

Canada

Natural Resources Ressources naturelles Canada

Uranium-lead geochronology of detrital zircon grains from bedded greywacke, Sangster Township, Abitibi greenstone belt, Ontario

O. van Breemen and J.A. Ayer

Geological Survey of Canada

Current Research 2010-5

2010

Geological Survey of Canada Current Research 2010-5

Uranium-lead geochronology of detrital zircon grains from bedded greywacke, Sangster Township, Abitibi greenstone belt, Ontario

O. van Breemen and J.A. Ayer

©Her Majesty the Queen in Right of Canada 2010

ISSN 1701-4387 Catalogue No. M44-2010/5E-PDF ISBN 978-1-100-14591-4 DOI 10.4095/261490

A copy of this publication is also available for reference in depository libraries across Canada through access to the Depository Services Program's Web site at http://dsp-psd.pwgsc.gc.ca

A free digital download of this publication is available from GeoPub: http://geopub.nrcan.gc.ca/index_e.php

Toll-free (Canada and U.S.A.): 1-888-252-4301

Recommended citation

van Breemen, O. and Ayer, J., 2010. Uranium-lead geochronology of detrital zircon grains from bedded greywacke, Sangster Township, Abitibi greenstone belt, Ontario; Geological Survey of Canada, Current Research 2010-5, 6 p.

Critical reviewer V.J. McNicoll

Authors O. van Breemen (ovanbree@nrcan.gc.ca) Geological Survey of Canada 601 Booth Street Ottawa, Ontario K1A 0E8

J.A. Ayer (john.ayer@ndm.gov.on.ca) Precambrian Geoscience Section Ontario Geological Survey 933 Ramsey Lake Road Sudbury, Ontario P3E 6B5

Correction date:

All requests for permission to reproduce this work, in whole or in part, for purposes of commercial use, resale, or redistribution shall be addressed to: Earth Sciences Sector Copyright Information Officer, Room 644B, 615 Booth Street, Ottawa, Ontario K1A 0E9. E-mail: ESSCopyright@NRCan.gc.ca

Uranium-lead geochronology of detrital zircon grains from bedded greywacke, Sangster Township, Abitibi greenstone belt, Ontario

O. van Breemen and J.A. Ayer

van Breemen, O. and Ayer, J., 2010. Uranium-lead geochronology of detrital zircon grains from bedded greywacke, Sangster Township, Abitibi greenstone belt, Ontario; Geological Survey of Canada, Current Research 2010-5, 6 p.

Abstract: Uranium-lead zircon ages from a sample of metamorphosed bedded greywacke in Sangster Township yield a maximum U-Pb TIMS age of 2697 ± 2 Ma with the data further suggesting that these sedimentary rocks are younger than 2687 Ma. These age constraints are consistent with the rocks being correlative with the Porcupine assemblage of the southern Abitibi greenstone belt. This correlation is further supported by a U-Pb SHRIMP detrital age distribution showing a major peak at 2701 Ma and small peaks around 2794 Ma and 2835 Ma.

Résumé : Les âges U-Pb sur zircon d'un échantillon de grauwacke stratifié métamorphisé du canton de Sangster définissent un âge maximal de 2697 ± 2 Ma (âge U-Pb déterminé par spectrométrie de masse à thermoionisation). De plus, les données laissent supposer que ces roches sédimentaires sont âgées de tout au plus 2687 Ma. Ces limites d'âge soutiennent la corrélation de ces roches avec celles de l'assemblage de Porcupine, dans le sud de la ceinture de roches vertes de l'Abitibi. Cette corrélation est également appuyée par les âges U-Pb de zircons détritiques déterminés à la microsonde SHRIMP, dont la répartition est caractérisée par l'existence d'un pic principal à 2701 Ma et de pics secondaires à environ 2794 Ma et 2835 Ma.

INTRODUCTION

Mapping by the Ontario Geological Survey in the Detour-Burntbush area, north of Cochrane (Fig. 1), outlined an extensive area of clastic rocks consisting mostly of bedded greywacke units that are metamorphosed to amphibolite facies (Ayer et al., 2007). These 'metasandstones' are similar to greywacke units of the Porcupine assemblage of the southern Abitibi greenstone belt (Aver et al., 2002), which is younger than 2690 ± 2 Ma, but older than the Timiskaming assemblage. The age of these metasedimentary rocks determines the stratigraphic position of a large paragneiss terrane north of Cochrane, contributing to stratigraphic knowledge of the Abitibi region and interpretation of the northern part of the Discover Abitibi regional seismic sections northeast of Timmins. In this paper the authors present precise singlegrain U-Pb ID-TIMS (Isotope Dilution - Thermal Ionization Mass Spectroscopy) analyses in order to place a maximum age constraint on deposition of the metasedimentary rocks. Also presented is a statistically representative population of U-Pb SHRIMP (Sensitive High-Resolution Ion Micro Probe) ages in order to characterize sedimentary provenance.

PROCEDURES

A sample of bedded greywacke was collected from a large outcrop on the west side of the highway to Detour Lake in Sangster Township (NAD 83; UTM Zone 17; 537292E, 5465595N). The outcrop is an enclave of metasedimentary rocks enclosed within an extensive granodiorite pluton. The sampled unit consists of bedded greywacke and siltstone units metamorphosed to ampbibolite facies. Zircon grains were separated by standard procedures of disc mill crushing, Wilfley table concentration, heavy-liquid separation, and magnetic purification. Zircon grains consist of subhedral prisms (L:B = 3:1 to 1:1) that feature moderate to weak igneous zoning, some rounding of grains, but no truncation of internal zoning. Cracks and inclusions are abundant.

For ID-TIMS analysis, single, clear zircon grains were selected and strongly abraded (Krogh, 1982). Analytical methods and error treatment are presented in Parrish et al. (1987) and Roddick (1987), respectively. Uranium-lead isotopic data are presented in Table 1 together with $^{207}Pb/^{206}Pb$ ages and uncertainties at the 2σ level.

Figure 1. Geological map with ages after Ayer et al. (2009) shows location of bedded greywacke sampled for this study. Nine other published ages are shown on the map including maximum ages (Ayer et al., 2009) for three other greywacke samples (open circles with crosses) and five ages from felsic extrusive rocks that constrain the volcanic stratigraphy. In addition, a minimum age for volcanic host rocks is indicated by the age of a feldspar porphyry (FP) dyke (Marmont and Corfu, 1989).

	Weight ²	U	Pb ³	²⁰⁶ Pb ⁴	Pb⁵	²⁰⁸ Pb ⁶	²⁰⁷ Pb ⁶	²⁰⁶ Pb ⁶	²⁰⁷ Pb ⁶	²⁰⁷ Pb ⁷				
Fraction ¹	(μ g)	(ppm)	(ppm)	²⁰⁴ Pb	(pg)	²⁰⁶ Pb	²³⁵ U	²³⁸ U	²⁰⁶ Pb	²⁰⁶ Pb	Disc ⁸			
Sample 06JAA-066; z9096 (49.342°N; 80.487°E)														
A, N1	3	91	59	1277	7	0.25	13.211 ± 0.14	0.5182 ± 0.10	0.18489 ± 0.07	2697 ± 2	0.3			
B, N1	2	91	56	2287	3	0.21	12.904 ± 0.13	0.5094 ± 0.11	0.18374 ± 0.05	2687 ± 2	1.5			
C, N1	3	42	25	1407	3	0.13	13.553 ± 0.15	0.5241 ± 0.14	0.18755 ± 0.07	2721 ± 2	0.2			
D, N1	5	77	44	576	12	0.14	12.877 ± 0.23	0.5059 ± 0.24	0.18460 ± 0.12	2695 ± 4	2.5			
E, N1	5	52	33	3480	2	0.24	13.016 ± 0.12	0.5125 ± 0.10	0.18419 ± 0.05	2691 ± 2	1.1			
F, N1	5	99	55	3820	4	0.09	13.006 ± 0.12	0.5072 ± 0.09	0.18598 ± 0.05	2707 ± 2	2.8			
G, M1	10	79	49	7346	3	0.24	12.636 ± 0.11	0.5012 ± 0.09	0.18286 ± 0.04	2679 ± 1	2.7			
H, M1	11	96	58	9855	3	0.14	14.220 ± 0.11	0.5256 ± 0.09	0.19620 ± 0.04	2795 ± 1	3.2			
I, M1	44	38	23	7440	7	0.23	12.912 ± 0.11	0.5095 ± 0.09	0.18380 ± 0.04	2687 ± 1	1.5			
J, M1	7	52	29	3548	3	0.08	13.253 ± 0.12	0.5138 ± 0.10	0.18709 ± 0.05	2717 ± 2	2.0			
¹ M = mag at 1.8 am	¹ M = magnetic, N = nonmagnetic at a side slope given in degrees on a Frantz isodynamic magnetic separator operating at 1.8 amps;													
² Error on v	weight = ±	15 per	cent;											

³ Radiogenic Pb;

⁴ Measured ratio corrected for spike and Pb fractionation of 0.11 \pm 37 per cent per AMU;

Total common Pb on analysis corrected for fractionation and spike;

³ Corrected for blank Pb and U, common Pb, errors quoted are 1σ in per cent;

⁷ Age errors quoted are 2σ in Ma;

⁸ Discordance in per cent along a discordia to origin.

For SHRIMP microbeam analysis, zircon grains were mounted and polished on a 2.5 cm epoxy disk along with fragments of the BR266 SHRIMP zircon standard (²⁰⁶Pb/²³⁸U age of 559 Ma). The mount was imaged using a Cambridge Instruments scanning electron microscope in backscattered electron modefor the purpose of guiding the placement of ion probe analyses. A spot size of 17 μ m x 23 μ m was used. Analytical methods are given in Stern (1997) and Stern and Amelin (2003). Table 2 presents U-Pb analytical data with ²⁰⁶Pb/²³⁸U and ²⁰⁷Pb/²⁰⁶Pb ages and uncertainties at the 1 σ level. Age uncertainties in the text are given at the 2 σ level.

ID-TIMS RESULTS

Uranium-lead isotopic ratios are plotted in Figure 2a. Of eight grains analyzed, only two yielded concordant analyses, corresponding to 207 Pb/ 206 Pb ages of 2697 ± 2 Ma and 2721 ± 2 Ma. The remaining six analyses, 1.1% to 3.2% discordant, have 207 Pb/ 206 Pb ages ranging from 2679 ± 1 Ma to 2795 ± 1 Ma. The 207 Pb/ 206 Pb ages for seven analyses are in the interval 2679 ± 1 Ma to 2721 ± 2 Ma.

The maximum age of deposition is 2697 ± 2 Ma, which does not provide a sufficiently tight maximum age constraint to characterize Porcupine assemblage sediments; however, two analyses correspond to 207 Pb/ 206 Pb ages of 2687 ± 1 Ma and 2687 ± 2 Ma. These analyses are both moderately discordant (1.5%) and suggest that the time of deposition does not significantly exceed 2687 Ma. In the absence of younger

grains, the data would indicate the greywacke deposits are the same age as the Porcupine assemblage (van Breemen and Bleeker, 2008).

SHRIMP RESULTS

A concordia plot of isotopic ratios (Fig. 2b) shows that the analyses are mostly concordant and are strongly clustered. Figure 2c shows a histogram and probability density plot of 66 ²⁰⁷Pb/²⁰⁶Pb ages excluding data that are more than 5% discordant. The majority of ages form a Neoarchean peak of ca. 2701 Ma. A small peak, corresponding to four ages, centres on 2794 Ma. Another small peak representing two ages is late Mesoarchean at 2835 Ma.

DISCUSSION

The detrital zircon age distribution presented above is similar to those analyzed in sandstone and conglomerate samples within more extensive clastic sedimentary rocks intercalated with older volcanic units within the Burntbush belt to the east (*see* Ayer et al., 2009). While the clastic sediments selected from the Abitibi greenstone belt north of Cochrane are younger than 2697 \pm 2 Ma, the data suggest they are likely younger than 2687 Ma. The maximum depositional age is consistent with these sediments being equivalent to the Porcupine assemblage farther south. The detrital age distribution with a major peak at ca. 2701 Ma is

Table 2.	Uranium-lead	SHRIMP	spot analyses.	

Analysist	U	Th		Pb	²⁰⁴ Pb	²⁰⁴ Pb			²⁰⁸ Pb		²⁰⁷ Pb		²⁰⁶ Pb		²⁰⁷ Pb		²⁰⁶ Pb		²⁰⁷ Pb	<i>,</i>	Disc.
Analysis*	(ppm)	(ppm)	Th/U	(ppm)	(ppb)	206 Pb	±1σ	f ²⁰⁶	²⁰⁶ Pb	±1σ	²³⁵ U	±1σ	238U	±1σ	²⁰⁶ Pb	±1σ	238U	±1σ	206 Pb	±1σ	(%)
9096-56.1	91	57	0.6	53	6	0.00015	0.00005	0.0025	0.187	0.007	12.405	0.276	0.4982	0.0077	0.1806	0.0026	2606	33	2658	24	2
9096-44.1	43	23	0.6	25	10	0.00054	0.00014	0.0094	0.141	0.007	12.748	0.309	0.5087	0.0085	0.1818	0.0029	2651	36	2669	26	0.7
9096-29.1	328	209	0.7	188	4	0.00003	0.00002	0.0005	0.185	0.002	12.235	0.187	0.4881	0.0065	0.1818	0.0011	2562	28	2669	10	4
9096-7.1	123	42	0.4	69	4	0.00007	0.00004	0.0011	0.095	0.002	12.890	0.205	0.5090	0.0072	0.1837	0.0011	2652	31	2686	10	1.3
9096-38.1	169	101	0.6	101	2	0.00003	0.00002	0.0006	0.169	0.002	12.966	0.238	0.5116	0.0079	0.1838	0.0015	2663	34	2688	14	0.9
9096-48.1	143	120	0.9	90	2	0.00002	0.00006	0.0004	0.240	0.004	13.005	0.212	0.5131	0.0071	0.1838	0.0013	2670	30	2688	12	0.7
9096-72.1	86	68	0.8	54	1	0.00004	0.00005	0.0007	0.228	0.006	13.129	0.225	0.5167	0.0075	0.1843	0.0014	2685	32	2692	12	0.2
9096-18.1	394	219	0.6	235	8	0.00005	0.00002	0.0008	0.159	0.001	13.108	0.206	0.5158	0.0073	0.1843	0.0009	2681	31	2692	8	0.4
9096-133.1	143	75	0.5	83	6	0.00009	0.00004	0.0016	0.147	0.004	12.860	0.253	0.5056	0.0091	0.1845	0.0011	2638	39	2694	10	2.1
9096-26.1	193	129	0.7	118	5	0.00006	0.00003	0.0010	0.194	0.002	13.110	0.208	0.5152	0.0075	0.1846	0.0009	2679	32	2694	8	0.6
9096-51.1	370	213	0.6	225	11	0.00007	0.00002	0.0012	0.165	0.001	13.304	0.208	0.5223	0.0072	0.1847	0.0011	2709	30	2696	10	-0.5
9096-33.1	152	181	1.2	104	1	0.00001	0.00003	0.0001	0.346	0.003	13.232	0.226	0.5194	0.0074	0.1848	0.0015	2697	31	2696	13	0
9096-146.1	133	115	0.9	84	1	0.00002	0.00002	0.0004	0.247	0.002	13.069	0.204	0.5130	0.0072	0.1848	0.0010	2669	31	2696	9	1
9096-84.1	159	82	0.5	94	6	0.00008	0.00005	0.0014	0.142	0.003	13.210	0.218	0.5183	0.0075	0.1848	0.0012	2692	32	2697	10	0.2
9096-61.1	239	157	0.7	144	7	0.00006	0.00003	0.0011	0.184	0.002	13.062	0.218	0.5123	0.0078	0.1849	0.0010	2666	33	2698	9	1.2
9096-89.1	82	66	0.8	52	3	0.00007	0.00004	0.0012	0.235	0.003	13.186	0.226	0.5170	0.0077	0.1850	0.0013	2687	33	2698	12	0.4
9096-80.1	215	161	0.8	132	4	0.00004	0.00002	0.0007	0.214	0.004	13.036	0.221	0.5109	0.0075	0.1851	0.0012	2660	32	2699	11	1.4
9096-27.1	171	87	0.5	102	7	0.00010	0.00003	0.0017	0.147	0.002	13.298	0.247	0.5211	0.0086	0.1851	0.0012	2704	37	2699	11	-0.2
9096-14.1	126	90	0.7	79	0	0.00001	0.00002	0.0002	0.205	0.002	13.364	0.233	0.5236	0.0078	0.1851	0.0014	2715	33	2699	12	-0.6
9096-35.1	47	30	0.7	28	6	0.00027	0.00023	0.0047	0.189	0.009	12,971	0.365	0.5083	0.0081	0.1851	0.0039	2649	35	2699	35	1.9
9096-131.1	26	15	0.6	16	2	0.00018	0.00013	0.0031	0.157	0.006	13.251	0.374	0.5187	0.0094	0.1853	0.0036	2694	40	2701	33	0.2
9096-58 1	200	125	0.6	122	3	0.00004	0.00002	0.0007	0 187	0.002	13 134	0.215	0.5140	0.0074	0 1853	0.0012	2673	31	2701	10	1
9096-77 1	181	86	0.5	107	4	0.00005	0.00002	0.0007	0.135	0.002	13 287	0.211	0.5195	0.0071	0.1855	0.0012	2697	30	2703	11	02
9096-151 1	248	151	0.5	149	4	0.00003	0.00002	0.0006	0.105	0.000	13 123	0.211	0.5130	0.0076	0.1856	0.0012	2669	33	2703	9	1.3
9096-2 1	187	211	1.2	128	1	0.00000	0.00001	0.0000	0.326	0.002	13 462	0.241	0.5262	0.0070	0.1856	0.0014	2725	34	2703	12	-0.8
9096-37 1	215	152	0.7	132	3	0.00001	0.00001	0.0002	0.020	0.000	13 111	0.241	0.5202	0.0001	0.1857	0.0014	2666	30	2704	8	1.4
9096-90 1	100	428	0.7	317	2	0.00000	0.00002	0.0000	0.204	0.002	13 204	0.107	0.5122	0.0073	0.1857	0.0000	2681	31	2704	8	0.9
9096-110 1	90	420	0.5	53	4	0.00001	0.00001	0.0001	0.136	0.002	13 288	0.203	0.5190	0.0073	0.1857	0.0003	2695	35	2704	10	0.3
0006-10.1	102	125	0.5	118	1	0.00003	0.00004	0.0010	0.130	0.003	13 327	0.270	0.5130	0.0000	0.1057	0.0022	2033	33	2704	10	0.4
0006-22 1	102	120	1.0	82	6	0.00002	0.00002	0.0003	0.100	0.002	13 200	0.223	0.5202	0.0077	0.1050	0.0012	2678	31	2705	0	1
9090-22.1	80	77	0.0	57	3	0.00010	0.00000	0.0017	0.201	0.005	13 232	0.207	0.5163	0.0072	0.1059	0.0010	2684	37	2700	10	0.8
0006 60 1	77	69	0.9	10	0	0.00000	0.00010	0.0011	0.255	0.003	12 027	0.200	0.5105	0.0000	0.1055	0.0022	2004	25	2700	14	0.0
9096-60.1	124	106	0.9	40	2	0.00001	0.00001	0.0002	0.200	0.004	12 265	0.240	0.5062	0.0001	0.1009	0.0010	2049	20	2700	12	2.1
9090-52.1	1.04	146	1.0	00	2	0.00003	0.00003	0.0000	0.230	0.003	10.200	0.229	0.5175	0.0075	0.1000	0.0014	2000	100	2707	20	0.7
9096-6.1	001	140	1.1	140	5	0.00000	0.00002	0.0001	0.301	0.000	12.000	0.001	0.5104	0.0204	0.1002	0.0035	2004	20	2709	10	0.9
9096-10.1	231	100	0.7	140	5	0.00005	0.00002	0.0009	0.190	0.003	10.092	0.210	0.5099	0.0070	0.1002	0.0014	2000	30	2709	12	2
9090-00.1	2/5	220	0.5	100	6	0.00004	0.00002	0.0008	0.140	0.002	10.407	0.223	0.5231	0.0076	0.1003	0.0012	2712	10	2710	14	-0.1
9096-36.1	100	209	0.0	100	0	0.00005	0.00002	0.0009	0.220	0.003	10.000	0.294	0.4230	0.0105	0.1003	0.0010	2270	40	2710	14	10
9096-24.1	71	120	0.7	117	1	0.00002	0.00003	0.0003	0.193	0.003	10.420	0.225	0.5210	0.0000	0.1000	0.0010	2700	34	2712	0	0.2
9096-64.1	100	32	0.5	42	3	0.00011	0.00008	0.0018	0.135	0.004	13.406	0.311	0.5210	0.0095	0.1800	0.0023	2703	40	2713	20	0.3
9096-13.1	133	50	0.5	/0	1	0.00002	0.00002	0.0004	0.133	0.002	10.021	0.213	0.5172	0.0075	0.1000	0.0010	2007	32	2714	9	
9096-53.1	53	50	1.0	35	2	0.00009	0.00015	0.0015	0.273	0.007	10.101	0.354	0.5176	0.0083	0.1868	0.0036	2689	35	2714	32	0.9
9096-136.1	88	83	1.0	5/	4	0.00011	0.00008	0.0019	0.278	0.004	10.000	0.239	0.5115	0.0073	0.1869	0.0018	2663	31	2715	10	1.9
9096-99.1	117	88	0.8	/1	3	0.00006	0.00007	0.0011	0.214	0.003	12.906	0.242	0.5005	0.0079	0.1870	0.0016	2616	34	2716	14	3.7
9096-116.1	70	47	0.5	62	2	0.00005	0.00000	0.0009	0.127	0.005	10.400	0.257	0.5197	0.0000	0.1075	0.0010	2090	34	2720	10	0.0
9096-41.1	104	13	1.0	52	3	0.00000	0.00005	0.0014	0.274	0.004	10.042	0.200	0.5227	0.0002	0.1079	0.0017	2/11	30	2724	10	0.5
9096-15.1	104	40	0.5	59	4	0.00008	0.00005	0.0014	0.122	0.005	10.002	0.233	0.5038	0.0074	0.1881	0.0016	2630	32	2725	14	3.5
9096-11.1	487	210	0.4	287	4	0.00002	0.00001	0.0003	0.123	0.002	13.607	0.204	0.5231	0.0071	0.1887	0.0010	2/12	30	2731	8	0.7
9096-112.1	145	65	0.5	85	3	0.00004	0.00003	0.0007	0.133	0.003	13.471	0.250	0.5167	0.0080	0.1891	0.0016	2685	34	2734	14	1.8
9096-42.1	53	32	0.0	33	3	0.00014	0.00006	0.0024	0.178	0.004	10.407	0.355	0.5298	0.0091	0.1891	0.0032	2741	38	2734	28	-0.2
9096-28.1	120	83	0.7	/8	3	0.00005	0.00003	0.0008	0.191	0.003	10.700	0.287	0.5176	0.0087	0.1891	0.0021	2689	3/	2735	10	1.7
9096-102.1	148	42	0.3	85	2	0.00003	0.00005	0.0006	0.081	0.002	13.739	0.225	0.5267	0.0073	0.1892	0.0014	2728	31	2735	12	0.3
9096-114.1	48	32	0.7	30	6	0.00027	0.00011	0.0047	0.188	0.005	13.757	0.335	0.5273	0.0103	0.1892	0.0023	2730	44	2735	20	0.2
9096-62.1	168	139	0.9	- 111	1	0.00001	0.00002	0.0002	0.240	0.004	13.960	0.231	0.5340	0.0074	0.1896	0.0014	2/58	31	2739	12	-0.7
9096-16.1	110	29	0.4	44	3	0.00009	0.00009	0.0015	0.109	0.004	13.227	0.284	0.5055	0.0080	0.1898	0.0024	2637	35	2740	21	3.7
9096-86.1	110	54	0.5	66	3	0.00006	0.00006	0.0010	0.140	0.003	13.790	0.256	0.5249	0.0077	0.1906	0.0019	2720	33	2747	16	1
9096-17.1	198	159	0.8	127	26	0.00030	0.00005	0.0051	0.240	0.003	13.754	0.222	0.5221	0.0073	0.1911	0.0012	2708	31	2752	11	1.6
9096-49.1	91	47	0.5	55	0	0.00001	0.00004	0.0001	0.151	0.002	13.850	0.254	0.5218	0.0086	0.1925	0.0012	2707	37	2764	10	2.1
9096-25.1	143	51	0.4	84	10	0.00015	0.00004	0.0027	0.099	0.002	14.164	0.259	0.5302	0.0081	0.1938	0.0016	2742	34	2774	14	1.2
9096-21.1	71	29	0.4	42	1	0.00004	0.00010	0.0008	0.117	0.004	14.213	0.324	0.5280	0.0089	0.1952	0.0026	2733	38	2787	22	1.9
9096-39.1	124	37	0.3	70	2	0.00004	0.00003	0.0007	0.081	0.002	13.888	0.352	0.5150	0.0106	0.1956	0.0024	2678	45	2790	20	4
9096-97.1	59	29	0.5	37	6	0.00021	0.00009	0.0036	0.135	0.004	14.643	0.276	0.5426	0.0082	0.1957	0.0019	2794	34	2791	16	-0.1
9096-115.1	207	161	0.8	135	4	0.00004	0.00004	0.0008	0.226	0.004	14.445	0.224	0.5347	0.0074	0.1959	0.0010	2761	31	2792	9	1.1
9096-71.1	267	116	0.4	166	9	0.00007	0.00003	0.0013	0.124	0.002	14.914	0.472	0.5463	0.0115	0.1980	0.0042	2810	48	2810	35	0
9096-1.1	205	164	0.8	134	3	0.00003	0.00005	0.0005	0.224	0.003	14.587	0.286	0.5332	0.0083	0.1984	0.0020	2755	35	2813	17	2.1
9096-104.1	104	80	0.8	69	0	0.00001	0.00004	0.0002	0.223	0.003	14.966	0.276	0.5437	0.0078	0.1997	0.0020	2799	33	2823	16	0.9
9096-113.1	353	166	0.5	227	1	0.00001	0.00001	0.0001	0.138	0.002	15.461	0.216	0.5575	0.0074	0.2011	0.0006	2856	31	2835	5	-0.7
*Analysis# =	= Sampl	e#-grair	n#.ana	lysis sp	ot#																
f206 refers to	mole fr	action o	f total	206 Pb tha	at is du	ie to comi	mon Pb; c	lata are	commo	on-Pb c	orrected	l accor	ding to p	rocedur	es outlin	ed in St	ern (19	997).			
D: 455	20	5 Jul 238		207) D	`	· · · · · · · · · · · · · · · · · · ·										•	,			

Disc. = $100 \times (1 - {}^{206}Pb)^{238}U age)/({}^{207}Pb)^{206}Pb age)$ GSC Mount # IP439

consistent with the dominant source being synvolcanic plutons, coeval with the volcanic pile of the Abitibi greenstone belt to the south; i.e. the Tisdale, Kinojevis, and Blake River assemblages (Ayer et al., 2002, 2005). Small age peaks at the end of the Mesoarchean and beginning of the Neoarchean are also characteristic of Porcupine assemblage detrital zircon age distributions found farther south (van Breemen and Bleeker, 2008).

Figure 2. a) Isotope ratio plot of ID-TIMS U-Pb data, **b)** isotope ratio plot of SHRIMP U-Pb data, and **c)** probability distribution plot and histogram for SHRIMP ²⁰⁷Pb/²⁰⁶Pb ages.

ACKNOWLEDGMENTS

Authors appreciate help with the U-Pb TIMS and SHRIMP analyses provided by D. Bellerive, C. Lafontaine, and T. Pestaj as well as the critical review by V.J. McNicoll.

REFERENCES

- Ayer, J.A., Amelin, Y., Corfu, F., Kamo, S., Ketchum, J., Kwok, K., and Trowell, N., 2002. Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: authochthonous volcanic construction followed by plutonism, regional deformation and sedimentation; Precambrian Research, v. 115, p. 63–95. doi:10.1016/S0301-9268(02)00006-2
- Ayer, J.A., Thurston, P.C., Bateman, R., Gibson, H.L., Hamilton, M.A., Hathaway, B., Hocker, S.M., Hudak, G., Lafrance, B., Ispolatov, V., MacDonald, P.J., Peloquin, A.S., Piercey, S.J., Reed, L.E., Thompson, P.H., and Izumi, H., 2005. Digital compilation of maps and data from the Greenstone Architecture Project in the Timmins-Kirkland Lake Region: Discover Abitibi Initiative; Ontario Geological Survey, Open File Report 6154, 146 p.
- Ayer, J.A., Dubé, B., Goodfellow, W.D., Ross, P.S., Bleeker, W., Taylor, B.E., Peter, J.M., Grunsky, E.C., Hillary, B., Thurston, P.C., Berger, B.R., Houlé, M.G., Beakhouse, G.P., Trowell, N.F., Snyder, D.B., McNicoll, V.J., Keating, P., Percival, J.A., Mercier-Lange, P., Lauzière, K., Paradis, S.J., Goutier, J., Dion, C., Pilote, P., Lefault, M., Monecke, T., Dumont, R., Brouillette, P., Gosselin, P. and van Breemen, O., 2007. The Abitibi greenstone belt: update of the Precambrian Geoscience Section program, the Targeted Geoscience Initiative III Abitibi and Deep Search projects; *in* Summary of Field Work and Other Activities 2007, Ontario Geological Survey, Open File Report 6213, p. 3-1 to 3-44.
- Ayer, J.A., Chartrand, J.E., Douget, M., Rainsford, D.R.B., and Trowell, N.F., 2009. Geological compilation of the Burntbush-Detour lakes area, Abitibi Greenstone belt; Ontario Geological Survey, Preliminary Map P.3609, scale 1:100 000.
- Krogh, T.E., 1982. Improved accuracy of U–Pb ages by the creation of more concordant systems using an air abrasion technique; Geochimica et Cosmochimica Acta, v. 46, p. 637–649. doi:10.1016/0016-7037(82)90165-X
- Marmont, S. and Corfu, F., 1989. Timing of gold introduction in the Late Archean tectonic framework of the Canadian Shield: evidence from U-Pb geochronology of the Abitibi Subprovince; *in* The geology of gold deposits: the perspective in 1988, Bicentennial Gold '88; Economic Geology Monograph, v. 6, p. 101–111.
- Parrish, R.R., Roddick, J.C., Loveridge, W.D., and Sullivan, R.W., 1987. Uranium-lead analytical techniques at the Geochronology Laboratory, Geological Survey of Canada; *in* Radiogenic Age and Isotopic Studies: Report 1; Geological Survey of Canada, Paper 87–2, p. 3–7.
- Roddick, J.C., 1987. Generalized numerical error analysis with application to geochronology and thermodynamics; Geochimica et Cosmochimica Acta, v. 51, p. 2129–2135. doi:10.1016/0016-7037(87)90261-4

Stern, R.A., 1997. The GSC sensitive high resolution ion microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation; *in* Radiogenic Age and Isotopic Studies: Report 10; Geological Survey of Canada, Paper 1997-F, p. 1–31.

Stern, R.A. and Amelin, Y., 2003. Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM glass; Chemical Geology, v. 197, p. 111–146. doi:10.1016/S0009-2541(02)00320-0 van Breemen, O. and Bleeker, W., 2008. U-Pb ages of detrital zircons from early- (Porcupine) and syn-orogenic (Timiskaming) sedimentary rocks of the central and southern Abitibi greenstone belt, Superior Province, Canada; *in* Geological Association of Canada–Mineralogical Association of Canada, 2008, Program with Abstracts, v. 33, p. 176.

Geological Survey of Canada Project X91