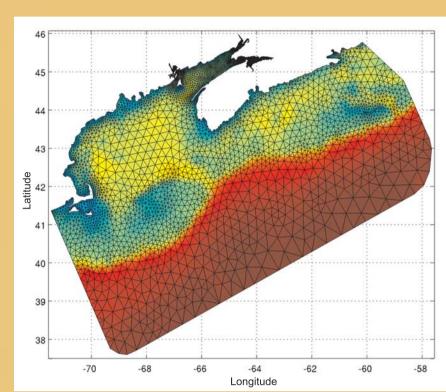

INTRODUCTION

Shaded relief bathymetry of Sable Island Bank, Scotian Shelf (Webb and King, 2008).

Grey shaded relief bathymetry with gas pipelines and well sites (blue dots).

Study Region:


• Sable Island Bank, approximately 255 km long and up to 115 km wide, is the largest bank located on the outer Scotian

• Striking sand ridges and other mid-sized bedforms developed over thick sand sheet of medium to fine sand • It is an economically and ecologically important area with fishing, shipping, oil and gas, and The Gully MPA

• The knowledge of the impacts on the seafloor by waves and currents and the sediment responses is critical for the cost and safety of seabed installations, and is also required for understanding habitat distribution

• Modelling wave, current and sediment transport based on high-resultion bathymetry and observed grain size to

quantify the magnitude and frequency of seabed disturbance • Understanding the relationship between the seabed disturbance and the distribution and mobility of bedforms

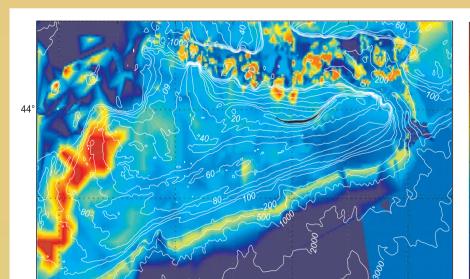
Tidal Current Modeling:

• Tidal currents were predicted from a tidal model for the northwest Atlantic coastal ocean developed by Dupont et al. (2002)

• This finite-element model includes 10 tidal constituents (M2, N2, S2, K1, O1, K2, L2, 2N2, NU2, and M4), with a variable spatial resolution from 2 to 50 km

Circulation and Wind-Driven Current Modeling:

wave predictions.


degree resolutions

• The fields of seasonal mean currents were from the 3D model of Lynch et al. (1992), including forcing by the barotropic and baroclinic pressure gradients implied by hydrographic observations, seasonal mean wind stress and rectification of the M2 tide • The wind-driven currents were modelled as bottom current responses to the along- and cross-shelf wind speed anomalies according to the 3D model of Lynch et al. (1992)

• The same COAMPS wind data used in wave modelling were also used in the computation of the circulation and wind-driven

Seabed Disturbance and Sediment Mobility Computations:

• Canadian Hydrographic Services bathymetric data were compiled to construct a high-resolution (0.01 degree) bathymetry

grid for the modelling domain • GSC seabed sample data were compiled, analyzed, and interpolated to the 0.01 degree grid • Model-predicted tidal current, circulation and wind-driven

Wave Modeling:

• The Wave Watch III model (Tolman, 2002) was used for

• The wave model was driven with the USA Navy COAMPS

(Coupled Ocean Atmosphere Model Prediction System)

wind data and implemented in nested domains of 0.4 and 0.1

currents and wave parameters were linearly interpolated to hourly data over the 0.01 degree common grid, and used in a combinedflow, sediment transport model SEDTRANS (Li and Amos, 2001) to compute the various bed shear stresses

• Model-predicted hourly shear stress at each grid point was compared with the critical shear stress for bedload transport to derive the time percent this critical shear stress was exceeded (threshold exceedance) for the one year period July 2000 to June 2001.

Mean tidal current shear velocity (m/s)

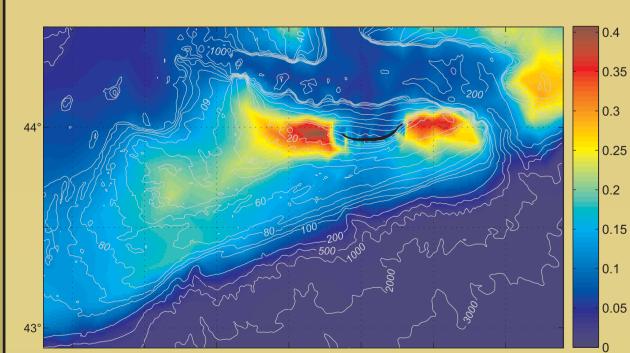
• Maximum mean tidal-current shear velocity 1.8 cm/s

• Maximum time percentage of threshold exceedance 70%

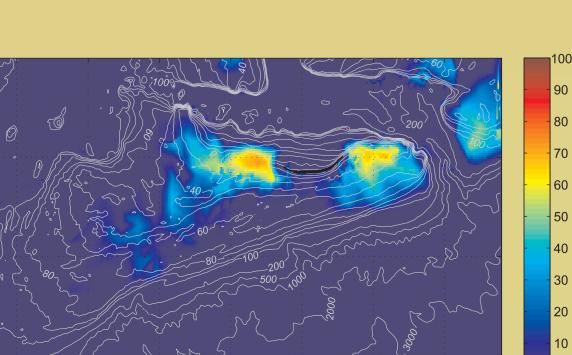
• Mostly over West Bar and East Bar, the shallowest

• Tidally-driven sediment mobility occurs over 36% of the

• Maximum RMS tidal current 0.4 m/s


submarine extensions of the island

• High values on bank top, decreasing offshore


• Sable Island sheltered tidal current propagation

Gridded observed grain size in Log10 mm

EFFECTS OF TIDAL CURRENT

RMS tidal current (m/s)

Time percentage of threshold exceedance (%)

Bedford Institute of Oceanography

¹Geological Survey of Canada -

³Department of Fisheries and Oceans **Bedford Institute of Oceanography**

NUMERICAL MODELLING OF SEABED DISTURBANCE AND SEDIMENT MOBILITY,

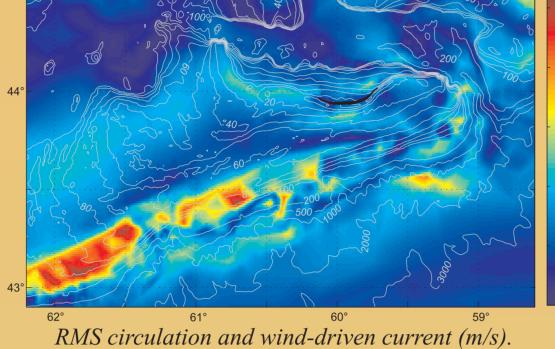
WITH APPLICATIONS TO MORPHODYNAMICS ON THE STORM-DOMINATED

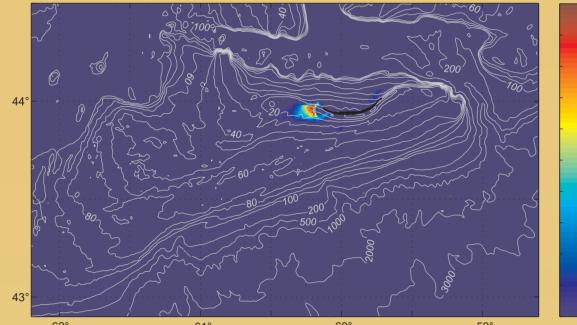
SABLE ISLAND BANK, SCOTIAN SHELF

Michael Z. Li¹, Qingping Zou², Charles Hannah³, Will Perrie³, Robert Prescott⁴ and Bechara Toulany³

⁴Prescott and Zou Consulting Halifax, Nova Scotia

Canada


Abstract


Waves, tidal currents, wind-driven and circulation currents, and sediment mobility were modelled for one full year over the storm-dominated Sable Island Bank (SIB), Scotian Shelf. The mean shear velocity of tidal current and that of the wind-driven and circulation current are less than 2 cm/s, but the peak mean wave and combined wave-current shear velocities reach 4 and 4.5 cm/s respectively. Comparison between the model-predicted shear velocity and bedload threshold suggests that the circulation and wind-driven currents cause minimum sediment mobility on SIB. Tidal current and waves can each cause sediment mobility at least once a year over 36% and 71% of the bank area respectively, while the combined wave-current shear can cause sediment mobility over 93% of the

bank area. Calculated time percentages of sediment mobility caused by various processes indicate that wave or wave-dominant disturbance is most important and occurs over >50% of the bank area, while mixed disturbance is also significant and occurs over ~ 30% of the bank area. Tide or tidedominant disturbance occurs over only 10% of the bank area. Several parameters are proposed as universal indices for quantifying seabed disturbance and sediment mobility for coastal and shelf environments. The distribution and mobility of various mid-sized bedforms were correlated with the seabed disturbance parameters. Updated bedform distribution was compared with seabed disturbance predictions to define seven bedform zones on SIB.

EFFECTS OF CIRCULATION AND WIND-DRIVEN CURRENT

EFFECTS OF WAVES

Mean circulation and wind-driven current shear velocity (m/s)

²School of Engineering

University of Plymouth

• Relative weak effects: maximum RMS current < 0.2 m/s and shear velocity < 1.4 cm/s • High values in patches on the outer southwestern Bank, West and East Bars, and south of Sable Island

Mean wave shear velocity (m/s)

• Maximum mean wave shear velocity reaches 5 cm/s

• Maximum threshold-exceedance time percentage 90%

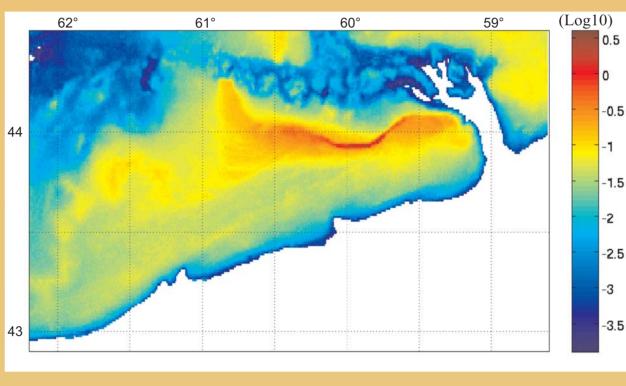
• Waves alone cause sediment mobility over 71% of the

• High values on bank top, decreasing offshore

Mostly in shallow waters around the island

• Exceedance occurs down to 80-90 m depth

• Mean Hs ranges from 1.5 to 2 m


• Strong sheltering by Sable Island

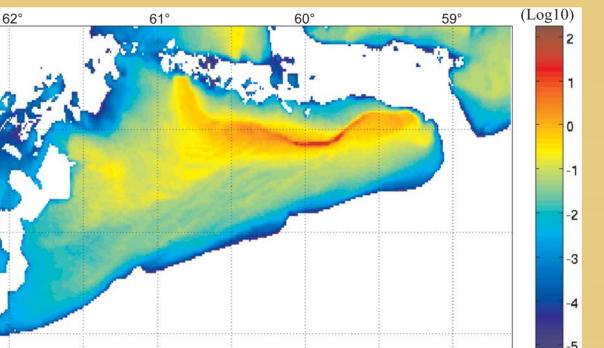
• Maximum time percentage of threshold exceedance <2% • Circulation and wind-driven current causes sediment mobility over only a very small area on West Bar

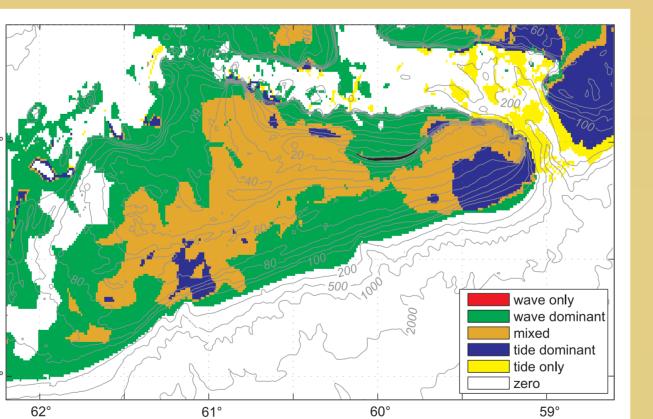
Time percentage of threshold exceedance (%)

Mean significant wave height Hs

TOWARD UNIVERSAL INDICES OF SEABED DISTURBANCE AND SEDIMENT MOBILITY

Seabed Disturbance Index (SDI) • Defined as the maximum value of $(\tau_{cws})^{1.5}$ P: τ_{cws} , combined-


flow shear stress; P, probability distribution of τ_{cws} • Quantifies the level of exposure of the seabed to waves and currents considering both the magnitude and frequency of the bed shear stress


• Ranges from 10⁻⁴ to 4 with a mean of 0.04 on SIB, while SDI ranges from 1.9x10⁻⁴ to 1.3 on the Australia shelf (Hemer,

zero very low low moderately low moderately high high very high

Mobility Frequency Index (MFI) • Defined as time% of threshold exceedance due to

combined-flow shear stress • Shows concentric pattern surrounding Sable Island: very high (>90%) or high (70-90%) on bank top in depths < 30 m; moderate (30-70%) in depths of 30 to 60 m; and low (10-30%) or very low (<10%) in depths >60 m

Disturbance Classifications: • wave dominant: wave exceedance >3 times of tide • tide dominant: tide exceedance > 3 times of wave

Sediment Mobility Index (SMI)

• Defined as (τ_{cws}/τ_{cr}) x time% of threshold exceedance; (τ_{cws}/τ_{cr}) , the mean normalized shear stress for times when sediment mobilization occurs, and τ_{cr} , the threshold shear

• A non-dimensional index that indicates the level of sediment mobility integrating both magnitude and frequency • SMI ranges from 10⁻⁵ to 180 with a mean of 0.16 on SIB

• SMI values > 10 on bank top suggest strong sediment mobility with mobilization occurring in >90% of the time and shear velocity reaching 4-4.5 cm/s during mobilization events • SMI values of ~0.2 on the mid-bank indicate moderate sediment mobility with mobilization occurring over about 50% of the time and shear velocity at 1-1.5 cm/s during mobilization events

Disturbance Type Classification • Defined by relative time% of threshold exceedance caused by

• Wave disturbance most important, >50% of bank area, mid-

• Mixed disturbance also important, 30% of bank area, central core enclosed by wave-only or wave-dominant disturbance • Tide disturbance less important, < 10% of bank area, in The Gully and on SE bank

Bedform Zones on SIB:

abundance of large wave ripples

• Bedform distribution is compared with seabed disturbance predictions to define 7 bedform zones • Each zone has distinguished combination of bedform types, energy level, and relative effects of waves and tidal current (Li et al. in press)

IMPLICATIONS TO BEDFORM MORPHODYNAMICS

Updated bedform distribution on Sable Island Bar

Vector of maximum total current speed (m/s)

speeds exceed the threshold for megaripple formation

in sand ridge fields

megaripples in these locations

• Megaripples cluster around the shoals of West and East Bars and

• These coincide with areas of high total currents. Total current

• Total currents are thus responsible for the formation of

Bedform Zones

High energy; nearshore influenced by breaking waves; upper-plane beds, large wave ripples, megaripples and sand waves on shoreface sand ridges

sand ridges with superimposed megaripples, large wave ripples, sand waves

Moderately high energy; nearshore and inner shelf; shoreface connected

Intermediate energy; inner shelf; Bedforms same as B but much lower

Intermediate energy with strong current effects; mid-shelf; sand waves,

from Li et al (in press)

Bedform Type

large wave ripples

sand ribbons

Maximum wave shear velocity (m/s)

occur in depths up to 100 m

medium and coarse sand

• Large wave ripples occur mainly on top of the bank but can

• Maximum wave shear velocity in depths < 100 m is generally >

2 cm/s, the threshold for large-wave ripple formation over

• This suggests the limit of large wave ripple distribution partially

Intermediate energy; mid-shelf; sand waves, specks, and megaripples

D1 Intermediate energy; mid-shelf; stronger current effect and higher abundance of sand ribbons and specks than D

Quiescent or very low energy; shelf edge and slope; featureless

Moderately low energy; mid- and outer-shelf; specks, sand waves,

megaripples and sand ribbons; Highest abundance of sand ribbons

Moderately-low to intermediate energy under current-dominant disturbance;

superimposed on less-active offshore sand ridges

shelf; specks on otherwise featureless seabed

controlled by the storms of 1 to 2 year return intervals

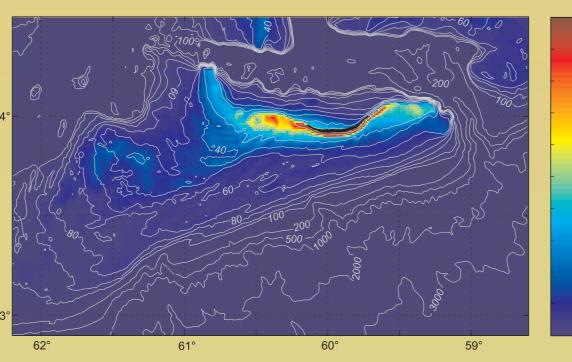
shell community

specks, megaripples, and some sand ribbons over offshore sand ridges seabed with trawl marks

REFERENCES

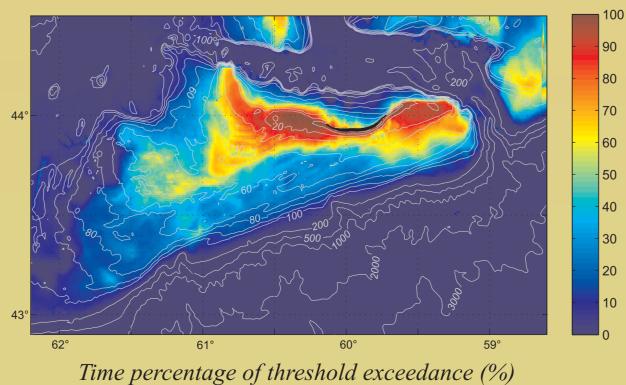
Dupont, F., Hannah, C. G., Greenberg, D. G., Cherniawsky, J. Y., Naimie, C. E., 2002. Modelling system for tides. Can. Tech. Rep. Hydrogr. Ocean Sci. 221: vii + 72 pp. Hemer, M. A., 2006. The magnitude and frequency of combined flow bed shear stress as a measure of exposure on the Australian

continental shelf. Cont. Shelf Res., 26: 1258-1280. Li, M. Z., and Amos, C. L., 2001. SEDTRANS96: The upgraded and better calibrated sediment-transport model for continental shelves.


Comput. Geosci. 27: 619-645. Li, M. Z., King, E. L. and Prescott, R. H., in press. Seabed disturbance and bedform distribution and mobility on the storm dominated Sable Island Bank, Scotian Shelf. In: Sediments, Morphology and Sedimentary Processes on Continental Shelves, Li, M. Z., Sherwood, C. and Hill, P. (Eds.), Special Publication of International Association of Sedimentologists, Blackwell Science, Berlin. Lynch, D. R., Werner, F. E, Greenberg, D. A, and Loder, J. W., 1992. Diagnostic model for baroclinic, wind-driven and tidal circulation in

shallow seas. Cont. Shelf Res., 12: 37-64. Tolman, H. L., 2002. User manual and system documentation of WAVEWATCH-III Version 2.22. Technical Note. U.S. Depart. of

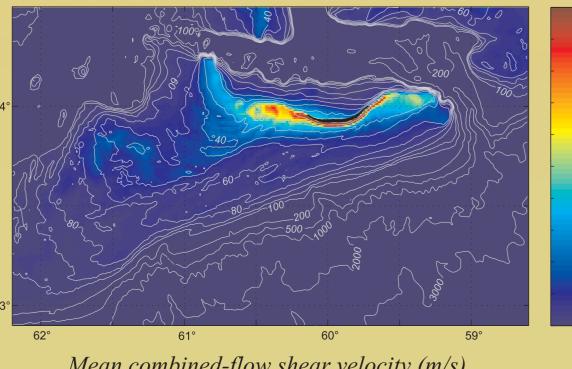
Webb, K. and King, E.L. 2008. Sable Island Bank: Seabed digital elevation model and bathymetric contours. Geological Survey of Canada Open File 5348


Acknowledgement

We would like to thank Edward L. King for his contribution to grain size data compilation, updated bedform distribution, and his critical review of this publication. Gary Grant provided help with the format and printing. Geological Survey of Canada Open File 6155.

Time percentage of threshold exceedance (%)

Mean combined-flow shear velocity (m/s)


• Time percent of threshold exceedance: 90% on bank top, 50% on mid-bank, and <30% on outer bank • Sediment mobility by combined waves and currents occurs over 93% of the bank area and in depths as deep as 200 m

OPEN FILE Open files are products DOSSIER PUBLIC that have not gone through the GSC formal publication process. Les dossiers publics sont GEOLOGICAL SURVEY OF CANADA des produits qui n'ont COMMISSION GÉOLOGIQUE DU CANADA pas été soumis au processus officiel de publication de la CGC.

©Her Majesty the Queen in Right of Canada Available from Geological Survey of Canada 615 Booth Street Ottawa, Ontario K1A 0E8

Recommended citation: Li, M. Z., Zou, Q., Hannah, C., Perrie, W., Prescott, R. and Toulany, B., 2009. Numerical Modelling of Seabed Disturbance and Sediment Mobility with Applications to Morphodynamics on the Storm-dominated Sable Island Bank, Scotian Shelf. Geological Survey of Canada, Open File

EFFECTS OF COMBINED WAVES AND CURRENTS

• Maximum mean combined-flow shear velocity 5 cm/s • High values around East and West Bars, decreasing gradually to < 0.5 cm/s in depths > 100 m