




North American Datum 1983

© Her Majesty the Queen in Right of Canada 2010

Système de référence géodésique nord-américain, 1983

© Sa Majesté la Reine du chef du Canada 2010

peat and muck, occurring as flat to gently sloping plains

FENLAND: woody sedge peat; 1-2 m thick

PEATLAND: sphagnum peat generally underlain by woody sedge peat; 0.5-2 m thick

PEATLAND: contains thermokarst depressions

PEATLAND (> 50%) AND FENLAND

FENLAND (> 50%) AND PEATLAND

sand, silt and minor gravel in association with modern drainage regime

ALLUVIAL PLAIN: coarse sand and gravel with silt and fine sand occurring as channel and overbank floodplain sediments or in-channel bars; 3-5 m thick

ALLUVIAL FAN: mainly sand and silt with minor gravel and discontinuous layers of peat occurring as fan deposits

ALLUVIAL COMPLEX: floodplain and fan deposits; may contain small areas of

Colluvial and landslide deposits diamicton and rubble derived from bedrock and/or surficial material through a variety of colluvial and landslide processes

COLLUVIAL COMPLEX: slope complex consisting of diamicton and rubble; may include minor landslides (Cz) and/or alluvial fan (Af) units; > 2 m thick LANDSLIDE: bedrock, rubble and/or diamicton occurring as stepped or fan-shaped deposits; formed by rotational slumping, retrogressive thaw flow, debris flows, rock

## Late Pleistocene

fine to medium sand, minor silt derived from deltaic or glaciolacustrine deposits in association with deglacial wind direction

topple and translational slides in surficial sediments and/or bedrock; they are

EOLIAN VENEER: discontinuous cover of mainly fine sand and silt over other surficial units and bedrock; < 1 m thick

prominent along former meltwater channels

EOLIAN COMPLEX: veneer to blanket deposited over other surficial materials particularly lacustrine and till plains; may include parabolic dunes

PARABOLIC DUNES: sand; < 15 m thick

silt and clay with minor sand and diamicton; sediments deposited in a glacial lake

LACUSTRINE PLAIN: flat to gently sloping cover; locally overlain by eolian sand, commonly associated with glacial Lake Mackenzie; 1-10 m thick SHORELINE DEPOSITS: low, ridged beach deposits of sand and gravel; the deposits naybe intercalated with till deposits, commonly deposited locally along the margins of

glacial Lake Mackenzie; < 5 m thick LACUSTRINE COMPLEX: deltaic sediments transitional between glaciofluvial and glaciolacustrine deposits with upper 0-5 m consisting of sand; locally overlain by eolian

sand and gravel locally with a veneer of eolian silt and/or sand; deposited as proglacial sediment by glacial meltwater

GLACIOFLUVIAL PLAIN: flat to gently sloping; 2-20 m thick

GLACIOFLUVIAL PLAIN, CHANNELLED: flat to gently sloping

GLACIOFLUVIAL TERRACE; 10-50 m thick

GLACIOFLUVIAL DELTA: gently sloping, deposited in a glacial lake; 5-15 m thick

GLACIOFLUVIAL DELTA, CHANNELLED: gently sloping, deposited in a glacial lake; commonly channels cut into underlying till; 5-15 m thick

GLACIOFLUVIAL FAN: mainly coarse gravel with minor sand, locally with mudflow deposits; commonly deposited in a meltwater channel or lake where no sudden water level changes had occurred; 5-7 m thick

Glaciofluvial deposits, ice contact sand and gravel locally with a veneer of eolian silt and/or sand; deposited as

ice-contact sediment by glacial meltwater

GLACIOFLUVIAL HUMMOCKS: kames; < 5 m thick

thermokarst ponds in places; 2-30 m thick

GLACIOFLUVIAL COMPLEX, CHANNELLED: containing ridges, hummocks and kettled plains, affected by glaciofluvial channelling; common along Blackwater River;

GLACIOFLUVIAL COMPLEX: includes eskers, kames and plains, commonly with

Glacial deposits unsorted silt, sand, and clay with clasts (pebbles, cobbles and some boulders) deposited by glacial ice in a variety of landforms

TILL PLAIN: flat to gently sloping; 3-5 m thick

TILL BLANKET: gently to moderately sloping plain conforming to underlying topography; 2-8 m thick

TILL BLANKET TO VENEER: conforming to underlying topography; 2-8 m thick

TILL BLANKET TO VENEER, GULLIED: conforming to underlying topography; 2-8 m

TILL VENEER TO BLANKET: conforming to underlying topography

TILL, DRUMLINOID: hilly till plain with individual drumlins or extensive flutes; 3-15 m

TILL, RIDGED: plain of generally coarse till (20-50% pebbles) deposited as ridges; commonly lateral and frontal moraines and hummocks; < 9 m thick TILL COMPLEX: largely hummocky, ridged, and/or hilly with patches of gravel; in

some places Tx forms veneer over bedrock

TILL COMPLEX, CHANNELLED

TILL, CREVASSE FILL: coarse diamicton (>30% pebbles) deposited as crevasse fills forming highly compacted ridges; 2-15 m thick

This pattern is used when organic deposits appear as a second or third component in

Fenland constituting 10 - 50% of the map unit

Peatland constituting 10 - 50% of the map unit

Peatlands and fenlands undivided constituting 10 - 50% of the map unit

This pattern is used when eolian sand veneer appears as a second or third component in a polygon, eg. Tp.Gx.Ev Discontinous veneer (<1m) mainly fine sand and silt covering other surficial units and

Geological boundary (defined)

Moraine ridge: unconsolidated sediments (till, sand and gravel) deposited in ridges at terminal, recessional, lateral and medial positions with respect to ice margins

Moraine plateau: commonly rimmed and mantled by glaciolacustrine sediments overlying a till core. The moraine plateaus in this area are characterized by rims up to 15 m high enclosing a basinal area. They contain silty-clay sediments to a depth of 2m; actual thickness of glaciolacustrine sediments are unknown. Moraine plateaus span 100 – 1400 metres in diameter. No till was found below the rims or within the

 Drumlin, drumlinoid ridge or flute (direction uncertain): streamlined hill or ridge of till with long axis paralleling direction of iceflow

Meltwater channel (major): erosion and channel formation by meltwater flow along, beneath or in front of a glacier or ice sheet; range from broad, shallow channels to deeply incised, steep-sided, flat-bottomed valleys; channels may run across or along slope contours; may be presently dry, poorly drained or contains an underfit stream or

Meltwater channel (minor): erosion and channel formation by meltwater flow along, beneath or in front of a glacier or ice sheet; range from broad, shallow channels to deeply incised, steep-sided, flat-bottomed valleys; channels may run across or along slope contours; may be presently dry, poorly drained or contains an underfit stream or

>>>>>>> Esker (direction certain): sinuous, low ridge composed of sand and gravel; formed by

deposition from meltwater running through a channel beneath or within glacier ice

Crevasse filling

Shoreline of former lake: low, ridged beach deposits of sand and gravel Shoreline of former lake common to two lakes: low, ridged beach deposits of sand and

Dune ridge

( ) Deflation hollow

Landslide

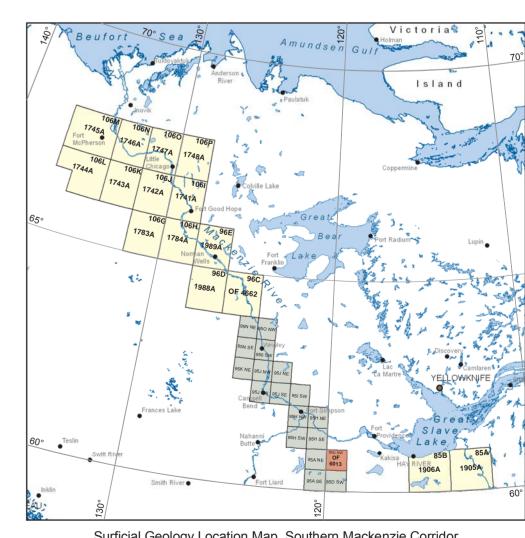
Ground Station

## Author: A. Duk-Rodkin

Any revisions or additional geological information known to the user would be welcomed by the Geological Survey of Canada

Geology by A. Duk-Rodkin, 2007 Digital cartography by F. Hardjowirogo and D.A. Lemay

Digital base from Geomatics Canada, modified by the Geological Survey of Canada Elevations in feet above mean sea level


## UNDERSTANDING THE LEGEND

The genetic category of surficial material is indicated by the first upper case letter, e.g., G (glaciofluvial). The morphologic category is indicated in lower case following the genetic category, e.g., Gp (glaciofluvial plain). The modifying processes are indicated in lower case separated from the morphologic category by a (-) e.g., Gp-k (glaciofluvial plain with thermokarst processes).

Combined units are used where, for reasons of scale, the units cannot be separated. The main unit, covering over 50% of the geologic polygon, is separated by a (.) from the secondary unit, e. g., Gp-k.Lp. In cases where the polygon has a third unit it is represented by a patterened symbol, e.g., eolian sand cover, peatlands or fenlands.

| OPEN FIL<br>DOSSIER PU                         | BLIC that have not gone through the GSC form   |
|------------------------------------------------|------------------------------------------------|
| 6013                                           | publication process.  Les dossiers publics s   |
| GEOLOGICAL SURVEY OF<br>OMMISSION GÉOLOGIQUE I | CANADA des produit qui n'ont pas été soumis au |
| 2010                                           | processus officiel de publication de la CGC.   |

NATIONAL TOPOGRAPHIC SYSTEM REFERENCE AND INDE TO ADJOINING GEOLOGICAL SURVEY OF CANADA MAPS



Surficial Geology Location Map, Southern Mackenzie Corridor