GEOLOGICAL SURVEY OF CANADA OPEN FILE 6207

The November 1, 1935, M 6.2 Timiskaming Earthquake, its Aftershocks, and Subsequent Seismicity

John Adams and Andrew Vonk

GEOLOGICAL SURVEY OF CANADA

OPEN FILE 6207

The November 1, 1935, M 6.2 Timiskaming Earthquake, its Aftershocks, and Subsequent Seismicity

John Adams ${ }^{1}$ and Andrew Vonk ${ }^{1,2,3}$
${ }^{1}$ Canadian Hazards Information Service, Geological Survey of Canada, 7 Observatory Crescent, Ottawa ON K1A 0Y3
${ }^{2}$ also: 1988 Applied Geology Cooperative Student, Faculty of Science, University of Waterloo, Waterloo, Ontario
${ }^{3}$ contact information in 2008: Andrew Vonk, IT Specialist, TD Bank Financial Group, Toronto Dominion Tower, 66 Wellington St. West, Toronto, Ontario, M5K 1A2. email
Andrew.Vonk@tdsecurities.com

2009
©Her Majesty the Queen in Right of Canada 2009
Available from
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E8
Adams, J. and Vonk, A.,
2009: The November 1, 1935, M 6.2 Timiskaming Earthquake, its Aftershocks, and Subsequent Seismicity, Geological Survey of Canada, Open File 6207, 65 p.

Note added "in proof"

This report was substantially (98%) completed in August 1988, soon after Andrew Vonk's work term ended. While waiting for the figures to be drafted (the old fashioned way, using people, tracing paper and ink), Adams revised some of the epicenters and completed the manuscript. By the time the figures were available, the 1988 Saguenay earthquake had occurred, and Adams had moved on to other projects, and never requested translation of the abstract into French. In Spring 1989 the work was presented at the Annual Meeting of the Seismological Society of America (oral talk and printed abstract). The manuscript then sat for eleven years, until the magnitude 5 "millennium" earthquake in the Kipawa zone on 200001 01. At that point it was dusted-off and circulated as background information, and then returned to its dusty filing drawer.

The current thrust to publish the manuscript is owed to a request for information from Jeff Harris, GSC, who in a twist of fate, had been my summer student in 1980.

The version here is almost identical to the hard-copy completed on 19880824 . A few of the earthquake data files were updated or added in Fall 1988, and this may result in some slight inconsistencies in the text. The text was converted from "tex" to "Microsoft Word" and the "in press" references were updated to reflect the published versions, all done in winter 2008. It proved too labor-intensive to convert the tex tables into Word, so they are included as scanned images.

To my mind the text still reads well and contains a great deal of previously-unpublished information on the 1935 Timiskaming aftershocks and nearby pre-1989 earthquakes, as well as their relationship to local geological structures. Of course many more earthquakes have been located since then, and both the 1935 mainshock and the 2000 earthquake have been the topic of published papers (see below). The reader is warned that the Open File you hold in your hands (or read on your laptop, or listen to on your ipod) should be considered to reflect the state of knowledge in 1988, and not as of its publication date.

John Adams
20090602

Further reading
Adams, J, and Vonk, A., 1989. The November 1 1935, M 6.2 Timiskaming earthquake, its aftershocks and subsequent seismicity, and some comparisons with the 1988 Saguenay earthquake (abstract). Seismological Research Letters, v. 60 part 1, p. 19.
Bent, A.L. (1996). An improved source mechanism for the 1935 Timiskaming, Quebec earthquake from regional waveforms, Pure Appl. Geophys., 146, 5-20.
Bent, A. L., M. Lamontagne, J. Adams, C. R. D. Woodgold, S. Halchuk, J. Drysdale, R. J. Wetmiller, S. Ma and J.-B. Dastous (2002). The Kipawa, Quebec "Millennium" Earthquake, Seism. Res. Lett., 73, 285-297.

Abstract

The November 1, 1935 Timiskaming earthquake, $\mathrm{m}_{\mathrm{b}} 6.2$, was felt over an area of 1.3 million km^{2} and was the first recorded from the Timiskaming area. This report documents the seismic history of the area with specific reference to the mainshock, immediate aftershocks, subsequent seismicity and seismotectonics. A new epicentre at $46.885^{\circ} \mathrm{N} 79.004^{\circ} \mathrm{W}$ has been determined for the mainshock. Seven new aftershocks that were reported in the national press are documented along with the twelve already known. The largest aftershock ($\mathrm{m}_{\mathrm{N}} 4.9$) lies 30 km northeast of the mainshock. Relocation of the subsequent earthquakes suggests that most of the earthquakes lie in a northwest-southeast trending band approximately 10 km wide and 55 km long under Lac Kipawa, here called the Kipawa Seismic Zone. Recurrence rates ($\beta=0.92 ; \mathrm{N}_{0}=2.0$ per year) calculated for the zone have an extremely low β value and imply $\mathrm{M}=5.0$ earthquakes once every 48 years. Available data provide poorly-constrained focal mechanisms for the zone. The best choice suggests thrusting on planes striking northwest and dipping about 45°, probably related to Lower Paleozoic rift faults that extend from the Ottawa Valley to Lake Timiskaming.

RÉSUMÉ

Le $1^{\text {er }}$ novembre 1935, le séisme du Témiscamingue ($m_{b}=6,2$), le premier enregistré dans la région, a fait trembler la terre sur 1,3 million de kilomètres carrés. Le présent rapport porte sur l'histoire sismique de la région et, plus particulièrement, sur la secousse principale, les répliques immédiates, la sismicité subséquente et la sismotectonique de la région. Un nouvel épicentre a été attribué à la secousse principale par $46.885^{\circ} \mathrm{N} 79.004^{\circ} \mathrm{O}$. Le rapport présente douze répliques connues et sept nouvelles qui ont été signalées dans bs quotidiens du pays. La principale réplique $\left(\mathrm{m}_{\mathrm{N}}=4,9\right)$ s'est produite à 30 km au nord-est de la secousse principale. Le déplacement des séismes subséquents laisse supposer que la plupart des tremblements de terre ont suivi la zone sismique de Kipawa, soit une bande d'environ 10 km de largeur et de quelque 55 km de longueur qui s'étend du nord-ouest vers le sud-est sous le lac Kipawa. Les intervalles de récurrence calculés pour la zone ($\beta=0,92 ; \mathrm{N}_{0}=2,0$ par an) présentent une valeur β extrêmement faible et impliquent des séismes de $\mathrm{M}=5,0$ à tous les 48 ans. Les données disponibles indiquent que les mécanismes focaux de la zone sont mal délimités. Les meilleures données laissent croire à un chevauchement sur des nappes orienté vers le nord-ouest, inc liné à environ 45° et probablement lié à des failles de rift du Paléozoïque inférieur qui s'étendent depuis la vallée de l'Outaouais jusqu'au lac Témiscamingue.

TABLE OF CONTENTS

Page
Title page 2
Note added "in proof" 3
Abstract/Résumé 4
Introduction 6
Toponomy 6
Regional Geology And Seismicity 7
Mainshock Parameters 8
Aftershocks 9
Subsequent Seismicity 10
Rate of Seismicity 12
Seismotectonics 12
Epicentral Distribution 12
Focal Mechanisms 13
Stress Field 14
Correlation with Surface Features 14
Conclusions 15
Acknowledgements 16
References 16
Figure Captions 18
Tables 1-7 20
Figures 1-12 28
Appendices 40
A Felt Reports 40
B Earthquake Solutions 42
C Magnitude Threshold Test 64
D Recurrence Calculations 65

INTRODUCTION

In 1896 the Quebec part of the Timiskaming region was opened up by the construction of the Canadian Pacific railway through the area to Ville Marie. Settlement in Témiscaming began around 1917 when the Riordan Pulp and Paper Company opened a mill in the town (Canadian Encyclopedia, 1985, p. 1800). Apparently no earthquakes were felt or recorded in the 18 years prior to November 1, 1935. It was thus a shock when the M 6.2 earthquake occurred, and the nature of the seismicity and its tectonic and structural implications are still not understood.

Relatively few earthquakes have been recorded since the Timiskaming mainshock and its immediate aftershocks; eight between the years 1937 and 1979 and seven since 1980. The ability of the Canadian Seismograph Network to locate smaller earthquakes in the region has improved over the decade 1978-1988 with the addition of seismograph stations at Val-d'Or (VDQ, December 1980 - April 1986), Eldee (EEO, March 1984 - present) and Chalk River (CKO from January 1981; later replaced by the nearby station CRLO). Prior to the improved monitoring it is probable that many smaller earthquakes occurred but were not detected or could not be properly located.

This report documents the seismicity in the Timiskaming area and presents relocations of all the known earthquakes. The new epicentral pattern and some preliminary earthquake focal mechanisms are used to interpret the seismotectonics of the region. It is proposed that a new seismic zone, the Kipawa Seismic Zone (KSZ), be defined for the region of seismicity near the Timiskaming mainshock.

Study of the Timiskaming mainshock and subsequent seismicity is important because the earthquake is one of the five largest earthquakes in southeastern Canada and it lies at one end of a Paleozoic rift fault system along the St. Lawrence and Ottawa rivers which appears to be controlling the seismicity of southeastern Canada (Adams and Basham, 1989). Thus an understanding of the nature and cause of these earthquakes will aid our interpretation of other earthquakes along the St. Lawrence system.

Toponomy

In varied spellings 'Timiskaming' ("from the Indian 'at the place of deep dry water' in reference to the clay flats in the lake which dry up at low water" - Harder 1976) refers to a lake (Lake Timiskaming, Ontario = Lac Témiscamingue, Quebec), a county (Témiscamingue, Quebec), a district (Timiskaming, Ontario), a First Nations reserve (Timiskaming, Quebec), and to a town, (Témiscaming, Quebec). There is also an obsolete English spelling, 'Temiskaming District'. The 1935 earthquake was originally termed the Timiskaming Earthquake and was named after the town (then spelled) Timiskaming, Quebec (Hodgson, 1936a), although it should be noted that a map in the same paper gives the spelling of both lake and town as 'Temiskaming'.

In view of the multiplicity of names and the ambiguity of their usage, we have adopted 'Timiskaming' for the spelling of the study area and 'Témiscaming' for the town.

REGIONAL GEOLOGY AND SEISMICITY

The Timiskaming Region and the Kipawa Seismic Zone lie within the Ontario Gneiss Belt of the Grenville Province of the Canadian Shield (near the circled star on Fig. 1). The Ontario Gneiss Belt consists principally of quartzo-feldspathic gneisses of upper amphibolite to granulite metamorphic grade. Together with the Quebec Gneiss Belt to the east, it is considered the basement for the sediments of the Grenville Supergroup (Central Metasedimentary Belt) which were deposited in the early Proterozoic. The sediments were metamorphosed into marbles, quartzites and paragneisses and deformed by the Grenville Orogeny approximately 1100 Ma ago (Doig, 1977).

North of Témiscaming is the Grenville Front, the 1100-Ma-old suture between the older Superior Province to the north and the Grenville Province to the south. The Grenville Front is approximately $1900-\mathrm{km}$ long, running east-northeast from Lake Huron, through central Ontario and Quebec to Labrador. It consists of stacked southeast-dipping thrusts (A. Green pers. comm., 1988).

The Grenville and Superior provinces were rifted in the late Precambrian - early Paleozoic, during the opening of the Iapatus Ocean along the line of the present St. Lawrence Valley. The OttawaBonnechere graben, one branch of the "St. Lawrence Rift System", was shown by Kumarapeli and Saull (1966) to further bifurcate near Mattawa, Ontario. One branch extends west through Lake Nipissing and the other branch extends northwest through Lake Timiskaming and the study area of this report. Related structures may extend from Timiskaming northwest to Kapuskasing, Ontario (Forsyth et al., 1983). At the north end of Lake Timiskaming these rift faults offset Silurian strata and so were active less than 425 million years ago (Lovell and Caine, 1970).

Lovell and Caine (1970) define a distinct topographic feature consisting of a set of long parallel NW-SE trending faults from Témiscaming to Kapuskasing as the Lake Timiskaming Rift Valley (Fig. 2). They drew similarities between the structure of the Lake Timiskaming area and the African Rift System and postulated that the Timiskaming earthquake occurred along one of these faults.

A significant cluster of earthquakes - the Western Quebec Seismic Zone (WQU) of Basham et al. (1982) - occurs in the Grenville Province of the Canadian Shield, predominantly in western Quebec but extending into eastern Ontario across the Ottawa River (Fig. 3). In addition to the Timiskaming earthquake, an earthquake with magnitude about 6 occurred at or near Montreal in 1732 and one of 5.6 occurred near Cornwall, Ontario in 1944.

The northern boundary of the Western Quebec Seismic Zone was drawn by Basham et al. (1982) based on the location of the Timiskaming mainshock, of the magnitude 4.9 aftershock (on November 2, 1935), and of a magnitude 5 earthquake near the headwaters of the Gatineau River in 1950, well outside the study area.

In detail (Fig. 3), the seismicity appears to occur in two bands. The first band, trending slightly west of northwest, lies along the Ottawa River from Lake Timiskaming to Ottawa and thence widens to extend southeast to Cornwall and east to Montreal. It includes the larger earthquakes near Timiskaming (1935, 1982), Rolphton (1963), North Gower (1983), Cornwall (1944, 1981) and

Montreal (1732). The second band, containing more but smaller earthquakes, trends slightly north of northwest and extends from Montreal to the Baskatong Reservoir, about 200 km north of Ottawa. It may be due to crustal fractures formed during to the passage of North America over a hotspot between 140 and 120 million years ago (Adams and Basham, 1989).

The 1978-1988 decade of monitoring by the Eastern Canada Telemetered Network (ECTN) shows the gap between the two bands is reasonably well defined at the northwestern end by an absence of $\mathrm{M}=3$ earthquakes and a relative paucity of small earthquakes (Fig. 3). Forsyth (1981) has shown that the earthquakes in the first band, including the larger historical earthquakes, may be associated with the rift faults along the Ottawa River. Although the last time of normal movement on these faults is not known, there is tenuous evidence that they might have been reactivated in the Mesozoic during the initial opening of the North Atlantic, as shown by Jurassic kimberlites in Ontario and New York State. However, if the rift faults underwent a major reactivation in the Mesozoic, it is surprising that so little hard evidence has been found. Regardless of age, the seismicity between Timiskaming and Cornwall, and some recent focal mechanisms of moderate earthquakes (Adams et al., 1988), suggest the Ottawa Valley rift faults are seismically active.

MAINSHOCK PARAMETERS

The Timiskaming earthquake occurred on the morning of November 1, 1935 just after 1 a.m. Eastern Standard Time. A synopsis of the felt reports as reported in the Dominion Observatory records and the Scrapbook is listed in Appendix A. Figure 4 shows the isoseismal map compiled by Smith (1966).

Four groups have computed a location for the mainshock (Table 1, Fig 5). The first group was directed by Dr. E. Hodgson of the Dominion Observatory in Ottawa. He originally used seven seismograph stations: Ottawa, Shawinigan Falls, Harvard, Buffalo, Chicago, St. Louis, and Washington (Hodgson, 1936a). The epicentre was located at $46^{\circ} 45^{\prime} \mathrm{N} 79^{\circ} 15^{\prime} \mathrm{W}\left(46.75^{\circ} \mathrm{N}\right.$ $79.25^{\circ} \mathrm{W}$), assuming an origin time of 06:03:40 U.T. and a depth of 200 km because of the wide felt area. Based on the above knowledge, Dr. Hodgson began a field survey in the Timiskaming area. A new tentative location was determined on the basis of the field work at $46.78^{\circ} \mathrm{N} 79.07^{\circ} \mathrm{W}$, with the same origin time and depth. It appears that this new location was chosen for two reasons (Hodgson, 1936b): firstly, that rails along the Kipawa-Dozois Canadian Pacific railway moved towards this point; second, that the waters of nearby Lac Tee (Tee Lake) became muddied after the earthquake (see also Shilts, 1984).

The International Seismological Summary Bulletin (ISS) of 1935 gave the epicentre at $46.8^{\circ} \mathrm{N}$ $79.2^{\circ} \mathrm{W}$, with the same origin time and depth 'normal' (33 km), based on 98 stations. Two other locations have also been determined. A new location by Gutenberg and Richter (1949) set the earthquake at $46.8^{\circ} \mathrm{N} 79.1^{\circ} \mathrm{W}$, at a depth of 60 km , with the same origin time as Hodgson. The final location, to date, was done by Dewey and Gordon (1984). They fixed the depth at 1 km , and used a joint hypocentre program to determine an origin time of 06:03:34.2, (six seconds earlier than any previous estimate), and an epicentre at $46.874^{\circ} \mathrm{N} 79.051^{\circ} \mathrm{W}$, with an 80% confidence that it lay within 12 km of that point.

Data used for the current location were obtained from ISS and Dominion Observatory records. The ISS readings were confirmed by Lehmann (1955). Original records for the Canadian stations and copies of foreign stations were assembled by Hodgson in 1936. The available local seismograms were examined and no major discrepancies were found. Seventeen stations were used in this location, all within approximately 2000 km of the epicentre, with Saskatoon being the farthest. Sixteen of these stations showed small residuals for both Pn and Sn phases after recomputation of the epicentre using standard Geophysics Division earth models and computer program (LOC). The velocities used in 'LOC' are crustal Pg and Sg (and/or Lg) velocities of 6.2 and $3.65 \mathrm{~km} / \mathrm{s}$ and mantle Pn and Sn velocities of 8.2 and $4.7 \mathrm{~km} / \mathrm{s}$, the Lg velocity being the revision proposed by Wetmiller and Cajka (1988) to the previous standard velocity of $3.57 \mathrm{~km} / \mathrm{s}$. Only the phases from Little Rock (LRA) could not be used. Later S phase arrivals (Lg) were probably hard to read because seismographs went off scale due to the size of the earthquake.

There were no close stations (OTT is at 300 km) and no reliable crustal phase readings for this earthquake; therefore, it is impossible to determine the depth of the earthquake directly and a substantial tradeoff occurs between depth and origin time. This is seen by the range in the depths adopted by different authors. We have fixed the depth at 10 km for three reasons: firstly, 10 km is half of the thickness of the seismogenic upper crust in most of southeastern Canada (i.e. 10 ± 10 km ; Adams and Basham, 1989); secondly it is in accord with the modeling of teleseismic phases of Ebel et al. (1986) who derived $10 \pm 2 \mathrm{~km}$; and finally 10 km is the suggested minimum depth of M >6.0 earthquakes in eastern North America (Acharya, 1980) if surface faulting is to be absent.

Computation of the epicentre with 23 good phases from the 16 stations gives an epicentre at $46.885^{\circ} \mathrm{N} 79.004^{\circ} \mathrm{W}$, with and error of about $\pm 5 \mathrm{~km}$. The origin time was found to be 06:03:36.7, approximately halfway between that of Hodgson (1936a) and Dewey and Gordon (1984). Our new epicentre lies 13 km northeast of Hodgson's second location. Hodgson's field evidence suggested an epicentre to the northeast of Témiscaming and southwest of the Canadian Pacific Railway because spare rails apparently moved towards this point. Our new epicentre lies 19 km northeast of Témiscaming but is 10 km northeast of the railway. It lies 3.8 km northeast of the Dewey and Gordon location, though if our depth were set at 1 km , the epicentre would move to within 2 km of the Dewey and Gordon position and the origin time would change to 06:03:35.7. Again it must be mentioned that the assigned depth is arbitrary. Surface faulting might have been expected for this earthquake if it was shallower than 10 km , but none was seen.

Various magnitudes have been determined for the mainshock (Table 2). We adopt a magnitude of $m_{b}=6.2$ as the average between the Street and Turcotte (1977) and Ebel et al. (1986) values for m_{b}. A seismic moment of 5×10^{25} dyne-cm was determined by Ebel et al. (1986).

AFTERSHOCKS

The Canadian Earthquake Epicentre File, and Smith (1966), show 12 aftershocks recorded by Canadian stations in the six months following the mainshock. A new examination of newspaper clippings in the Dominion Observatory Scrapbooks shows that at least 7 other aftershocks were felt by residents in and around Témiscaming and were reported in the national press (Table 3). For
some of these, we were able to find traces on the existing seismograms to enable calculation of an origin time and magnitude.

The strongest aftershock $\left(\mathrm{m}_{\mathrm{N}}=4.9\right)$ occurred on the morning of November 2, at 14:31:54.2 U.T., 32 hours after the mainshock. It was widely felt, as far as Kitchener, Ontario, and State College, Pennsylvania (Smith, 1966). Our relocation confirms Smiths' (1966) conclusion that this earthquake did not have the same epicentre as the mainshock and is probably best termed a "displaced aftershock'" or a "related earthquake" rather than a true aftershock. A recent similar occurrence was the Trousers Lake earthquake which occurred 30 km west of, and six months after, the Miramichi mainshock (Wetmiller et al., 1984). The new epicentre for the November 2 earthquake $-46.98^{\circ} \mathrm{N} 78.51^{\circ} \mathrm{W}$ - was determined as for the mainshock, using eight stations with 10 phases and a fixed depth of 10 km . It lies approximately 30 km east-north-east of the new mainshock epicentre. Smith (1966) had located the event at $47.23^{\circ} \mathrm{N} 78.28^{\circ} \mathrm{W}$, which was approximately 80 km away from where he placed the mainshock. The magnitude of $\mathrm{m}_{\mathbb{N}} 4.9$, determined using the three Canadian stations, is less than the magnitude of $\mathrm{M}_{\mathrm{L}} 5.4$ determined in 1935 and is consistent with the way M_{L} overestimates the magnitude of eastern North American earthquakes (see Appendix C of Basham et al., 1982).

Eleven other aftershocks registered on one or more of the Canadian seismographs before the end of April, 1936. It is impossible to determine individual locations for these events because many were recorded on only one station, mainly SHF. Although OTT was closer, it was operating only MilneShaw instruments with a gain of 300, and did not record some of the small aftershocks. SFA was farther away. It is frustrating that some aftershocks of about magnitude 4 were recorded on one station (often SHF), but not on the other two, while larger aftershocks did not record on SHF but did on one of the others. The four aftershocks recorded only at OTT in Table 3 were assigned magnitudes and intensities by Smith in his card file "judged by the OTT MS" and cited as "estimated M" in Smith (1966). Despite the assigned intensities, it is not clear that these earthquakes were felt, and our rough measurements from the original records indicates magnitudes of nearly $\mathrm{m}_{\mathrm{N}} 4$, which is consistent with the ten-times-larger amplitude on the OTT Milne-Shaw for the large aftershock on 19351102 at 14:31 UT. The revisions from "estimated intensity"-derived magnitudes to instrumental magnitudes increases the size of the aftershocks from $\sim \mathrm{M} 2-\mathrm{M} 3$ to $\sim \mathrm{M} 4$, and suggests that the assigned magnitude of 3.0 to the felt earthquakes without instrumental data (in Table 7) is conservative. Although they lack an instrumental record, most of the aftershocks were felt in the Timiskaming area (Hodgson, 1936a,b), confirming their general location. All of the aftershocks were assigned to the hypocentre of the mainshock to determine their origin times and magnitudes.

A magnitude-time plot is given for the aftershocks on Figure 6. A slight decline in the magnitude of the largest aftershocks is seen with time, and doubtless many small earthquakes were felt but not reported after the initial period of interest.

SUBSEQUENT SEISMICITY

Between May 1936 and June 1988 there were 15 earthquakes in the Kipawa Seismic Zone, the first few of which might be considered as aftershocks. Appendix B gives the revised PIK files in the
same format as for the mainshock and vectors on Fig. 5 shows the direction and distance of the relocations.

Epicentres of pre-1975 earthquakes were revised by using the phases read by W.E. Smith and other Dominion Observatory seismologists (as are recorded in Smith's card catalogue and on punched cards), and additional local phases reported by the ISS/ISC, in the Geophysics Division's current location program 'LOC'. In some cases critical phases were re-read as noted in the comments in Appendix B. The 1982 earthquake was relocated by re-reading all analog and digital data. Depth was set at 10 km for all earthquakes.

The 1937, 1938, and 1940 earthquakes were all felt in Timiskaming but recorded only on OTT; they have been assigned to the revised mainshock epicentre. Note that Smith (1966) had placed these earthquakes at the town of Témiscaming, and not at his mainshock epicentre. The 1944 earthquake was felt in Témiscaming, but our revision moves it further from the town than Smith's epicentre. The 1952 earthquake was also felt in Témiscaming, but our revision moves it closer to the town than Smith's epicentre, and this is more consistent with the felt report (MN 3.6 felt at 20 km rather than 60 km). The 1961 earthquake was felt in Témiscaming, (most strongly near Lac Tee)
but recorded only by OTT; we have assigned it to the mainshock location.
The 1965 earthquake was relocated approximately 40 km to the southeast of its catalogued location, due to the rereading of the LND phase. The new epicentre is closer to North Bay, where it was widely felt (Smith and Milne, 1970). This event was not used in the calculation of recurrence rates and is not plotted on the revised seismicity maps in this report. For the 1975 and 1980's earthquakes the revised epicentres differ from the routinely-located epicentres by less than 10 km , with the exception of 1982 (due to re-reading of all phases and not using distant stations for the solution) and 1988a (because the CKO first arrival had been misidentified as Pn).

Two earthquakes which occurred on 22 August and 11 October, 1988, during the writing of this report, are shown on Fig. 5 and are included in Appendix B. A third earthquake, on 15 October 1988, is included in Appendix B only. They have not been used in the recurrence computations, and are not shown on all of the appropriate figures.

A map of the revised seismicity is shown in Figure 7.
Six small events were detected on EEO since 1984 (M. Cajka, pers comm.) but could not be located (Table 5). Of the six, four have S-P intervals that could correspond to earthquakes in the KSZ (equivalent distance $\sim 15-45 \mathrm{~km}$). An approximate location was determined for the 29 Sept 1987 earthquake (Appendix B). The azimuthal coverage was poor with all stations being to the west. The location places the earthquake 19 km to the southeast of EEO, but with an uncertainty of 20 to 30 km . Although this event could be within the KSZ, it is considered too poorly located to have been included in the above discussion. One of the six events gave a compressional and three gave dilatational first motions on EEO.

Rate of Seismicity

Figure 8 shows a plot of the Kipawa seismicity against time together with the magnitude thresholds achieved by the Canadian Seismograph Network for the seismic zone. The thresholds were determined by using "LOC" to calculate the magnitude at each seismic station for an amplitude of 2 mm , the magnification factor of each seismograph at a period of 0.3 seconds, and a source at Lac Kipawa (Appendix C), and then accepting the smallest magnitude for the stations operating at the time as the detection threshold. The record of earthquakes plotting above the down-stepping line is thought to be "complete" (that is, such earthquakes are thought to have been unlikely to have been missed), while earthquakes below the line represent just some of the many smaller earthquakes.

The recurrence rates of earthquakes within the KSZ are calculated from the number of earthquakes larger than a certain size and the time over which such earthquakes are thought to have been completely recorded. Although there is an argument for excluding aftershocks from such a calculation, the displaced aftershock of November 2nd (at 14:31) has been included because its relationship to the mainshock is uncertain; other aftershocks are too small to pass the deduced completeness threshold (see Fig. 8). Figure 9 plots cumulative rate versus magnitude for all events (except the immediate aftershocks); the fitted line has the equation:

$$
\mathrm{N}=\mathrm{M}=2.04 \mathrm{e}^{(0.918 \mathrm{M})}\left(1-\mathrm{e}^{-0.918(7.0-\mathrm{M})}\right)
$$

The maximum magnitude earthquake is assumed to be 7.0 , but alternative curves for Mx of 6.5 and 7.5 are also shown. Appendix D gives the computed recurrence parameters for all three values of Mx . The cumulative rate of earthquakes for $\mathrm{M} \geq 1.8$ (the current threshold to locate earthquakes) is predicted to be 0.4 per year. In other words, it is expected that a $\mathrm{M} \geq 1.8$ event will occur once every 2.5 years. The annual rate for a $\mathrm{M} \geq 5.0$ event is 0.0207 , or once every 48 years. The slope is less steep than the slope determined by Basham et al. (1982) for the WQU zone, and may indicate a region of higher-than-normal stress. The β value is similar to that of the Northern Vancouver Island source zone (Basham et al. 1982) where a few large earthquakes and very few small earthquakes combine to produce a low β value.

SEISMOTECTONICS

Epicentral Distribution

Figure 10 shows the suggested shape and size of the Kipawa Seismic Zone (KSZ). A NW-SE trending rectangle 10 km wide and 55 km long encompasses all the seismicity except the largest aftershock. Also plotted are the error residuals of the earthquakes. The smaller error diamonds represent events that are located more accurately. Note the cluster of seismicity at the centre of the box and the fact that the elongation of the box is defined mainly by the one northern and two southern earthquakes.

Focal Mechanisms

Two possible focal mechanisms for the mainshock have been determined by Ebel et al. (1986) using body and surface wave modeling (Figure 11A). They determined that the earthquake represented predominantly thrust faulting on moderately dipping planes striking approximately 150° or 240° with likely error of $\pm 15^{\circ}-20^{\circ}$ on each parameter. One station to the southeast (HRV) has an ambiguous first motion. The HRV long period waves clearly show a compressional first arrival but the short period waves show a high-frequency dilatational pulse (Ebel et al., 1986, figure 6). Although the modeling was ambiguous, Ebel chose the northwest-striking pair of planes and so inferred compression from the NE-SW direction.

Two other earthquakes were large enough for us to attempt focal mechanisms: 13 August 1982, $\mathrm{m}_{\mathrm{N}} 4.3$ and 17 August 1987, $\mathrm{m}_{\mathrm{N}} 3.2$. Two possible families of focal mechanisms; a thrust and a strike-slip were determined for the 1982 earthquake (Figure 11B). Seventeen P-wave first arrivals constrain the planes, with the change from dilatations to compressions in the eastern quadrant and the near-nodal CKO reading being the main constraints. The thrust mechanism misfits SUD to the west and QCQ to the east. The strike-slip mechanism shown is a median plane for a large family of strike-slip mechanisms that fit the eastern data. Only one station (EBN) misfits the strike-slip mechanism.

The 1987 earthquake also has two possible families of mechanisms, a thrust and a strike-slip (Figure 11C). Eleven P-wave first arrivals were recorded and there are no misfits for either family. One S/P amplitude ratio was calculated at Eldee (EEO) in the northeast quadrant. It should be noted that the two strike-slip solutions derived for the pair of earthquakes are very different and have only small areas of common polarities. They also imply different maximum horizontal compressive stress directions: 1982 - northeast-directed; 1987 - north-directed. By contrast the two thrust solutions for the pair of earthquakes are similar, and both indicate compression from the northeast.

Fourteen P-wave first arrivals were read for other small earthquakes (Figure 11D). Note the consistent dilatations for EEO that plot at the periphery of the northeast quadrant. Neither of the two strike-slip solutions fits all three dilatations. Most of the other arrivals appear scattered and do not define clear compressional and dilatational fields. The dashed focal plane plotted on Figure 11D represents the composite mechanism of Figure 11F. The EEO dilatations are consistent with this mechanism.

All polarity data as well as the three thrust mechanisms are plotted on Figure 11E. All three mechanisms have a common plane striking northwest and dipping to the southwest. A composite mechanism was computed using all the data (Fig. 11F). This mechanism represents the best-fit solution for this data set. A strike-slip solution is fairly well constrained if only the 1982 and 1987 data are used, but it misfits the mainshock data. The thrust solution satisfies most of the data including the mainshock data. A few misfit readings such as the 1982 eastern dilatations are present but they are close to the nodal planes; this event may have had a slightly different dip or strike for the NE-dipping plane.

The polarity data for these earthquakes is insufficient to determine unequivocally a mechanism for the Kipawa earthquakes. However, the data are consistent with thrusting on northwest-trending, moderately-dipping planes and thus agree with the surface-wave modeling results from the Timiskaming mainshock. Therefore, we consider that the thrust mechanism in Figure 11F is the best representation yet available. The ambiguities between thrust and strike-slip families of mechanisms might be resolved when a future moderate $(M=3.5)$ earthquake occurs in the zone; by waveform modeling of the EEO time-series; or when small earthquakes in the southeast of the zone provide polarities on EEO and confirm whether or not the polarity change required across the NEstriking nodal plane of the strike-slip solutions occurs.

Stress Field

The chosen mechanism represents thrust faulting in response to compression from the northeast, and so is consistent with the regional stress field in eastern North America (Adams, 1988). The only direct measurement of stress close to the KSZ was made for Hydro-Quebec at the Lac Beauchêne Project, 10 km southeast of Témiscaming (Adams, 1987). From 14 measurements made in 3 boreholes drilled from a tunnel 60 m below ground level the following components of the stress field were determined: $\sigma_{\mathrm{H}}=20 \mathrm{MPa}$ at $105^{\circ} ; \sigma_{\mathrm{h}}=7.6 \mathrm{MPa}$ at $015^{\circ} ; \sigma_{\mathrm{v}}=5.5 \mathrm{MPa}$. The measured stress field implies a thrust-fault environment but indicates compression from the east quadrant rather than from the northeast; topography and schistosity may have played factors.

Correlation with surface features

If the earthquakes had occurred at 10 km depth on the planar faults deduced from the composite mechanism, the surface projection would lie 8 km to northeast of the one for the plane (plane A) striking 300° and dipping $50^{\circ} \mathrm{SW}$, or 12 km southwest from the zone for the plane (B) striking 309° and dipping 40° NE. Lineaments on topographic maps and air photos suggest that two sets of roughly northwest-trending (310° and 340°) faults intersect under Lac Kipawa (Fig. 12, see also topographic features on Fig. 7).

Near Cobalt, the faults on the east side of Lake Timiskaming strike $320-325^{\circ}$ and dip to the NE, as would be expected for rift faults. The McKenzie Fault (Fig. 2) dips $65^{\circ} \mathrm{NE}$ (Lovell and Caine, 1970) but might be expected to flatten at depth. The Montreal Fault, lying to the SW might also be expected to dip NE (eg. Lovell and Caine (1970) figure 2) and as this fault extends along strike to the southeast through Lac Kipawa, the 310°-trending lineaments might also be expected to dip NE. The trend of the KSZ mapped on Figure 10 is $328^{\circ}\left(\pm 15^{\circ}\right)$, which is parallel to the faults on the southwest side of Lake Timiskaming. Lovell and Caine suggest the Timiskaming graben is bounded to the NE by the Quinze Dam Fault which strikes NNW and on rather less evidence they suggest it might dip SW, into the graben. The Quinze Dam fault projects through Lac Kipawa and so the 340°-trending lineament might be a fault dipping to the SW. Although this fault may dip in the same direction as plane A, it has a 40° difference in strike.

The agreement in strike suggests that plane B of the composite focal mechanism, which strikes 309° and dips $40^{\circ} \mathrm{NE}$, is the most probable fault plane. This places the mainshock on a plane that projects to the surface between Lac Kipawa and Lake Timiskaming, and approximately on strike with the Montreal Fault and the straight section of Lake Timiskaming immediately downstream of
the Montreal River outlet. The surface projection lies very close to both Lac Tee (where the lakebottom sediment was highly disturbed) and the Kipawa-Dozois section of railway (where rails were shifted, see Fig. 5), raising the possibility that there was amplification of ground motion where the rupture was propagating up-dip to the surface.

CONCLUSIONS

- Based on an updated velocity model and a better depth estimate, a new location has been determined for the November 1, 1935 Timiskaming Earthquake, at $46.885^{\circ} \mathrm{N} 79.004^{\circ} \mathrm{W}, \pm 5$ km.
- The origin time has been estimated as 06:03:36.7 U.T., or 1:03 a.m. E.S.T.
- The depth of $10 \pm 2 \mathrm{~km}$ and seismic moment of 5×10^{25} dyne/cm are adopted from other authors, and the adopted magnitude of $m_{b} 6.2$ is the average from two other authors' values.
- At least 19 aftershocks were felt or recorded instrumentally in the first six months after the mainshock. Most of these were at least magnitude 3 with one event as large as $\mathrm{m}_{\mathrm{N}} 4.9$. The largest aftershock is located 30 km northeast of the mainshock and may best be termed a "displaced aftershock" or a "related earthquake" rather than a true aftershock.
- There is no history of seismicity for 18 years prior to the mainshock. To 1988, 15 earthquakes had been recorded since the mainshock and its immediate aftershock sequence.
- Recurrence calculations $\beta=0.92 ; \mathrm{N}_{\mathrm{O}}=2.0$ per year) give an average rate for $\mathrm{M}=5.0$ of 0.0207 per year (once every 48 years on average). The rate of locatable earthquakes is once every 2.5 years on average. We have located earthquakes as small as $\mathrm{m}_{\mathrm{N}} 1.8$.
- Relocation of all seismicity within the area shows most earthquakes lie in a zone 55 km long by 10 km wide, trending 328°. More than fur small unlocated events may have occurred within the zone in the period 1984-1988.
- The focal mechanisms of the mainshock and of recent small earthquakes are consistent with (but do not require) thrust faulting on northwest-trending fault planes. A composite mechanism incorporating all data suggests a thrust mechanism with a strike 120°, dip 50° and rake of 84°.
- A portable seismic network should be installed in the KSZ for a few weeks or a month to record microearthquakes. The network would provide accurate locations and depths as well as aiding in determining focal mechanisms. Based on an extrapolation of the recurrence relationship, magnitude 0 or larger earthquakes might occur every six months, although if the β value were larger, the rate would be considerably higher.
- A permanent seismic station just to the northeast of the area would supplement the data received from EEO and make it easier to locate KSZ events. Since the closure of VDQ, the closest station on this azimuth is JAQ (distance=800 km).
- A lineament study of the KSZ and immediate area would be useful to compare possible faults with the epicentral trends and the focal mechanisms. Such a study might decide if either or both of the NNW- or NW-trending faults are active, or whether it is the intersection of these trends under Lac Kipawa which is the most important factor.

ACKNOWLEDGEMENTS

We thank F.M. Anglin, P.W. Basham, M.G. Cajka, J.A. Drysdale, M. Lamontagne, M. Plouffe, and R.J. Wetmiller for assistance during this project and comments on an early draft of the report. Sylvia Hayek and Catherine Woodgold acted as the 2009 reviewers.

REFERENCES

Acharya, H., 1980, Possible minimum depths of large historical earthquakes in eastern North America: Geophysical Research Letters. v. 7, No. 8, p. 619-620.

Adams, J., 1987. Canadian crustal stress data - a compilation to 1987: Geological Survey of Canada Open File $1622,130 \mathrm{pp}$.

Adams, J. 1988. Crustal stresses in eastern Canada: in Gregersen, S., and Basham, P. W. (eds) Earthquakes at North Atlantic Passive Margins: Neotectonics and Postglacial Rebound, p. 289-297. Kluwer Academic Publishers, Dordrecht.

Adams, J., and Basham, P.W., 1989. Seismicity and seismotectonics of Canada east of the Cordillera. Geoscience Canada, v. 16, p. 3-16.

Adams, J., Sharp, J., and Stagg, M., 1988, New focal mechanisms for southeastern Canadian earthquakes: Geological Survey of Canada Open File Report 1892, 109 pp.

Atkinson, G.M., and Boore, D.M., 1987, On the m_{N} M relation for eastern North America Earthquakes: Seismological Research Letters, v. 58 No. 4, p. 119-124.

Basham, P.W., Weichert, D.H., Anglin, F.M., and Berry, M.J., 1982, New probabilistic strong seismic ground motion maps of Canada: a compilation of earthquake source zones, methods and results: Earth Physics Branch Open File 82-33, 202 p.

Canadian Encyclopedia, (The), 1985, Hurtig Publishers, Edmonton, 2090 pp.
Dewey, J.W., and Gordon, D.W., 1984, Map showing recomputed hypocentres of earthquakes in the eastern and central United States and adjacent Canada, 1925-1980: U.S. Geological Survey Miscellaneous Field Studies. Map MF-1699.

Doig, R., 1977, Rb-Sr geochronology and evolution of the Grenville Province in northwestern Quebec, Canada: Geological Society of America Bulletin, 88, 1843-1856.

Dominion Observatory Scrapbooks. Geophysics Division, Geological Survey of Canada.
Ebel, J.E., 1982, M Measurements for northeastern United States Earthquakes: Bulletin Seismological Society of America., 72, 1367-1378.

Ebel, J.E., Somerville, P.G., and McIver, J.D., 1986, A study of the source parameters of some large earthquakes in northeastern North America: Journal of Geophysical Research, v. 91, p. 8231-8247.

Forsyth, D.A., 1981, Characteristics of the western Quebec seismic zone: Canadian Journal of Earth Science, v. 18, p. 103-119.

Forsyth, D.A., Morel, P., Hasegawa, H.S., Wetmiller, R.J., Adams, J., Goodacre, A., Nagy, D., Coles, R., Harris, J., and Basham, P., 1983, Comparative study of the geophysical and geological information in the Timiskaming-Kapuskasing area: Atomic Energy of Canada Ltd, Technical Report TR-238, 52 pp.

Gutenberg, B., and Richter, C.F., 1949, Seismicity of the earth and associated phenomena: Princeton University Press. Princeton N.J., 273 pp.

Harder, K.B., (ed.) 1976. Illustrated Dictionary of Place Names United States and Canada, Van Nostrand Reinhold, New York, 632 pp.

Hodgson, E.A., 1936a, Preliminary report of the earthquake of November 1, 1935: Earthquake Notes, v. 7, No. 4, p. 1-4.

Hodgson, E.A., 1936b, The Timiskaming Earthquake of November 1, 1935. The location of the epicentre and determination of focal depth: The Journal of the Royal Astronomical Society of Canada. v. 30, No. 4, p. 113-123.

International Seismological Summary (ISS), 1935, Bulletin 1935: Oxford University Observatory, County Press.

Kumarapeli, P.S., and Saull V.A., 1966, The St. Lawrence Valley system: a North American equivalent of the east African rift valley system: Canadian Journal of Earth Sciences, v. 3, p. 639-658.

Lehmann, I., 1955, The times of P and S in northeastern America: Annali di Geophisica. v. 8, no. 4, p. 351371.

Lovell, H.L., and Caine, T.W., 1970, Lake Timiskaming Rift Valley: Ontario Department of Mines. Miscellaneous Paper 39, 16 pp.

Shilts, W.W., 1984, Sonar evidence for Postglacial instability of the Canadian Shield and Appalachians: in Current Research, Part A, Geological Survey of Canada, Paper 84-1A. p. 567-579.

Smith, W.E.T., 1966, Earthquakes of eastern Canada and adjacent areas 1928-1959: Publications of the Dominion Observatory, v. 32, p. 87-121.

Smith, W.E.T., and Milne W.G., 1970, Canadian Earthquakes - 1965: Seismological Series of the Dominion Observatory, 38 pp .

Street, R., and Turcotte, C.F., 1977, A study of North American spectral moments, magnitudes and intensities: Bulletin Seismological Society America. v. 67, p. 599-614.

Wetmiller, R.J., and Cajka, M.G., 1988, Tectonic implications of the seismic activity recorded by the northern Ontario seismograph network: Canadian Journal of Earth Sciences, v. 26 p. 376-386.

Wetmiller, R.J., Adams, J., Anglin, F.M., Hasegawa, H.S., and Stevens, A.E., 1984, Aftershock sequences of the 1982 Miramichi, New Brunswick, earthquakes: Bulletin of the Seismological Society of America, v. 74, p. 621-653.

FIGURE CAPTIONS

Figure 1. Seismicity and geologic features in and near the Western Quebec Seis mic Zone. Dashed lines indicate the northeastern limit of Paleozoic cover, while short dashes indicate geological province subdivisions in the basement (from Forsyth, 1981, Fig 1.)

Figure 2. Lake Timiskaming Rift Valley and associated structures according to Lovell and Caine (1970). The Kipawa Seismic Zone lies in the extreme bottom-right corner.

Figure 3. The Western Quebec Seismic Zone together with a suite of earthquakes chosen based on the improving detection ability of the seismic network: $\mathrm{M}=6.0$ since 1900 , $\mathrm{M}=5.0$ since 1928, $M=4.0$ since $1937, M=3.0$ since 1968 , and $M=2.0$ since 1980 . OTT, GAC, etc. represent seismometers, and the study area of this report is boxed.

Figure 4. Isoseismal map of the Timiskaming Earthquake (from Smith, 1966). Maximum felt intensity was Modified Mercalli Scale VII (see Appendix A for felt reports).

Figure 5. Revisions to the seismicity of the Kipawa Seismic Zone. Epicentres determined for the Timiskaming mainshock (see Table 1) are: 1: Hodgson 1936a; 2: Hodgson 1936b; 3: ISS; 4: Gutenberg and Richter (1949); 5: Dewey and Gordon (1984); 6: This Report (1988). Sections of the railway that shifted during the mainshock are shown by a heavier line. For subsequent earthquakes a vector joins the old (open symbol) to the revised (filled symbol) location, and the symbols indicate magnitude as on Fig. 3. Note the largest aftershock recorded on 2 nd November at $14: 31$ moves southwest into the map area near its eastern edge and the 1965 earthquake moves off the map to the southeast.

Figure 6. Aftershocks of the Timiskaming Earthquake, 1 November 1935, displayed by plotting magnitude against time since the mainshock.

Figure 7. Revised seismicity of the Kipawa Seismic Zone superimposed on a topographic map base. Symbols as on Fig. 3.

Figure 8. Earthquakes in the Kipawa Seismic Zone, displayed by plotting magnitude against date. The down-stepping line represents the magnitude detection threshold determined in Appendix C and is labeled with the most sensitive station at each time (e.g. SUD).

Figure 9. Rate of seismicity in the Kipawa Seismic Zone shown as a cumulative plot of rate against magnitude. The maximum magnitude (Mx is taken to be 7.0 , but the derived curves for 6.5 and 7.5 are shown dotted (see Appendix D).

Figure 10. Revised epicentres, errors and suggested boundaries for the Kipawa Seismic Zone. The error associated with each epicentre is shown as a diamond. The northwest-trending (328°) rectangle is suggested for the limits of the Kipawa Seismic Zone.

Figure 11. Focal nechanism solutions (lower hemisphere stereonets) for Kipawa earthquakes. Compressional first motion polarities are designated as C , dilatational first motions are D
(half-weight, small C and D), and S / P amplitude ratios are represented as various sized X 's centered on the polarity. Pressure (P) Tension (T) and B axis are also plotted. A: mainshock solutions of Ebel et al. (1986). B and C: solutions for the 1982 and 1987 earthquakes. D: combined polarities from other earthquakes in the KSZ. The dashed line shows the best solution of F. E: thrust mechanisms from A,B and C, together with all polarity data. F: best composite focal mechanism solution for all the data.

Figure 12. Revised KSZ earthquakes superimposed on LANDSAT photograph. Note the intersection of the northwest- and north-northwest-trending lineaments at Lac Kipawa.

Table 1
Epicentres for the Timiskaming Earthquake, 1 November 1935

AUTHOR	LOCATION		ORIGIN TIME	DEPTH
	${ }^{\circ} \mathrm{N}$	${ }^{\circ} \mathrm{W}$	(Wm).	

Table 2
Magnitudes for the Timiskaming Earthquake, 1 November 1935

AUTHOR	TYPE	MAGNITUDE
Guttenberg and Richter (1949)	M_{8}	6.25
Street and Turcotte (1977)	M_{8}	6.1
Ebel et al. (1986)	M_{s}	6.0
Street and Turcotte (1977)	m_{b}	6.3
Ebel et al. (1986)	m_{b}	6.1
Atkinson and Boore (1987)	m_{N}	6.3
Ebel (1982)	M_{L}	>5.5

Table 3
Immediate Aftershocks of the Timiskaming Earthquake
Up To March 25, 1936

DATE	TIME	MAGNITUDE	RECORDING	NOTES
	$(\mathrm{U} . \mathrm{T} .)^{*}$	$\left(m_{\mathrm{N}}\right)^{*}$	STATIONS**	
19351101	17:01	4.2	SHF	Felt in Témiscaming
19351102	00:42	4.3	SHF	Felt in Témiscaming
19351102	13:51	3.1	OTT	Felt in Témiscaming
19351102	13:55	2.8	OTT	Felt in Témiscaming
19351102	14:31	4.9	OTT	Felt in Témiscaming
			SHF	
			SFA	(spe text).
19351105	10:11	4.0	SHF	Felt in Témiscaming
19351105	14:15	F		Felt in Témiscaming and
				Widdifield. \dagger
19351107	16:48	2.4	OTT	
19351107	?	F		Felt late at night in
				Témiscaming. \dagger
19351115	16:11	3.1	OTT	
19351125	06:19	4.3	SHF	Felt in Widdifield
				Mattawa and North Bay
19351126	14:20	F		Felt in Témiscaming \dagger
19351127	19:31	4.2	SHF	
19351215	10:15	F		Felt in Témiscaming \dagger
19351215	10:45	F		Felt in Témiscaming
				'Crack of Thunder' \dagger
19351220	09:00	F		Felt in Témiscaming \dagger
19351220	21:00	F		Felt in Temiscaming \dagger
19360120	06:00	3.8	SHF	Felt in Témiscaming,
			SFA	Mattawa and North Bay
19360325	01:27	4.0	SHF	Felt in Témiscaming and
				Mattawa

* Times and magnitudes as computed in this report.
** OTT - Ottawa, Ont. SFA - Seven Falls, Que. SHF - Shawinigan Falls, Que.
\dagger Newly documented aftershock.
F - Felt report from Ontario and Quebec newspapers (see Scrapbook), no instrumental readings.

Table 4
Seismicity Within 50 km of Témiscaming, After March 25, 1936

DATE (yyyymmdd)	TIME (hhmm)	MAGNITUDE $\left(m_{\mathrm{N}}\right)$	$\begin{aligned} & \text { ORIGINAL } \\ & \text { LAT - LONG } \end{aligned}$		RELOCATION LAT - LONG		VECTOR RELOCATION	
			${ }^{\circ} \mathrm{N}$	${ }^{\circ} \mathrm{W}$	${ }^{\circ} \mathrm{N}$	${ }^{0} \mathrm{~W}$	(km)	(Degrees)
19370728	0017	2.7	46.720	79.080	46.885	79.004	19.2	017
19380412	1855	3.2	46.720	79.080	46.885	79.004	19.2	017
19400105	0034	3.0	46.720	79.080	46.885	79.004	19.2	017
19440308	1250	4.0	46.680	78.780	46.642	78.625	19.1	103
19520426	0459	3.6	47.000	78.500	46.772	78.950	42.5	233
19611101	0341	2.9	46.920	79.090	46.885	79.004	19.0	102
19650915*	1756	3.6	46.720	79.050	46.366	78.980	39.7	172
19751219	1525	3.9	47.000	78.850	46.928	78.866	9.3	192
19820813	0106	4.3	46.670	78.503	46.603	78.695	14.6	239
19830110	2131	3.3	46.820	78.830	46.846	78.879	4.7	308
19831127	0949	2.8	46.800	78.770	46.838	78.798	4.7	333
19850520	1144	1.6	46.850	78.880	46.843	78.927	4.1	236
19861001	0525	1.7	47.000	79.070	47.018	79.056	2.5	025
19870817	0132	3.2	46.874	78.897	46.844	78.894	3.3	176
19880217	1127	2.1	46.671	78.859	46.819	78.816	16.8	011
19351101**	0603	$6.2 \mathrm{mb}_{\mathrm{b}}$	46.780	79.070	46.885	79.004	12.7	023
19351102**	1431	4.9	47.230	78.170	46.981	78.513	37.9	223

[^0]Table 5
Unlocated Events Near Eldee (EEO) Ontario.

DATE	TIME	MAGNITUDE	S-P DISTANCE	POLARITY *
19850522	$09: 08$	<2.0	12	
19860322	$10: 23$	1.9	24	CROM EEO (km.)
19860601	$05: 38$	<2.0	64	D
19870905	$15: 29$	<1.0	16	D
19870905	$18: 23$	<1.5	21	D
19870929	$20: 36$	<1.5		

* First arrival polarity: $\mathrm{C}=$ Compression, $\mathrm{D}=$ Dilatation

Table 6
Focal Mechanism Data for Figure 11.

$\begin{gathered} \text { DATE } \\ \text { yy-mm-dd } \end{gathered}$	LAT ${ }^{\circ} \mathrm{N}$	LONG ${ }^{\circ} \mathrm{W}$	M		TYPE	PLANES			P	T	B
						strike	dip	rake		d/pl	
351101	46.885	79.004	6.2	A	T	145	50	080	242	002	151
						340	41	122	05	81	08
				B	T	050	50	090	140	320	230
						230	41	122	05	85	00
820813	46.603	78.689	4.3	A	T	125	46	080	222	316	132
						319	45	100	01	83	07
				B	SS	284	70	-004	241	148	025
						087	86	-160	16	11	70
870817	46.884	78.893	3.2	A	T	117	51	077	216	332	123
						317	41	105	05	79	10
				B	SS	040	85	-009	355	086	191
						131	81	-175	10	03	79
Composite	$\ldots . .$		T	120	50	084	214	350	124
						309	40	097	05	83	05

A and B represent alternative mechanisms for each earthquake.
$\mathrm{T}=$ Thrust and $\mathrm{SS}=$ Strike-slip, identify the dominant style of faulting implied.
The second of each pair of planes represents the auxilary plane

TABLE 7
Original entries in the Canadian Earthquake Epicentre File (first line)
and recomended changes (second line) for each event.

DATE		TIME hh mm ss	$\begin{gathered} \text { LAT. } \\ { }^{\circ} \mathrm{N} \end{gathered}$	$\begin{aligned} & \text { LONG. } \\ & { }^{\circ} \mathrm{W} \end{aligned}$	MAGNITUDE			M,
yy	mm dd				m_{b}	m_{N}	$M_{\text {I }}$	
1935	1101	060340	46.78	79.07			6.2	$M_{\text {I }}$
		36.7	46.885	79.004	6.2			$m_{\text {b }}$
1935	1101	170240	46.78	79.07		4.1		$m_{\text {N }}$
		0146.6	46.885	79.004		4.2		m_{N}
1935	1102	004217	46.78	79.07		4.2		m_{N}
		25.8	46.885	79.004		4.3		$m_{\text {N }}$
1935	1102	135121	46.78	79.07			3.0	$M_{\text {I }}$
		21.8	46.885	79.004		3.9		m_{N}
1935	1102	135542	46.78	79.07			2.7	$M_{\text {I, }}$
		42.8	46.885	79.004		3.6		m_{N}
1935	1102	143158	47.230	78.170		4.9		m_{N}
		54.4	46.981	78.513		4.9		m_{N}
1935	1105	101048	46.78	79.07			3.9	$M_{\text {L }}$
		1112.6	46.885	79.004		4.1		m_{N}
New Event								
1935	1105	141500	46.885	79.004		$3.0{ }^{*}$		m_{N}
1935	1107	164704	46.78	79.07			2.4	$M_{\text {L }}$
		04.8	46.885	79.004		3.9*		m_{N}
New Event								
1935	1107	?? ?? ??	46.885	79.004		3.0*		m_{N}
1935	1115	161120	46.78	79.07			3.0	$M_{\text {T, }}$
			46.885	79.004		3.9		m_{N}

TABLE 7

DATE		TIME hh mm ss	$\begin{aligned} & \text { LAT. } \\ & { }^{\circ} \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { LONG. } \\ & { }^{\circ} \mathrm{W} \end{aligned}$	MAGNITUDE				
yy	mm dd				m_{b}	m_{N}	$M_{\text {L }}$	M_{s}	
1935	1125	061919	46.78	79.07		4.1			m_{N}
		24.6	46.885	79.004		4.1			m_{N}
New Event									
1935	1126	142000	46.885	79.004		3.0*			m_{N}
1935	1127	193149	46.78	79.07			4.1		$M_{\text {L }}$
		54.8	46.885	79.004		4.3			m_{N}
1935	1215	1015	46.78	79.07			3.0		$M_{\text {L }}$
			46.885	79.004		3.0*			m_{N}
New Event									
1935	1215	104043.6	46.885	79.004		4.2			m_{N}
New Event									
1935	1220	0900	46.885	79.004		3.0*			m_{N}
New Event									
1935	1220	2100	46.885	79.004		3.0*			m_{N}
1936	0120	0601	46.78	79.07		3.8			m_{N}
		0009.5	46.885	79.004		4.2			m_{N}
1936	0325	012725	46.78	79.07		4.0			m_{N}
		30.8	46.885	79.004		4.1			m_{N}
1937	0728	0017	46.72	79.08			2.7		M_{L}
		00.8	46.885	79.004		3.0 *			m_{N}
1938	0412	185547	46.72	79.08			3.2		$M_{\text {L }}$
		48.8	46.885	79.004		3.0			m_{N}
1940	0105	003414	46.72	79.08			3.0		$M_{\text {L }}$
		08.8	46.885	79.004		3.0			m_{N}
1944	0308	124956.1	46.68	78.87			4.1		$M_{\text {L }}$
		5002.0	46.642	78.625		4.0			m_{N}

TABLE 7

DATE		TIME hh mm ss		LAT. ${ }^{\circ} \mathrm{N}$	LONG. ${ }^{\circ} \mathrm{W}$	MAGNITUDE			$M_{\text {s }}$		
yy mu				m_{b}		m_{N}	$M_{\text {L }}$				
1952	0426	04	5944.4		47.0	78.5				3.7	$M_{\text {L }}$
			42.0	46.772	-78.950			3.6		$m_{\text {N }}$	
1961	1101		4121	46.92	79.09				2.9	$M_{\text {I }}$	
			24.8	46.885	79.004			2.9		$m_{\text {N }}$	
1965	0915	17	5628	46.72	79.05				3.8	$M_{\text {L }}$	
			33.1	46.366	- 78.980			3.6		$m_{\text {N }}$	
1975	1219		2511	47.00	78.85			3.8		m_{N}	
			11.4	46.928	78.866			3.9		m_{N}	
1982	0813	01	0640	46.67	78.53			4.3		$m_{\text {N }}$	
			39.9	46.603	-78.695			4.3		m_{N}	
1983	0110	21	3127	46.82	78.83			3.3		$m_{\text {N }}$	
			25.8	46.846	- 78.879			3.3		m_{N}	
1983	1127		4924	46.80	78.77			2.8		m_{N}	
			22.9	46.838	78.798			2.8		m_{N}	
1985	0520		4439	46.85	78.88			1.6		m_{N}	
			39.6	46.843	- 78.927			1.6		m_{N}	
1986	1001	05	2504.0	47.000	79.070			1.7		m_{N}	
			04.5	47.018	79.057			1.7		$m_{\text {N }}$	
1987	0817	01	3210.1	46.874	78.897			3.2		m_{N}	
			10.6	46.844	78.894			3.2		m_{N}	
Now Event											
1987	0929	20	3606.8	46.578	78.838			1.8		m_{N}	
1988	0217	11	2754.7	46.671	78.859			2.1		$m_{\text {N }}$	
			53.5	46.819	78.816			2.1		m_{N}	

Notes - Depths pegged at 10 km for all events (as for mainshock). Probable depth $10 \pm 10 \mathrm{~km}$.

* All felt earthquakes without instrumental data are assigned magnitudes of $m_{\mathrm{N}}=3.0$

Figure 1. Seismicity and geologic features in and near the Western Quebec Seismic Zone. Dashed lines indicate the northeastern limit of Paleozoic cover, while short dashes indicate geological province subdivisions in the basement (from Forsyth, 1981, Fig 1.)

Figure 2. Lake Timiskaming Rift Valley and associated structures according to Lovell and Caine (1970). The Kipawa Seismic Zone lies in the extreme bottom-right corner.

Figure 3. The Western Quebec Seismic Zone together with a suite of earthquakes chosen based on the improving detection ability of the seismic network: $\mathrm{M}=6.0$ since 1900 , $\mathrm{M}=5.0$ since 1928, $M=4.0$ since 1937 , $M=3.0$ since 1968 , and $M=2.0$ since 1980. OTT, GAC, etc. represent seismometers, and the study area of this report is boxed.

Figure 4. Isoseismal map of the Timiskaming Earthquake (from Smith, 1966). Maximum felt intensity was Modified Mercalli Scale VII (see Appendix A for felt reports).

Figure 5. Revisions to the seismicity of the Kipawa Seismic Zone. Epicentres determined for the Timiskaming mainshock (see Table 1) are:- 1: Hodgson 1936a; 2: Hodgson 1936b; 3: ISS; 4: Gutenberg and Richter (1949); 5: Dewey and Gordon (1984); 6: This Report (1988). Sections of the railway that shifted during the mainshock are shown by a heavier line. For subsequent earthquakes a vector joins the old (open symbol) to the revised (filled symbol) location, and the symbols indicate magnitude as on Fig. 3. Note the largest aftershock recorded on 2 nd November at $14: 31$ moves southwest into the map area near its eastern edge and the 1965 earthquake moves off the map to the southeast.

Figure 6. Aftershocks of the Timiskaming Earthquake, 1 November 1935, displayed by plotting magnitude against time since the mainshock.

Figure 7. Revised seismicity of the Kipawa Seismic Zone superimposed on a topographic map base. Symbols as on Fig. 3.

Figure 8. Earthquakes in the Kipawa Seismic Zone, displayed by plotting magnitude against date. The down-stepping line represents the magnitude detection threshold determined in Appendix C and is labeled with the most sensitive station at each time (e.g. SUD).

Figure 9. Rate of seismicity in the Kipawa Seismic Zone shown as a cumulative plot of rate against magnitude. The maximum magnitude (Mx is taken to be 7.0 , but the derived curves for 6.5 and 7.5 are shown dotted (see Appendix D).

Figure 10. Revised epicentres, errors and suggested boundaries for the Kipawa Seismic Zone. The error associated with each epicentre is shown as a diamond. The northwest-trending (328°) rectangle is suggested for the limits of the Kipawa Seismic Zone.

Figure 11. Focal nechanism solutions (lower hemisphere stereonets) for Kipawa earthquakes. Compressional first motion polarities are designated as C , dilatational first motions are D (half-weight, small C and D), and S / P amplitude ratios are represented as various sized X's centered on the polarity. Pressure (P) Tension (T) and B axis are also plotted. A: mainshock solutions of Ebel et al. (1986). B and C: solutions for the 1982 and 1987 earthquakes. D: combined polarities from other earthquakes in the KSZ. The dashed line shows the best solution of F. E: thrust mechanisms from A,B and C, together with all polarity data. F: best composite focal mechanism solution for all the data.

Figure 12. Revised KSZ earthquakes superimposed on LANDSAT photograph. Note the intersection of the northwest- and north-northwest-trending lineaments at Lac Kipawa.

APPENDIX A

Summary of Felt Reports for Timiskaming Mainshock

(After Hodgson (1936b), and the Dominion Observatory Scrapbook)

Felt over an area between 500,000 and 800,000 square miles (~ 1.3 million km^{2}) - no casualties.

From Hodgson (1936b)

Témiscaming
80% of chimneys damaged to some extent
some cracks in solid brick walls
one ten-inch water pipe broken (was not strong to begin with)
some heavy objects shifted toward the NNE
man on tower 160 ft . above ground noticed a violent swaying of the tower to the north, then an eastwest movement
cracks appeared in sand/gravel or relatively high relief areas around Témiscaming
Lac Tee (just to the southwest of Lac Kipawa)
clear waters up to night of earthquake, November 2 water discoloured to a milky coffee colour, caused by underwater slumps documented by Shilts (1984) that were triggered by the earthquake. (epicentre near this lake)
Lac Kipawa
gravelly and rocky shores disturbed, with some discolouration of lake.
rock fall, 200 ft .
log cabin lodge shifted bodily to the WSW

Parent,Que

earthquake triggered sand slide (190 miles) from epicenter; 100 ft . of railway right of way slipped into a lake.

From Newspaper Clippings in Scrapbook

Pembroke
two chimneys collapsed, many cracked walls.
Renfrew
some chimneys collapsed.
Kingston
chimney collapsed causing house to burn to ground.
Ottawa
6 chimneys destroyed, many cracked walls, telephone lines disrupted.
At Observatory 3 out of 5 seismographs put out of commission.
Toronto
kitchen ceiling collapsed, two chimneys collapsed, water and gas mains broken.
Hamilton
telephone lines disrupted, woman fell down stairs (not hurt).
Simcoe
some cracked walls.
Mattawa
telephone poles fell, collapsed embankments.
Richmond
cracked foundations and damaged chimneys.
Uno Park (North of Haileybury)
artesian wells reported increased yield after shock; water was muddy for a few days after shock, then cleared.

General (Hodgson 1936b, newspaper clippings)

- no rock movement seen greater than 20 miles from epicentre
- rails in the Kipawa-Dozois section of C.P.R. shifted
- miners throughout central Ontario and Quebec did not feel quake within the mines but it was felt on surface.
- thousands of residents in many cities fled into the streets.
- loose objects shaken severely and sometimes damaged.
- broken windows in many centres close to epicentre.
- people reported `thrown' out of bed in Montreal, St. Thomas, North Bay.
(usually in upper floors of multi-story buildings)
Reported severe shaking with no damage
Cornwall, Morrisburg, Burbridge,Winchester, Chesterville, Prescott, Rockland, Timmins, Montreal, Sherbrooke, Saint John, Owen Sound, Quebec city, St. Thomas, Windsor, North Bay, Sudbury, Hawksbury, Alexandria, Maxville, Ste Anne de Bellevue, Hanover, Kincardine, Smith Falls, Carlton Place, Doucet, Amos, Rouyn-Noranda, upper New York State.

Other Felt reports

Winnipeg, Halifax, many small towns in Ontario, Quebec and the Maritimes (isolated reports)
Border of felt area
West to Fort William, Ontario ; east to the Bay of Fundy north to the Arctic ?? ; south to Virginia
American reports
Felt in 17 states -- Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, Dela ware, Maryland, Ohio, West Virginia, Indiana, Michigan, Illinois, Wisconsin.
telephone service disrupted in upper New York State.
house reported to have collapsed in Syracuse, New York.

APPENDIX B Earthquake Solutions

```
+46.885-79.004F MN=6.2 0603367 01111935 00.0320.025 0.0 16 23 00.92 210.00 0 1ML=0.0 00 0 3.65
$ NOVEMBER 1 1935, EVENT AT 06:03 U.T. ; TIMISKAMING EARTHQUAKE.
$46.8 - 79.2 ? (ISS)
$46 47'- 79 04' DEPTH 200 KM. (HODGSON, 1936)
$46 35'-79 04' DEPTH NORMAL (HODGSON, 1937)
$46.8 - 79.1 DEPTH 60 KM (GUTTENBERG AND RICHTER, 1949)
$46.874- 79.051 FIXED DEPTH 1 KM (DEWEY AND GORDON, 1984)
$46.9 - 79.1 DEPTH 10 KM (EBEL ET AL, 1986)(EPICENTRE FROM
$
$ MAGNITUDE CALCULATIONS
MB = 6.1 (EBEL ET AL, 1986)
        MB = 6.3 (STREET AND TURCOTTE, 1977)
        ML =>5.5 (EBEL 1982)
        MS = 6.25 (GUTENBURG AND RICHTER, 1954)
        = 6.1 (STREET AND TURCOTTE, 1977)
    =6.0 (EBEL ET AL, 1986)
    MAXIMUM MMI INTENSITY OF VII NEAR EPICENTRE (SMITH, 1966)
$--------------------------------------------------------------------------------------
AFTERSHOCKS - 19 RECORDED IN NEWSPAPERS, 12 PRESENTLY IN CEEF FILE.
$-
SOLUTION - BASED ON LOCAL PHASES
    --------
    VALUES USED ARE FROM THE INTERNATIONAL SEISMOLOGICAL SUMMARY, 1935 (ISS)
        AND DOMINION OBSERVATORY RECORDS (OTTAWA)
SAS - 8 SEC. TIME CORRECTION ARBITRARILY ADDED, PN AND SN WERE BOTH
            OFF BY -8 SEC.
PHI - SN VALUE PROBABLY LG (SN RESIDUAL 38+ SEC)(CONFIRMED BY (LEHMANN,1955))
ORT - STATED VALUE PROBABLY OFF BY ONE MINUTE, RESIDUALS AT PN 0516
            (ISS) ARE VERY HIGH UNLESS ONE MINUTE WAS ADDED
        - LARGE PN RESIDUAL NOT USED IN CALCULATION
TNT - READING WITH HIGH PN RESIDUAL IS EAST COMPONENT, LOW PN RESIDUAL
        BUT HIGHER SN IS NORTH COMPONENT. LEHMANN,1955 BELIEVED THAT
        EAST COMPONENT READING WAS IN ERROR FOR PN ARRIVAL.
BUF - READINGS READ OFF COPIES OF ORIGINAL RECORDS.
```



```
+46.885-79.0040 MN=4.2 1701466 01111935 00.0000.000 0.0 1 2 10.00H210.00 0 1mL=4.7 10 0 3.65
$ NOVEMBER 1 1935, EVENT AT 17:01 - TIMISKAMING AFTERSHOCK
    ONLY ONE STATION RECORDED THIS EVENT, READINGS WERE TAKEN AS SN AND SG.(1935)
    A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
    CALCULATED MAGNITUDE IN 1935 OF ML=4.6 - ORIGIN TIME IN 1935 OF 17:02:40.
    NEW ORIGIN TIME CALCULATED AT 17:01:46
    NOTE THAT IF PN AND PG WERE USED, THE NEW ORIGIN TIME WOULD FIT THE 1935
        ORIGIN TIME.
SHF 3511011704P B0340 B0357 60 1.8 8
SHF E 0479KM 092 49
Z
+46.885-79.0040 MN=4.3 0042258 02111935 00.0000.000 0.1 2 3 20.00H210.00 0 1ML=4.9 10 0 3.65
$ NOVEMBER 2 1935, EVENT AT 00:42 - TIMISKAMING AFTERSHOCK
FELT IN TIMISKAMING
SMITH HAD ONLY SHF READINGS; ADAMS ADDED SFA ON 881007
OTT RECORD MISSING
            A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
$ CALCULATED MAGNITUDE IN 1935 OF ML=4.7.
SHF 3511020044P B4417 B4434 60 1.8 12
SHF E 0479KM 092 49 10 -143 10 -305 0006981 49ML44MN
SFA 3511020044P XB4455 B4515 50 1.8 04
SFA E 0623KM 085 49
Z
+46.885-79.0040 MN=3.9 1351218 02111935 00.0000.000 0.0 1 1 10.00H210.00 0 1mL=4.1 10 0 3.65
$ NOVEMBER 2 1935, EVENT AT 13:51 - TIMISKAMING AFTERSHOCK
$ ONLY OTT RECORDED THIS EVENT AND ONLY ONE PHASE WAS RECORDED.
        A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
        ESTIMATED MAGNITUDE IN 1935 OF ML=3.0.
SMITH'S CARD HAS A COPY OF THE ORIGINAL OTT RECORD, PROBABLY MADE FROM
        MICROFILM, THAT IS 2/3 SIZE OF ORIGINALS
        AMPLITUDE/PERIOD READINGS OF RECORD (1988) ARE . 2 MM AT 0.9 SEC.
$ NOT ON SHF, SFA ORIGINAL RECORDS (ADAMS, OCT 1988)
OTT 3511021353P B5245 90 0.3 2
OTT SE 0303KM 122 49 10 000 0004654 41ML39MN
```

 Z
    ```
+46.885-79.0040 MN=3.6 1355428 02111935 00.0000.000 0.0 1 1 10.00H210.00 0 1mL=3.8 10 0 3.65
$ NOVEMBER 2 1935, EVENT AT 13:55 - TIMISKAMING AFTERSHOCK
$ ONLY OTT RECORDED THIS EVENT, READING WAS TAKEN AS SN IN 1935.
        WITH AN ORIGIN TIME OF 13:55:42.
    A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK
        CALCULATED MAGNITUDE IN 1935 OF ML=2.7,
    SMITH'S CARD HAS A COPY OF THE ORIGINAL OTT RECORD, PROBABLY MADE FROM
        MICROFILM, THAT IS 2/3 SIZE OF ORIGINAL
S NOT ON SHF, SFA ORIGINAL RECORDS (DAMS, OCT 1988)
        AMPLITUDE/PERIOD READINGS OF OTT RECORD (1988) ARE .1 MM AT 0.9 SEC.
OTT 3511021357P B5706 90 0.3 1
OTT SE 0303KM 122 49 10 000 0002327 38ML36MN
    Z
46.981- 78.513F MN=4.9 1431544 02111935 00.0580.090 0.2 4 10 31.11 210.00 0 1ML=5.3 30 0 3.65
NOVEMBER 2 1935, EVENT AT 14:31 - DISPLACED TIMISKAMING AFTERSHOCK
    47.230 N 78.170 W LOCATION GIVEN BY DOMINION OBSERVATORY RECORDS.
    46.885 N 79.004 W MAINSHOCK EPICENTER.
    46.8 N 79.2 W ISS LOCATION.
    REPORTED FELT IN ONTARIO AS FAR AWAY AS - KITCHENER,NORTH BAY, OWEN
        SOUND, AND TORONTO.
    REPORTED FELT IN U.S. - BUFFALO, ROCHESTER AND STATE COLLEGE IN
        PENNSYLVANIA.
    CALCULATED MAGNITUDE IN 1935 OF ML=5.4
    OTT - SN REREAD OFF OF ORIGINAL RECORDS AS 3305 NOT 3307
    ORT - ISS READINGS GIVE 2.5 MINUTE RESIDUALS THEREFORE NOT USED
    TNT - PN ARRIVAL TIME EARLIER THAN THAT OF OTT THEREFORE NOT USED. SN READING
        GIVES A HIGH RESIDUAL, WHEN USED AS PG VALUE RESIDUAL ONLY 16 SEC. THIS
        VALUE IS STILL TOO HIGH TO USE IN CALCULATIONS.
    LRA - SN,SG RESIDUALS TOO HIGH THEREFORE VALUE NOT USED IN CALCULATION,
POSSIBLE TIMING ERROR WITH BOTH OFF BY 14 SEC. SN-3838 SG-4018
INY - PHASE DOES NOT FIT EITHER SN OR SG THEREFORE VALUE NOT
        USED IN CALCULATION
lcrloll
OTT 
OTT 
SHF 3511021431P B3254
SHF E 0442KM 11 -092 094 49
INY 3511021431P
INY S 0529KM 162 49
SFA 3511021431P B3312
B3305 B3310 60 0.3 11
11 046 11 -095 0038397 49ML47MN
TNT S 0375KM 191-88 00 1601$
\begin{tabular}{lllll} 
B3339 & B3356 & 80 & 2 & 90 \\
\(11-022\) & 11 & 040 & 0035343 & 56 ML 50 MN \\
X3410 & X3410 & & \\
\(001213 \$ 00-957\) & 0000000 & 00 ML 00 MN \\
B3408 & B3436 & 60 & 2 & 35
\end{tabular}
```

| SFA | E 0584 KM 11 | -032 | 086 | 49 |
| :--- | :---: | :---: | :---: | :---: |
| AAM | 3511021431 P | | | |
| AAM | SW 0661 KM | 220 | 49 | |
| PHI | 3511021431 P | | | |
| PHI | S 0810 KM | | 159 | 49 |
| LRA | 3511021431 P | | | |
| LRA | SW 1783 KM | 225 | 52 | |

| $11-157$ | 11138 | 0018326 | 56 ML 50 MN |
| :---: | :---: | :---: | :---: |
| X3418 | | | |
| 00-790 | | 0000000 | OOMLOOMN |
| C3454 | | | |
| 03-358 | | 0000000 | OOMLOOMN |
| X3838 | X4018 | | |
| 001341 | 00 1500\$ | 0000000 | OOMLOOMN |

$+46.885-79.0040 \mathrm{MN}=4.110111260511193500 .0000 .0000 .0 \quad 1 \quad 2 \quad 10.76 \mathrm{H} 210.00 \quad 0 \quad 1 \mathrm{ML}=4.6 \quad 10 \quad 0 \quad 3.65$
N NOVEMBER 5 1935, EVENT AT 10:11 - TIMISKAMING AFTERSHOCK
\$ FELT IN TIMISKAMING
S ONLY ONE STATION RECORDED THIS EVENT. READINGS OF SN AND SG WERE RECORDED. ORIGIN TIME RECORDED IN 1935 WAS 10:10:48. USING VALUES GIVEN THE NEW ORIGIN TIME IS 10:11:34
A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK
\$ CALCULATED MAGNITUDE IN 1935 OF ML=4.5.
$\begin{array}{llllllll}\text { SHF } 3511051010 P & B 1305 & \text { B1324 } & 60 & 1.8 & 6\end{array}$
$\begin{array}{lllllllll}\text { SHF E } 0479 \mathrm{KM} & 09249 & 10 & -019 & 10 & 019 & 0003491 & 46 \mathrm{ML} 41 \mathrm{MN}\end{array}$

```
+46.885-79.0040 MN=3.9 1647048 07111935 00.0000.000 0.0 1 1 1 10.00H210.00 0 1ML=4.2 10 0 3.65
$ NOVEMBER 7, 1935; EVENT AT 00:16:48
NO FELT REPORT
    SMITH ESTIMATED INTENSITY II THEREFORE M 2.4
    MAINSHOCK OF 19351101 EVENT USED AS EPICENTRE IN THIS LOCATION.
    ?HODGESON NOTES "NOTE ON BIG CARDS SAYS THIS AFTERSHOCK ON NOV 7 OCCURRED AT
        (LG) 16-4828 TO 16-4842 RATHER THAN 1148 AS ABOVE TAKEN FROM A
        CORRELATION TABLE. NO CARD #5856 OR ENTRY IN BULL IS AVAILABLE FOR CROSS
        CHECK"
    SMITH CHECKED THE MICROFILM AND FOUND NO TRACE AT EITHER HOUR
    ADAMS CHECKED THE ORIGINAL OTT MILNE-SHAW RECORDS IN 1988 AND FOUND THE
    TRACE AT 1648 ON THE EW MILNE-SHAW ONLY. IT IS THREE PULSES EACH ABOUT
    6 SEC APART ESTIMATED TO BE 0.2 MM Z-P @ 0.8 SEC
NOT ON SHF OR SFA ORIGINAL RECORDS (ADAMS, OCT 1988)
DUBIOUS MAGNITUDE
OTT 3511071647P B4828 080 0.3 0.2
OTT SE 0303KM 122 49 10 000 0005236 42ML39MN
```

```
+46.885-79.0040 MN=3.9 1611197 15111935 00.0000.000 0.0 1 2 10.00H210.00 0 1mL=4.1 10 0 3.65
$ NOVEMBER 15 1935, EVENT AT 16:11 - TIMISKAMING AFTERSHOCK
$ ONLY ONE STATION RECORDED THIS EVENT, SN PHASE BEING RECORDED.
        FIXED ORIGIN TIME OF 16:11:20. (1935)
        RECORDED PHASE MAY BE SG, RESIDUALS AT FIXED ORIGIN TIME ARE BETTER.
    A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
        CALCULATED MAGNITUDE IN 1935 OF ML=3.0.
    SMITH'S CARD HAS A COPY OF THE ORIGINAL OTT RECORD, PROBABLY MADE FROM
        MICROFILM, THAT IS 2/3 SIZE OF ORIGINALS
    AMPLITUDE/PERIOD READINGS OF OTT RECORD (1988) ARE .2 MM AT 0.9 SEC.
NOT ON SFA, SHF ORIGINAL RECORDS (ADAMS, OCT 1988)
OTT 3511151611P B1234 B1244 90 0.3 2
SE 0303KM 122 49 10 -105 10 105 0004654 41ML39MN
Z
+46.885-79.0040 MN=4.3 0619246 25111935 00.0000.000 0.0 1 2 10.76H210.00 0 1mL=4.9 10 0 3.65
NOVEMBER 25 1935, EVENT AT 06:19 - TIMISKAMING AFTERSHOCK
    FELT IN WIDDIFIELD AND MATTAWA AND NORTH BAY ONTARIO.
    ONLY ONE STATION RECORDED THIS EVENT, WITH SN AND SG PHASES BEING RECORDED.
        THE 1935 ORIGIN TIME WAS 06:19:19. RESIDUALS OF ABOUT 6 SEC. ARE GIVEN
        WITH THIS FIXED RESIDUAL TIME.
    A NEW ORIGIN TIME WAS CALCULATED, 06:19:25.4
    A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
        CALCULATED MAGNITUDE IN 1935 OF ML=4.7.
    NOT ON OTT OR SFA ORIGINAL RECORDS (ADAMS, OCT 1988)
SHF 3511250619P B2117 B2136 70 1.8 12
SHF E 0479KM 092 49 10 -019 10 019 0005984 49ML43MN
    Z
46.885-79.0040 MN=4.3 1931548 27111935 00.0000.000 0.0 1 1 10.76H210.00 0 1ML=4.8 10 0 3.65
$ NOVEMBER 27 1935, EVENT AT 19:31 - TIMISKAMING AFTERSHOCK
    ONLY ONE STATION RECORDED THIS AFTERSHOCK. AN ORIGIN TIME WAS DETERMINED IN
        1935 AND FOUND TO BE 19:31:49. THIS TIME GIVES ABOUT A 6 SEC. RESIDUAL.
        SINCE THERE IS ONLY ONE PHASE, IT IS DIFFICULT TO DETERMINE THE PROPER
        ORIGIN TIME. A NEW ORIGIN TIME WAS CALCULATED WITH ONLY THIS PHASE AND IS
        19:31:54.
    A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
        CALCULATED MAGNITUDE IN 1935 OF ML=4.6.
    NOT ON SFA OR OTT (ADAMS, OCT 1988)
SHF 3511271931P B3406 60 1.8 9
SHF E 0479KM 092 49 10 000 0005236 48ML43MN
```

```
+46.885-79.0040 MN=4.2 1040436 15121935 00.0000.000 0.0 1 2 10.00H210.00 0 1mL=4.7 10 0 3.65
$ DECEMBER 15 1935, EVENT AT 10:42 - TIMISKAMING AFTERSHOCK
FELT AT TEMISCAMING, SECOND AND LARGEST OF TWO WITHIN THE HOUR
LIKE "A CRACK OF THUNDER"
ASSIGNED MMI III BY SMITH SEE SMITH'S EVENT #419
ONLY ONE STATION RECORDED THIS EVENT, PRESUMED S PHASES
    2ND S PHASE ONSET AT EDGE OF SHEET
    A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
ORIGINAL SHF RECORD READ BY ADAMS IN 1988 AND GOOD TRACE FOUND
$ SFA RECORD BADLY FADED; NO TRACE
SHF 3512151042P B4241 C4250 60 1.8 0.8
SHF E 0479KM 092 49 14 481 03-481 0004654 47ML42MN
Z
+47.885-79.0040 MN=4.2 0600095 20011936 00.0000.000 0.3 2 3 20.00H210.00 0 1ML=5.0 10 0 3.65
$ JANUARY 20 1936, EVENT 06:00 - TIMISKAMING AFTERSHOCK
$ FREE LOCATION
$+47.466- 79.6040 MN=4.2 0600035 20011936 00.8010.510 0.4 3 5 23.52 210.00 0 1ML=5.1 10 0 3.6
$ FELT IN TIMISKAMING, MATTAWA AND NORTH BAY.
$ THREE STATIONS RECORDED THIS EVENT.
    A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
        CALCULATD MAGNITUDE IN 1935 OF ML=4.5.
BUF,SHF -READINGS WERE READ OFF COPIES OF THE ORIGINAL RECORDS
$ SHF P-060817 P-0608305 RESIDUALS 6+ MINUTES ???
SHF 3601200601P B0117 B01305 XB0233 70 2.2 17
SHF E 0496KM 10 051 105 49 10 105 00 769 0006936 50ML44MN
BUF 3601200601P XB0110
BUF S 0551KM 00 ****$179 49 0000000 00ML00MN
SFA 3601200601P B0300 70 2.2 4
SFA E 0622KM 095 49
```

 Z
 $+46.885-79.0040 \mathrm{MN}=4.101273082503193600 .0000 .0000 .0 \quad 1 \quad 1 \quad 10.76 \mathrm{H} 210.00 \quad 0 \quad 1 \mathrm{ML}=4.7 \quad 10 \quad 0 \quad 3.65$
MARCH 25 1936, EVENT AT 01:27 - TIMISKAMING AFTERSHOCK
F FELT IN TIMISKAMING
ONLY ONE STATION RECORDED THIS EVENT. NO ORIGIN TIME WAS GIVEN SO THE SG
PHASE RECORDED DETERMINES THE TIME - 01:27:30.9.
A FIXED LOCATION WAS USED, IE. THAT OF THE MAINSHOCK.
CALCULATED MAGNITUDE IN 1935 OF ML=4.6.

Z

```
+46.885-79.0040 MN=3.0 0034088 05011940 00.0000.000 0.0 1 3 3 10.76H210.00 0 1ML=3.0 10 0 3.65
$ JANUARY 5, 1940 ; EVENT AT 00:34:08
FELT IN TIMISKAMING
ONLY ONE STATION RECORDED THIS EVENT WITH THREE PHASES RECORDED.
    ORIGIN TIME IN SMITH, 1966, OF 00:34:14
    AN EPICENTRE OF 47.72 N 79.08 W WAS STATED BY SMITH, 1966.
    SMITH REPORTED MAGNITUDE OF ML=3.O
```

$\left.\begin{array}{lclllllll}\text { OTT } & 4001050034 \mathrm{P} & & \text { B3458 } & \text { B3526 } & \text { B3530 } & 30 & 73 & 22 \\ \text { OTT } & \text { SE } 0303 \mathrm{KM} & 122-88 & 10 & 017 & 10 & 187 & 10 & -204\end{array}\right) 0000631 \quad 30 \mathrm{ML} 30 \mathrm{MN}$


```
+46.885-79.0040 MN=2.9 0341248 01111961 00.0000.000 0.0 1 3 10.88H210.00 0 1mL=2.8 10 0 3.65
$ NOVEMBER 1, 1961 ; EVNT AT 03:41:24
$ FELT IN TIMISKAMING
$ ONLY ONE STATION RECORDED THIS EVENT WITH THREE PHASES RECORDED.
        MMI = II-III.
        ORIGIN TIME (FROM 1961) 03:41:21
        AN EPICENTRE OF 46.92 N 79.09 W (IN 1961)
        REPORTED MAGNITUDE OF ML=2.9
        A NEW ORIGIN TIME OF 03:41:24 WAS CALCULATED.
```

```
OTT 6111010341P [lllllllll
OTT SE 0303KM 122-88 10 -139 10 -260 10 400 0000460 28ML29MN
+46.366-78.98001MN=3.6 1756331 15091965 00.1130.087 0.1 4 9 31.10 210.00 0 1ML=3.6 20F 0L3.65
$46.72 - 79.05 ML=3.8 CEEF 1989
$ FROM VONK
W. OF MATTAWA, ON
FELT IN NORTH BAY (TWO DOZEN REPORTS) AND ONE FROM READING
    SEPTEMBER 15, 1965 ; EVENT AT 17:56
    TWO DOZEN FELT REPORTS FROM NORTH BAY AND ONE FROM READING.
    SMITH REPORT OF 1965 GIVES A MAGNITUDE READING OF M=3.8
    46.72 - 79.05 (SMITH 1965 REPORT, CANADIAN EARTHQUAKES.)
    LND PN VALUE ORIGINALLY RECORDED AS PG.
$
OTT 6509151756P A57135
OTT E 0276KM 01 023 112 49
LND 6509151756P B57331
LND SW 0409KM 17 354 206 49
MNT 6509151756P
MNT E 0427KM 101 49
SHF 6509151756P
SHF E 0478KM 085 49
SFA 6509151756P
    E 0629KM 079 49
SCH 6509151756P
SCH NE 1274KM 038 49
\begin{tabular}{|c|c|c|c|}
\hline A5742 & B5753 & 30671 & 00 \\
\hline 05-046 & 26434 & 0003126 & 35ML36MN \\
\hline A58105 & B5828 & 3075 & 45 \\
\hline \multirow[t]{5}{*}{03-037} & 11281 & 0001257 & 37ML35MN \\
\hline & B5830 & & \\
\hline & 00-002 & 0000000 & OOMLO OMN \\
\hline & \multicolumn{3}{|l|}{XC5842} \\
\hline & \(00-216\) & 0000000 & OOML 00 MN \\
\hline B5854 & B5928 & 3132 & 40 \\
\hline 18-367 & 09256 & 0000635 & 41ML36MN \\
\hline \multicolumn{4}{|c|}{XB6222} \\
\hline & 00-025 & 0000000 & 00 ML 00 \\
\hline
\end{tabular}
Z
+46.928-78.866F MN=3.9 1525114 19121975 00.0200.014 0.3 12 24 120.71 210.00 0 1ML=4.1 50 0 3.65
$ DECEMBER 19, 1975 ; EVENT AT 15:25:12
$ FELT AT TIMISKAMING, KIPAWA VILLAGE.
$47.00 - 78.85 MN=3.8 (1975 LOCATION)
$ DISHES AND WINDOWS RATTLED, MUFFLED RUMBLE HEARD.
$ NOT REPORTED FELT AT WEATHER STATIONS IN NORTH BAY, TIMMINS, VAL D'OR
SUDBURY, PETAWAWA, AND EARLTON.
$ FIRST SUDBURY (SUD) READING COULD BE EITHER PN OR PG, SECOND READING
COULD BE EITHER SN OR SG.
    ALL VALUES AT POC OFF BY 2+ SEC. ARBITRARY TIME CORRECTION (2.1 SEC) ASSUMED
$
SUD 7512191525P B2539 B2557 20 88 420
```


| QCQ | E $0568 \mathrm{KM} 00-128085$ | 49 | | | | 0000000 | OOMLO OMN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLE | 8208130106P | | X08150 | | | | |
| CLE | SW 0612KM 203 | 49 | $00-371$ | | | 0000000 | OOMLO OMN |
| LMQ | 8208130106P XB0803 D | | | | | | |
| LMQ | E $0644 \mathrm{KM} 00-211078$ | 49 | | | | 0000000 | 00ML00MN |
| LPQ | 8208130106P XC080551 | | | | XB094228 | $48 \quad 70416$ | |
| LPQ | E 0666KM 00-223 080 | 49 | | | 00-019 | 0007779 | 54 ML 47 MN |
| GPD | 8208130106P XC08120 | | | | | | |
| GPD | SE 0708KM $00-088150$ | 49 | | | | 0000000 | 00ML0 0MN |
| ACM | 8208130106P XC08153 | | | | | | |
| ACM | SW 0718KM 00121235 | 49 | | | | 0000000 | OOMLOOMN |
| MIM | 8208130106P XB08180 | | | | | | |
| MIM | E $0764 \mathrm{KM} 00-168098$ | 49 | | | | 0000000 | OOMLOOMN |
| PRIN | 8208130106P XB08196 | | | | | | |
| PRIN | SE 0764KM 00-008 154 | 49 | | | | 0000000 | OOMLOOMN |
| EBN | 8208130106 P XB08245 C | | | | X10210 | | |
| EBN | E 0800KM 00040079 | 49 | | | 00180 | 0000000 | 00ML0 0MN |
| AN1 | 8208130106P X08267 | | | | | | |
| AN1 | SW 0810KM 00142215 | 49 | | | | 0000000 | 00ML0 0MN |
| LHC | 8208130106P | | | XB09453 | XC1025 | 5067 | 3 |
| LHC | W 0821KM 288 | 49 | | 00-011 | $00 \quad 004$ | 0000431 | 44 ML 3 6MN |
| JAQ | 8208130106P C082624+ | | | XB09461 | XC102645 | 4219535 | |
| JAQ | N 0829KM $01-138014$ | 49 | | 00-099 | 00-063 | 0002685 | 51ML 4 4MN |
| MNQ | 8208130106P C082930D | | | X09557 | XB103495 | 451083 | |
| MNQ | NE 0852KM $01-119056$ | 49 | | 00361 | 00147 | 0004719 | 54 ML 46 MN |
| UNB | 8208130106P | | | | X1057 | | |
| UNB | E 0932KM 090 | 49 | | | 00156 | 0000000 | OOMLO OMN |
| CVL | 8208130106P XC08430 | | | | | | |
| CVL | S 0958KM 00-037 179 | 49 | | | | 0000000 | OOMLOOMN |
| SIC | 8208130106P X08475 | | | X1020 | X11105 | | |
| SIC | NE 0970KM 00271061 | 49 | | 00297 | 00485 | 0000000 | 00 ML 00 MN |
| BLA | 8208130106P XC08555 | | | | | | |
| BLA | S 1053KM 00049188 | 49 | | | | 0000000 | OOMLO OMN |
| SCH | 8208130106P X09145 | | | | | | |
| SCH | NE 1240KM 00-327 038 | 49 | | | | 0000000 | 00ML0 0MN |
| ORT | 8208130106P XC09207 | | | | | | |
| ORT | SW 1277KM 00-155 203 | 49 | | | | 0000000 | OOMLOOMN |
| FVM | 8208130106P XC09315 | | | | | | |
| FVM | SW 1359KM $00-073229$ | 49 | | | | 0000000 | OOMLO OMN |
| FCC | 8208130106P X10170 | | | | | | |
| FCC | NW 1700KM 00317328 | 49 | | | | 0000000 | OOMLOOMN |
| FFC | 8208130106P X10300 + | | | | | | |

| OTT | SE 0287KM | 123-88 | $00-192$ | | 01-022 | 0000399 22ML28MN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WEO | 8311270949P | X50105 | X50124 | | XC50505 | 10470177 |
| WEO | S 0315KM 00 | - 25517449 | $00-142$ | | 00114 | 0002366 31ML36MN |
| TRQ | 8311270949P | B50108 + | | | XB50542 | 121580119 |
| TRQ | E 0333KM 05 | 506410049 | | | 00004 | 0000394 25ML29MN |
| WBO | 8311270949P | C50113 | | | | 112085107 |
| WBO | SE 0341KM 01 | -18 12549 | | | | 0000293 24ML28MN |
| KAO | 8311270949P | B50190 | | X5056 | X5111 | 3020920 |
| KAO | NW 0400KM 05 | 507631849 | | $00-270$ | 00-146 | 0000200 29ML27MN |
| GTO | 8311270949P | B50537 | | XB52006 | | 302103 |
| GTO | NW 0687KM 05 | 504430149 | | 00081 | | 0000030 28ML23MN |

APPENDIX C

MAGNITUDE THRESHOLD TEST OF THE TIMISKAMING AREA

```
LAT LONG MAG TIME DEPTH
```

| SN | SG | T K AMP | |
| :---: | :---: | :---: | :---: |
| | B321896 | 010600020 | 00 |
| | 07-066 | 00002090 | 0ML18MN |
| | B325171 | 030327020 | 00 |
| | 07065 | 00001281 | 15ML18MN |
| | B325523 | 030109020 | 00 |
| | 07-030 | 00003842 | 11ML2 4MN |
| B325341 | B325539 | 030390020 | 00 |
| $07-149$ | 07-059 | 00001071 | 15ML18MN |
| | B331489 | 030327020 | 00 |
| | 07036 | 00001281 | 19ML21MN |
| | B333189 | 030073020 | 00 |
| | 07049 | 00005742 | 29ML30MN |
| | B333189 | 0300.3020 | 00 |
| | 07049 | 01396265 | 53ML53MN |
| B334241 | B335839 | 030209020 | 000 |
| 07-043 | 07082 | 00002002 | 8ML2 7MN |
| | B341829 | 0602.3020 | 00 |
| | 07-092 | 00091065 | 50ML 4 5MN |
| | B341829 | 0302.3020 | 00 |
| | 07-092 | 00182125 | 51ML 4 8MN |
| | B341829 | 030073020 | 00 |
| | 07-092 | 00005743 | 36ML33MN |
| | B360289 | 030324020 | 00 |
| | 07015 | 00001293 | 37ML31MN |

```
```

+46.874-78.897F1MN=3.2 0132101 17081987 00.0100.012 1.2 12 17 110.00N210.00 0 5ML=2.9

```
+46.874-78.897F1MN=3.2 0132101 17081987 00.0100.012 1.2 12 17 110.00N210.00 0 5ML=2.9
110 0 3.65
110 0 3.65
$ THRESHOLD TEST OF TIMISKAMING AREA.
$ THRESHOLD TEST OF TIMISKAMING AREA.
$ LOCATION OF EVENT THAT OF ORIGINAL LOCATION OF AUGUST, 17 1987 EVENT
$ LOCATION OF EVENT THAT OF ORIGINAL LOCATION OF AUGUST, 17 1987 EVENT
$ ALL STATION (EXCEPT EEO) HAVE AN AMPLITUDE OF 2.0 MM AND A PERIOD OF 0.3 SEC
$ ALL STATION (EXCEPT EEO) HAVE AN AMPLITUDE OF 2.0 MM AND A PERIOD OF 0.3 SEC
    K (MAGNIFICATON) VALUES DETERMINED OR ASSUMED FROM CHART
    K (MAGNIFICATON) VALUES DETERMINED OR ASSUMED FROM CHART
                OF PERIOD VS INSTRUMENT TYPE. (OBSERVATORY)
                OF PERIOD VS INSTRUMENT TYPE. (OBSERVATORY)
        CKO-GRQ SET AT 327 (GNT VALUE)
        CKO-GRQ SET AT 327 (GNT VALUE)
VDQ-OTT-SHF-MNQ ARBITRARILY SET PHASES.
VDQ-OTT-SHF-MNQ ARBITRARILY SET PHASES.
    ALL SET AT MARK3-MONITOR 3 WHERE POSSIBLE.
    ALL SET AT MARK3-MONITOR 3 WHERE POSSIBLE.
    MAGNITUDE THRESHOLD BOUNDARIES.
    MAGNITUDE THRESHOLD BOUNDARIES.
    ------------------------------------
    ------------------------------------
OTTM - MILNE-SHAW INSTRUMENT, OTTAWA STATION, }192
OTTM - MILNE-SHAW INSTRUMENT, OTTAWA STATION, }192
SHF - WOOD-ANDERSON INSTRUMENT, SHAWINIGAN FALLS STATION, 1927
SHF - WOOD-ANDERSON INSTRUMENT, SHAWINIGAN FALLS STATION, 1927
$ OTTB - BENIOFF INSTRUMENT, OTTAWA STATION, 1937
$ OTTB - BENIOFF INSTRUMENT, OTTAWA STATION, 1937
$ SUD - 1967
$ SUD - 1967
$ VDQ-CKO - 1980
$ VDQ-CKO - 1980
$ EEO - 1984
$ EEO - 1984
$STATION DATE PN PG SN SG T N K AMP
$STATION DATE PN PG SN SG T N K AMP
EEO 8708170132P -0.06 A321572D
EEO 8708170132P -0.06 A321572D
EEO SW 0029KM 208-58 29-001
EEO SW 0029KM 208-58 29-001
CKO 8708170132P -0.06 B323393
CKO 8708170132P -0.06 B323393
    SE 0148KM 131-83 07 -031
    SE 0148KM 131-83 07 -031
    8708170132P B323646 0.00
    8708170132P B323646 0.00
    W 0165KM 07 053 255 49
    W 0165KM 07 053 255 49
    8708170132P X323692 -0.07
    8708170132P X323692 -0.07
    NE 0166KM 00 075 024 49
    NE 0166KM 00 075 024 49
GRQ 8708170132P X324608 -0.09
GRQ 8708170132P X324608 -0.09
GRQ E 0234KM 00 161 096 49
GRQ E 0234KM 00 161 096 49
OTTB 8708170132P X325108 -0.09
OTTB 8708170132P X325108 -0.09
OTTB SE 0296KM 00 -090 123 49
OTTB SE 0296KM 00 -090 123 49
OTTM 8708170132P X325108 -0.09
OTTM 8708170132P X325108 -0.09
OTTM SE 0296KM 00 -090 123 49
OTTM SE 0296KM 00 -090 123 49
KAO 8708170132P X330392 -0.07
KAO 8708170132P X330392 -0.07
KAO NW 0392KM 00 027 318 49
KAO NW 0392KM 00 027 318 49
SHF 8708170132P X331408 -0.09
SHF 8708170132P X331408 -0.09
SHF E 0471KM 00 080 092 49
SHF E 0471KM 00 080 092 49
SHF 8708170132P X331408 -0.09
SHF 8708170132P X331408 -0.09
SHF E 0471KM 00 080 092 49
SHF E 0471KM 00 080 092 49
SHF 8708170132P X331408 -0.09
SHF 8708170132P X331408 -0.09
SHF E 0471KM 00 080 092 49
SHF E 0471KM 00 080 092 49
MNQ 8708170132P X340008 -0.09
MNQ 8708170132P X340008 -0.09
MNQ NE 0849KM 00 064 058 49
```

MNQ NE 0849KM 00 064 058 49

```

Z

\section*{APPENDIX D Recurrence Calculations for Kipawa Zone}
\(M \mathrm{M}=6.5\)
MINIMUMMAGNITUDE 1.5 MAXIMUM MAGNITUDE 6.5 MAGNITUDE' INCREMENT 0.5 LASTYR \(=1988\)
REJECT EVENT : 19372.7
\begin{tabular}{lrrrrrrrrrrr}
1800 \\
REAR & 1984 & 1980 & 1967 & 1937 & 1937 & 1928 & 1928 & 1928 & 1900 & 1900 & 1840 \\
MAGS. & 1.50 & 2.00 & 2.50 & 3.00 & 3.50 & 4.00 & 4.50 & 5.00 & 5.50 & 6.00 & 6.50 \\
EV.NOS. & 2 & 1 & 0 & 5 & 1 & 3 & 0 & 1 & 0 & 1 & 0 \\
STRT.YR & 1984 & 1980 & 1967 & 1937 & 1937 & 1928 & 1928 & 1928 & 1900 & 1900 & 1900 \\
INTVS. & 5 & 9 & 22 & 52 & 52 & 61 & 61 & 61 & 89 & 89 & 89 \\
INCR.RT & 0.400 & 0.111 & 0.000 & 0.096 & 0.019 & 0.049 & 0.000 & 0.016 & 0.000 & 0.011 & \\
ERRUP & 2.320 & 3.300 & 0.084 & 1.676 & 3.300 & 1.973 & 0.030 & 3.300 & 0.021 & 3.300 \\
ERRDUN & 0.354 & 0.173 & 0.000 & 0.568 & 0.173 & 0.457 & 0.000 & 0.173 & 0.000 & 0.173 \\
CUM.RT. & 0.703 & 0.303 & 0.192 & 0.192 & 0.096 & 0.077 & 0.028 & 0.028 & 0.011 & 0.011 \\
ERRUP & 1.267 & 1.289 & 1.302 & 1.302 & 1.597 & 1.676 & 2.320 & 2.320 & 3.300 & 3.300 \\
ERRDUN & 0.733 & 0.711 & 0.698 & 0.698 & 0.603 & 0.568 & 0.354 & 0.354 & 0.173 & 0.173 \\
LOW AND HIGH MAGS USED: & 1.50 & 6.0 & & & & & & \\
FOR THE A PRIORI MX OF 6.5 & & & & & & & \\
BETA= O.8921 1 STDV OF 0.226 & B= 0.3874 & 1 & STDV OF & 0.098 & & & \\
TOTAL NUMBER OF EVENTS & 14 & & & & & & & & \\
LOG (ANNUAL RATE ABOVE MO) 0.288 & & & & & & &
\end{tabular}
```

Mx = 7.0

```

MINIMUMMAGNITUDE 1.5 MAXIMUM MAGNITUDE 7.0 MAGNITUDE' INCREMENT 0.5
\(\begin{array}{lll}\text { LASTYR }= & 1988 \\ \text { REJECT EVENT } & \text { : } 19372.7\end{array}\)
\begin{tabular}{llllllllllll} 
& 1967 & 1937 & 1937 & 1928 & 1928 & 1928 & 1900 & 1900 & 1840 & 1800 \\
YEAR & 1984 & 1980 & 1967 & 190 &
\end{tabular}
\begin{tabular}{lrrrrrrrrrrr} 
MAGS. & 1.50 & 2.00 & 2.50 & 3.00 & 3.50 & 4.00 & 4.50 & 5.00 & 5.50 & 6.00 & 6.50 \\
EV.NOS. & 2 & 1 & 0 & 5 & 1 & 3 & 0 & 1 & 0 & 1 & 0 \\
STRT.YR & 1984 & 1980 & 1967 & 1937 & 1937 & 1928 & 1928 & 1928 & 1900 & 1900 & 1900 \\
INTVS & 5 & 9 & 22 & 52 & 52 & 61 & 61 & 61 & 89 & 89 & 89
\end{tabular}
\(\left.\begin{array}{lrrrrrrrrrrr}89 & 89 \\ \text { INTVS. } & 5 & 9 & 22 & 52 & 52 & 61 & 61 & 61 & 89 & 89 & 0.000\end{array}\right)\)
\begin{tabular}{lllllllllll} 
ERRDUN & 0.354 & 0.173 & 0.000 & 0.568 & 0.173 & 0.457 & 0.000 & 0.173 & 0.000 & 0.173 \\
CUM.RT. & 0.703 & 0.303 & 0.192 & 0.192 & 0.096 & 0.077 & 0.028 & 0.028 & 0.011 & 0.011 \\
ERRUP & 1.267 & 1.289 & 1.302 & 1.302 & 1.597 & 1.676 & 2.320 & 2.320 & 3.300 & 3.300
\end{tabular}
\begin{tabular}{llllllllllll} 
ERRDUN & 0.733 & 0.711 & 0.698 & 0.698 & 0.603 & 0.568 & 0.354 & 0.354 & 0.173 & 0.173
\end{tabular}

LOW AND HIGH MAGS USED: 1.506 .00
FOR THE A PRIORI MX OF 7.0
\(\mathrm{BETA}=0.91831\) STDV OF \(0.219 \quad \mathrm{~B}=0.39881\) STDV OF 0.095
TOTAL NUMBER OF EVENTS 14
LOG (ANNUAL RATE ABOVE M0) 0.310
ANNUAL RATE ABOVE M5 0.0207 1 STDV OF 0.006
\(\mathrm{Mx}=7.5\)
MINIMUMMAGNITUDE 1.5 MAXIMUM MAGNITUDE 7.5 MAGNITUDE' INCREMENT 0.5
LASTYR = 1988
REJECT EVENT : 19372.7
\begin{tabular}{lrrrrrrrrrrr} 
\\
YEAR & 1984 & 1980 & 1967 & 1937 & 1937 & 1928 & 1928 & 1928 & 1900 & 1900 & 1840 \\
MAGS. & 1.50 & 2.00 & 2.50 & 3.00 & 3.50 & 4.00 & 4.50 & 5.00 & 5.50 & 6.00 & 6.50 \\
EV.NOS. & 2 & 1 & 0 & 5 & 1 & 3 & 0 & 1 & 0 & 1 & 0 \\
STRT.YR & 1984 & 1980 & 1967 & 1937 & 1937 & 1928 & 1928 & 1928 & 1900 & 1900 & 1900 \\
INTVS. & 5 & 9 & 22 & 52 & 52 & 61 & 61 & 61 & 89 & 89 & 89
\end{tabular}
\begin{tabular}{lrrrrrrrrr} 
INTVS. & 5 & 9 & 22 & 52 & 52 & 61 & 61 & 61 & 89 \\
\hline
\end{tabular}
\begin{tabular}{lllllllllll} 
ERRUP & 2.320 & 3.300 & 0.084 & 1.676 & 3.300 & 1.973 & 0.030 & 3.300 & 0.021 & 3.300
\end{tabular}
\begin{tabular}{lllllllllll} 
ERRDUN & 0.354 & 0.173 & 0.000 & 0.568 & 0.173 & 0.457 & 0.000 & 0.173 & 0.000 & 0.173 \\
CUM.RT. & 0.703 & 0.303 & 0.192 & 0.192 & 0.096 & 0.077 & 0.028 & 0.028 & 0.011 & 0.011 \\
ERRUP & 1.267 & 1.289 & 1.302 & 1.302 & 1.597 & 1.676 & 2.320 & 2.320 & 3.300 & 3.300 \\
ERRDUN & 0.733 & 0.711 & 0.698 & 0.698 & 0.603 & 0.568 & 0.354 & 0.354 & 0.173 & 0.173
\end{tabular}

LOW AND HIGH MAGS USED: 1.506 .00
FOR THE A PRIORI MX OF 7.5
\(\mathrm{BETA}=0.93461\) STDV OF \(0.214 \mathrm{~B}=0.40591\) STDV OF 0.093
TOTAL NUMBER OF EVENTS 14
LOG (ANNUAL RATE ABOVE MO) 0.324
ANNUAL RATE ABOVE M5 0.0197 1 STDV OF 0.005
Calculations by program Betapl by D. Weichert- F. Anglin```


[^0]:    * The 1965 event relocated 40 km to the southeast, out of the study area.
    ** The mainshock and the largest immediate aftershock.

