (1969). 
Invariant point 6 is part of a grid given by Korikovskii (1979). 
Kepezhinskas and Khlestov (1977) showed invariant points 
1–3, in each case with one reaction not involving musco-
vite. These reactions form part of Korikovskii’s (1970) grid 
for K

2
O-poor rocks, which included invariant points 7–10. 

Invariant point 9 had been proposed previously by Robinson 
and Jaffe (1969). Trzcienski (1971) deduced invariant point 
7 from field evidence; see also Carmichael et al. (1978).

D.M. Carmichael (in Davidson et al., 1990) combined 
invariant points 2, 3, and 6–10 into one grid. The locations of 
these invariant points in Figure 2 have been taken from this 
grid, with minor modifications. All other invariant points are 
shown at estimated positions.

Invariant points 11 and 12 led to the inclusion of cum-
mingtonite in the grid. Invariant point 11 was deduced by 
Marakushev (1965) and by Percival et al. (1982). Here the 
topologies of some reactions have been changed to be con-
sistent with the reaction

orthoamphibole + almandine = cordierite + 
orthopyroxene

extending from invariant point 10 (Korikovskii, 1970). 
Invariant point 12, with gedrite as the orthoamphibole is 
taken from Spear and Rumble (1986); anthophyllite has 
been ignored.

Invariant point 13 was deduced by Froese and Goetz 
(1981) and forms part of a grid (invariant points 13–23), 
which shows the coexistence of hornblende with alumi-
nous minerals (Froese and Hall, 1983). Invariant point 14 
is supported by the assemblage chlorite-hornblende-alman-
dine-cummingtonite-orthoamphibole (Hall, 1980; Froese 
and Hall, 1983) and invariant 15 by the assemblage chlorite-
almandine-staurolite-orthoamphibole-hornblende (Spear, 
1982). In the present paper, it has been accepted that the 
composition of cummingtonite lies on the F side of the tie 
line orthoamphibole-hornblende (Robinson and Jaffe, 1969; 
James et al., 1978). As a consequence, the topologies of 
some reactions have been changed. Selverstone et al. (1984) 
described the assemblage of the reaction

chlorite + staurolite = hornblende + kyanite

which extends from invariant point 17. Frey (1969, 1974) 
reported the assemblage of the reaction
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staurolite = hornblende + kyanite + almandine

extending from invariant point 18. The assemblage orthoam-
phibole-cordierite-hornblende (Schumacher and Robinson, 
1987) indicates that the reaction

chlorite + orthoamphibole = cordierite + hornblende

extending from invariant point 19 has gone to the right.

Thompson and Leclair (1987) extended the grid accom-
modating the coexistence of hornblende with aluminous 
minerals by proposing invariant points 24–28. They recorded 
the assemblage of invariant point 24. The coexistence of 
chloritoid-hornblende is also mentioned by Fox (1975). 
Klaper and Bucher-Nurminen (1987) listed the assemblages 
of two reactions

biotite + staurolite = hornblende + kyanite +  
muscovite and

biotite + almandine = hornblende + kyanite + 
muscovite

extending from invariant point 28.

Invariant points 29 (Froese, 1980) and 30 and 31 (Froese 
and Jen, 1979), extend the grid to include clinopyroxene. In 
the present paper, it has been assumed that the composition of 
hornblende lies on the M side of the tie line cummingtonite-
clinopyroxene. This provides a better accommodation of the 
association hornblende-cummingtonite-clinopyroxene com-
mon in low-pressure metamorphism (Miyashiro, 1973). The 
topologies of reactions around invariant 31 are based on min-
eral analyses in Jen (1975), also given in Jen and Kretz (1981).

Invariant points 32–35, taken from Froese (1980), intro-
duce epidote. If the composition of epidote is used rather 
than that of clinozoisite, clinopyroxene lies on the F side of 
the tie line hornblende-epidote, again leading to a change in 
the topologies of some reactions. The topologies of two reac-
tions extending from invariant point 34 have been changed 
to correct an error.

AN EXAMPLE OF MAPPED ISOGRADS

In southeastern Ontario, isograds have been mapped 
on the basis of some reactions that form part of the grid. 
In Figure 3, the isograds have been taken from Carmichael 
(1970) and Carmichael et al. (1978) with some modifica-
tions and additional information.

From Bishop Corners and Lake of Islands, Thompson 
and Leclair (1987) reported the mineral assemblage of 
invariant point 24; it includes the assemblage of the reaction

chlorite + almandine + muscovite = biotite + 
chloritoid

On the basis of mineral assemblages given by Thompson 
(1972) and Carmichael et al. (1978), two isograds may be 
inferred:

chorite + chloritoid + muscovite = biotite +  
staurolite and

chloritoid + muscovite = biotite + staurolite + 
almandine

These three reactions involving chloritoid are also discussed 
in recent work by Ford (2002, 2006), and the first and third 
reactions are shown as isograds. According to F.D. Ford (pers. 
comm., 2010), between Bishop Corners and Myers Cave, at a 
metamorphic grade above the third isograd, there is an occur-
rence of chloritoid-staurolite-hornblende (locality 92-2 in Ford, 
2002) and of staurolite-hornblende (locality 92-24 in Ford, 
2002). The other isograds shown between Bishop Corners and 
Ardoch are based on mineral assemblages given by Hounslow 
and Moore (1967) and Carmichael et al. (1978).

In the Whetstone Lake area, all isograds have been taken 
from Carmichael (1970). The assemblage biotite-staurolite-
almandine was stabilized, presumably at a pressure slightly 
lower than that at Bishop Corners, by the reaction

chlorite + almandine + muscovite = biotite + 
staurolite

Above the biotite-kyanite isograd, the assemblage horn-
blende-almandine-cummingtonite (Carmichael et al., 1978) 
indicates that the reaction

chlorite + hornblende + almandine = cummingtonite

has gone to the right. To the north of Whetstone Lake, at 
Brinklow, the mineral assemblage of invariant point 14 has 
been recorded (Hall, 1980; Froese and Hall, 1983); it includes 
the assemblage of the last reaction. Also at Whetstone Lake, 
Trzcienski (1971) has documented two reactions extending 
from invariant point 7; these are:

chlorite + staurolite = cordierite +  
orthoamphibole and

chlorite + staurolite = cordierite + almandine

Reinhardt and Skippen (1970) presented a diagram show-
ing mineral assemblages in pelitic and mafic rocks from the 
Westport area. This diagram has been redrawn here as Figure 4; 
on the grid, it would be represented by a point to the right of 
the reaction

hornblende + almandine + biotite = 
orthopyroxene + K-feldspar

extending from invariant point 31.

DISCUSSION

The construction of the grid involves approximations and 
simplifying assumptions leading to discrepancies between 
the grid and observations in nature. The main difficulty 
stems from the decision to keep the number of j-components 
to four in order to allow graphic representation of mineral 
assemblages in the chemical system AKFM.
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Considering Mn, which has been neglected, as an addi-
tional j-component, would turn garnet-bearing assemblages 
appearing as univariant reactions in Figure 2 into bivariant 
assemblages stable over a P-T range.

Treating CaO·Al
2
O

3
·2SiO

2
 and Na

2
O·Al

2
O

3
·6SiO

2
 as 

k-components demands that the composition of plagio-
clase remain constant or is a function of only P and T. This 
is an approximation at best and, if the composition varies 
independently of P and T, the two compositions should be 
regarded as j-components. As a consequence, plagioclase-
bearing assemblages, shown as univariant lines, would be 

stable over a P-T range. In the absence of plagioclase in 
some cordierite-orthoamphibole rocks, Na

2
O·Al

2
O

3
·6SiO

2
 

should be regarded as a j-component.

The absence of magnetite and ilmenite, the compositions 
of which have been taken as k-components, would mean that 
Fe

2
O

3
 and TiO

2
 should be regarded as j-components.

The assemblage muscovite-sillimanite-K-feldspar has 
been used to define the univariant reaction

muscovite + SiO
2
 + Na

2
O·Al

2
O

3
·6SiO

2
 = sillimanite 

+ K-feldspar + H
2
O

However, this assemblage occurs in some areas, e.g. cen-
tral Massachusetts (Tracy and Robinson, 1983), over a zone 
several kilometres in width. This suggests that the assem-
blage is bivariant, which could be caused by

1.	 retrograde metamorphism of sillimanite-K-feldspar assem-
blages with different amounts of the fluid phase to produce 
the dry assemblage muscovite-sillimanite-K-feldspar;

2.	 dilution of the fluid phase to various degrees with gas  
species other than H

2
O; or

3.	 formation of an undersaturated melt by the reaction

muscovite + SiO
2
 + Na

2
O·Al

2
O

3
·6SiO

2
 + H

2
O = sil-

limanite + melt.

The assemblage muscovite-sillimanite-undersaturated melt 
is stable within a P-T interval and subsequent cyrystallization of 
the melt produces quartz, plagioclase, and K-feldspar.

In spite of these limitations, the grid provides a coherent, 
even though only approximate, overview of the associations 
of mineral assemblages in pelitic and mafic rocks.
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