

Organic deposits
peat and muck, occurring as flat to gently sloping plains

pO PEATLAND: sphagnum peat generally underlain by woody sedge peat; 0.5-2 m thick

PEATLAND: contains thermokarst depressions

pfO PEATLAND (> 50%) AND FENLAND

FENLAND (> 50%) AND PEATLAND

peat occurring as fan deposits

Alluvial deposits
sand, silt and minor gravel in association with modern drainage regime

and overbank floodplain sediments or in-channel bars; 3-5 m thick

ALLUVIAL FAN: mainly sand and silt with minor gravel and discontinuous layers of

ALLUVIAL PLAIN: coarse sand and gravel with silt and fine sand occurring as channel

At ALLUVIAL TERRACE: mainly sand and silt with minor gravel; well stratified; < 5 m thick

ALLUVIAL COMPLEX: floodplain and fan deposits; may contain small areas of

Colluvial and landslide deposits
diamicton and rubble derived from bedrock and/or surficial material through a variety
of colluvial and landslide processes

CV COLLUVIAL VENEER: discontinuous veneer of diamicton and rubble that conforms to local topography; < 2 m thick

CX

COLLUVIAL COMPLEX: slope complex consisting of diamicton and rubble; may include minor landslides (Cz) and/or alluvial fan (Af) units; > 2 m thick

LANDSLIDE: bedrock, rubble and/or diamicton occurring as stepped or fan-shaped deposits; formed by rotational slumping, retrogressive thaw flow, debris flows, rock topple and translational slides in surficial sediments and/or bedrock; they are

prominent along former meltwater channels

Late Pleistocene

Eolian deposits
fine to medium sand, minor silt derived from deltaic or glaciolacustrine deposits in association with deglacial wind direction

EOLIAN VENEER: discontinuous cover of mainly fine sand and silt over other surficial units and bedrock; < 1 m thick

EX EOLIAN COMPLEX: veneer to blanket deposited over other surficial materials particularly lacustrine and till plains; may include parabolic dunes

Er PARABOLIC DUNES: sand; < 15 m thick

Glaciolacustrine deposits
silt and clay with minor sand and diamicton; sediments deposited in a glacial lake

LACUSTRINE PLAIN: flat to gently sloping cover; locally overlain by eolian sand,

commonly associated with glacial Lake Mackenzie; 1-10 m thick

LACUSTRINE PLAIN WITH THERMOKARST DEPRESSIONS: flat to gently sloping cover; locally overlain by eolian sand, commonly associated with glacial Lake Mackenzie; 1-10 m thick

LACUSTRINE PLAIN, GULLIED: flat to gently sloping cover; locally overlain by eolian sand: 1-10 m thick

LACUSTRINE BLANKET: deposit conforms to local topography up to 25 m of relief; locally overlain by eolian sand, commonly associated with glacial Lake Mackenzie;

Lvb LACUSTRINE VENEER TO BLANKET; locally overlain by eolian sand; < 3 m thick

LACUSTRINE BLANKET TO VENEER; locally overlain by eolian sand, commonly associated with glacial Lake Mackenzie; < 3 m thick

SHORELINE DEPOSITS: low, ridged beach deposits of sand and gravel; the deposits

LACUSTRINE PLAIN, ROLLING: rolling, occurring as low ridges; locally overlain by

maybe intercalated with till deposits, commonly deposited locally along the margins of glacial Lake Mackenzie; < 5 m thick

LACUSTRINE COMPLEX: deltaic sediments transitional between glaciofluvial and

glaciolacustrine deposits with upper 0-5 m consisting of sand; locally overlain by eolian sand; < 20 m thick

LACUSTRINE COMPLEX WITH THERMOKARST DEPRESSIONS: subject to active layer detachment, retrogressive thaw flow and debris slides; locally overlain by eolian

sand; < 20 m thick

Le LACUSTRINE COVER, DISCONTINUOUS: highly modified by landsliding

Glaciofluvial deposits, outwash

sand and gravel locally with a veneer of eolian silt and/or sand; deposited as proglacial sediment by glacial meltwater

GP GLACIOFLUVIAL PLAIN: flat to gently sloping; 2-20 m thick

GLACIOFLUVIAL PLAIN, CHANNELLED: flat to gently sloping

GLACIOFLUVIAL TERRACE; 10-50 m thick

GLACIOFLUVIAL TERRACE WITH THERMOKARST DEPRESSIONS; 2-30 m thick

Gd GLACIOFLUVIAL DELTA: gently sloping, deposited in a glacial lake; 5-15 m thick

GLACIOFLUVIAL DELTA WITH THERMOKARST DEPRESSIONS: gently sloping, deposited in a glacial lake

GLACIOFLUVIAL FAN: mainly coarse gravel with minor sand, locally with mudflow deposits; commonly deposited in a meltwater channel or lake where no sudden water level changes had occurred; 5-7 m thick

sand and gravel locally with a veneer of eolian silt and/or sand; deposited as ice-contact sediment by glacial meltwater

GLACIOFLUVIAL COMPLEX: includes eskers, kames and plains, commonly with thermokarst ponds in places; 2-30 m thick

GLACIOFLUVIAL COMPLEX, CHANNELLED: containing ridges, hummocks and kettled plains, affected by glaciofluvial channelling; common along Blackwater River; 2-50 m thick

GLACIOFLUVIAL COMPLEX, GULLIED: containing ridges, hummocks and kettled plains, affected by Holocene gullying; 2-50 m thick

UNDERSTANDING THE LEGEND

The genetic category of surficial material is indicated by the first upper case letter, e.g., G (glaciofluvial). The morphologic category is indicated in lower case following the genetic category, e.g., Gp (glaciofluvial plain). The modifying processes are indicated in lower case separated from the morphologic category by a (-) e.g., Gp-k (glaciofluvial plain with

Combined units are used where, for reasons of scale, the units cannot be separated. The main unit, covering over 50% of the geologic polygon, is separated by a (.) from the secondary unit, e. g., Gp-k.Lp. In cases where the polygon has a third unit it is represented by a patterened symbol, e.g., eolian sand cover, peatlands or fenlands.

Geology by A. Duk-Rodkin and D. Huntley, 2005-06

Digital cartography by F. Hardjowirogo and D.A. Lemay

Any revisions or additional geological information known to the user would be welcomed by the Geological Survey of Canada

Digital base from Geomatics Canada, modified by the Geological Survey of Canada

Elevations in feet above mean sea level

OPEN FILE DOSSIER PUBLIC	Open files are produ that have not gone through the GSC for publication process.
6014	Les dossiers publics
GEOLOGICAL SURVEY OF CANADA COMMISSION GÉOLOGIQUE DU CANADA	des produit qui n'ont pas été soumis au processus officiel de
2009	publication de la CG

Glacial deposits unsorted silt, sand,

unsorted silt, sand, and clay with clasts (pebbles, cobbles and some boulders) deposited by glacial ice in a variety of landforms

Tp TILL PLAIN: flat to gently sloping; 3-5 m thick

TILL PLAIN, GULLIED: flat to gently sloping, affected by gullying processes, subject to active layer detachment; 3-5 m thick

TILL BLANKET: gently to moderately sloping plain conforming to underlying

TILL BLANKET: gently to moderately sloping plain conforming to under topography; 2-8 m thick

Tb-g topography, affected by gullying processes

TILL BLANKET TO VENEER: conforming to underlying topography; 2-8 m thick

TILL BLANKET, GULLIED: gently to moderately sloping plain conforming to underlying

TILL BLANKET TO VENEER, GULLIED: conforming to underlying topography; 2-8 m

thick

TILL VENEER TO BLANKET: conforming to underlying topography

TILL VENEER: with slopes conforming to underlying topography; < 2 m thick

TILL VENEER, CHANNELLED: with slopes conforming to underlying topography, incised by glaciofluvial channels

TILL VENEER, GULLIED: with slopes conforming to underlying topography, affected

by gullying processes; < 2 m thick

TILL, DRUMLINOID TO VENEER: over glacially eroded streamline bedrock ridges; < 3 m thick

TILL, DRUMLINOID: hilly till plain with individual drumlins or extensive flutes; 3-15 m thick

UIICK

TILL, RIDGED: plain of generally coarse till (20-50% pebbles) deposited as ridges;

TILL PLAIN, ROLLING: till plain with broad hummocks 10-20 m high (5-20% pebbles and larger); typically bouldery till in mountains; < 10 m thick

commonly lateral and frontal moraines and hummocks; < 9 m thick

TILL, HUMMOCKY: generally coarse diamicton (20-50% pebbles) deposited as

hummocks; may contain thermokarst ponds

TILL COMPLEX: largely hummocky, ridged, and/or hilly with patches of gravel; in some places Tx forms veneer over bedrock

Paleozoic to Mesozoic Bedrock

primarily prominent ridges, escarpments and hills associated with Devonian rocks

Cretaceous shale (various colours) and limestone mostly in plains area; Paleozoic limestone, dolomite, shale (various colours), siltstone, mudstone and sandstone mostly in mountainous areas

KARSTED: carbonate rocks affected by solution and collapse. Karst forms expressed as sinkholes and channels commonly developed in Mackenzie and Franklin Mountains; Cretaceous shale (various colours) and limestone mostly in plains area; Paleozoic limestone, dolomite, shale (various colours), siltstone, mudstone and sandstone mostly in mountainous areas

CHANNELLED: carbonate rocks affected by solution and collapse. Karst forms expressed as sinkholes and channels commonly developed in Mackenzie and Franklin Mountains; Cretaceous shale (various colours) and limestone mostly in plains area; Paleozoic limestone, dolomite, shale (various colours), siltstone, mudstone and sandstone mostly in mountainous areas

sandstone mostly in mountainous areas

iic Deposits

This pattern is used when organic deposits appear as a second or third component in

Peatland constituting 10 - 50% of the map unit

Peatlands and fenlands undivided constituting 10 - 50% of the map unit

Eolian Deposits

This pattern is used when eolian sand veneer appears as a second or third component in a polygon, eg. Tp.Gx.Ev

Discontinous veneer (<1m) mainly fine sand and silt covering other surficial units and bedrock

Colluvial Deposits

This pattern is used when colluvial veneer appears as a second or third component in a polygon, eg. Tv.Cx, Tv.Lb.Cx

Discontinous veneer (<1m) mainly diamicton and rubble that conforms to local topography

Geological boundary (defined)

Moraine ridge: unconsolidated sediments (till, sand and gravel) deposited in ridges at terminal, recessional, lateral and medial positions with respect to ice margins

Drumlin, drumlinoid ridge or flute (direction uncertain): streamlined hill or ridge of till with long axis parallel to direction of iceflow

Drumlin, drumlinoid ridge or flute (direction certain): streamlined hill or ridge of till with

long axis parallel to direction of iceflow; elliptical base and arched profile with long gentle slope pointing in downstream direction

Cirque: steep-walled, half bowl-like basins situated high on mountainsides;

horseshoe or semi-circular in planform and produced by glacial erosion of valley headwalls

Meltwater channel (major): erosion and channel formation by meltwater flow along, beneath or in front of a glacier or ice sheet; range from broad, shallow channels to deeply incised, steep-sided, flat-bottomed valleys; channels may run across or along

slope contours; may be presently dry, poorly drained or contains an underfit stream or small lakes

Meltwater channel (minor): erosion and channel formation by meltwater flow along, beneath or in front of a glacier or ice sheet: range from broad, shallow channels to

beneath or in front of a glacier or ice sheet; range from broad, shallow channels to deeply incised, steep-sided, flat-bottomed valleys; channels may run across or along slope contours; may be presently dry, poorly drained or contains an underfit stream or small lakes

>>>>>>>> Esker (direction certain): sinuous, low ridge composed of sand and gravel; formed by deposition from meltwater running through a channel beneath or within glacier ice

>>>>>>> Esker (direction uncertain): sinuous, low ridge composed of sand and gravel; formed by deposition from meltwater running through a channel beneath or within glacier ice

Tension cracks

Shoreline of former lake: low, ridged beach deposits of sand and gravel

Dune ridge

× Kame

* Kame

Landslide

Debris flow

Sinkhole

Ground Station *

Helicopter observation

* Water mask is standard throughout the map. It has not been adapted to reflect changes of water levels for consequent years, therefore certain stations appear to be under water.

Surficial Geology Location Map, Southern Mackenzie Corridor

Duk-Rodkin, A. and Huntley, D., 2009. Surficial geology, Wrigley