

GEOLOGICAL SURVEY OF CANADA OPEN FILE 6052

Vitrinite reflectance data for Total EastCan et al Roberval K-92

M.P. Avery

2009

GEOLOGICAL SURVEY OF CANADA OPEN FILE 6052

Vitrinite reflectance data for Total EastCan *et al* Roberval K-92

M.P. Avery

2009

©Her Majesty the Queen in Right of Canada 2009 Available from Geological Survey of Canada 1Challenger Drive Dartmouth, Nova Scotia, B2Y 4A2

Avery, M.P.

2009: Vitrinite reflectance data for Total EastCan et al, Roberval K-92, Geological Survey of Canada Open File 6052, 13p.

Open files are products that have not gone through the GSC formal publication process.

Table of Contents

Well information1Introduction1Remarks1Method2Discussion2
References
Table I - Inferred Hydrocarbon Thermal Maturity Levels 1 Table II - Summary of kerogen - based vitrinite reflectance 3 Table III - Formation Tops 3
(List of remaining figures and appendices in order of appearance)
Figure 1 - VR/depth plot Figure 2 - VR Histograms/depth plot
Appendix I - Sample preparation method Appendix II - Zones of petroleum generation and destruction Appendix III - Data listings and basic statistics

Well information

G.S.C. Locality No.: D176 **Unique Well ID:** 300 K92 55000 55300 **Location:** 54.85987° N, 55.74327° W

R.T. Elevation: 13m Water Depth: 268.5m Total Depth: 3874m

Sampled Interval: 640-3870m Interval Studied: 2440-3870m

Depth Units: Metres referenced to R.T. **Rig Release Date:** October 27, 1978

Introduction

Vitrinite reflectance has been determined on 8 rotary drill cutting samples from Total Eastcan <u>et al</u> Roberval K-92, which was classified as an exploratory well, located in the Labrador Shelf. The well status is Plugged and Abandoned.

Sample preparation followed the procedures listed in Appendix I. Data acquisition and manipulation was done on a Zeiss Photometer III system with a custom interface to a computer for data storage and statistical summaries.

Analysis of the well reveals thermal maturity levels given in Table I. Specific maturity levels, as set out in this report, are based on those of Powell and Snowdon(1983) with modified terminology (Appendix II).

Table I
Inferred Hydrocarbon Thermal Maturity Levels

Depth in metres	Vitrinite Reflectance* %Ro	Hydrocarbon generation levels** for type II or III kerogen
upper maturity slope 269 [sea floor] 2570 2970	0.16 0.50 0.60	immature entering 'oil window' marginally maturity
lower maturity slope 3770 3874 [T.D.]	1.20 1.26	onset of dry gas phase approaching end of 'oil window'

^{*}upper linear regression slope= 0.197 log Ro/km; lower slope= 0.202 log Ro/km
** Actual hydrocarbon products depend on type of organic matter present (Appendix II).

Remarks

Sample coverage for vitrinite reflectance analysis at Roberval K-92 (Figure 1, Table II) was adequate over the studied section between 2440 and 3870m with a notable gap between 2590 and 3190m. This section is mostly comprised of the Markland Fm and although samples from this interval were processed for palynology no kerogen was available. The data were plotted on a log Ro vs. linear depth scale. Regression lines fitted through the data yielded a maturity slope of 0.197 log Ro/km in the upper section and a slope of 0.202 log Ro/km for the lower section . There is a significant variation in the number of readings that the data points are based on (Table II) therefore the regression lines were weighted based on the 'n' value for each point . The relative size of the point symbols provide an indication of the number of readings. The 'error bars' displayed on the maturity profile indicate one standard deviation on either side of the mean and may be deceivingly small for samples with very few readings.

The histogram display (Figure 2) shows the variability in the reflectance populations, which represent the maturity of the sediments with depth. Plotting reflectance histograms on a log scale may help reveal any trends present in the Ro data. It also can help to demonstrate the effects of cavings, geology, casing points and other influences on the vitrinite reflectance populations.

Keeping in mind the limits of the data set, these vitrinite reflectance data show that the thermal maturity of the upper section of Roberval K-92 between 2570 and 3550m ranges from marginally mature to mature for the generation of liquid hydrocarbons while the lower section between 3550 and 3874m (T.D.) is in the upper maturity range for liquid hydrocarbons. These results only reveal the maturity of the sediments penetrated, actual production of hydrocarbons depends on source rocks of the proper organic matter type and traps being present or connected to the well.

Method

Data obtained for this report were measured on polished kerogen mounts. Kerogen concentrate preparations make more of the organic matter from the sample interval available for viewing by the operator than other methods. The lack of mineral matter makes for better polishing and since the polished surface area is much smaller the analysis time is about a third or less of that for non-concentrated whole rock preparations.

Discussion

The samples measured for this report in the upper section yielded very few values representative of the maturity of the sediments penetrated (Table II). The samples from the lower section yielded more data. The optimal number for these analysis is around 50 but this rarely achieved on polished organic preparations derived from rotary drill well cuttings.

The maturity offset or increase between the upper and lower slope coincides with an unconformity at approximately 3544m between Cretaceous and Carboniferous (?) sediments.

References

Powell, T. G. and Snowdon, L. R.,1983. A composite hydrocarbon generation model. Erdöl und Kohle, Erdgas, Petrochemie, v. 36, p. 163-170.

Table II

Summary of kerogen - based vitrinite reflectance

Sample	Depth	Mean Ro (SD)	Number of	f Readings
Labels	metres	non-rotated	Total	Edited
K0951A	2440	0.48 (±0.05)	15	11
K0951B	2590	$0.49 \ (\pm 0.04)$	17	11
K0951C	3190	$0.67 \ (\pm 0.04)$	17	13
K0951D	3345	$0.74 \ (\pm 0.05)$	17	4
K0952A	3490	$0.74 \ (\pm 0.05)$	17	9
K0952B	3645	1.14 (±0.13)	35	29
K0952C	3790	1.18 (±0.09)	41	28
K0952D	3870	1.27 (±0.15)	47	38

Table III

Formation Tops (Moir 1989)

Formation	Top
	metres
Saglek Fm	340
Mokami Fm	726
Kenamu Fm	1815
Gudrid Fm (upper)	2356
Markland Fm	2679
Bjarni Fm	3080
Snorri Mb	3080
Alexis Fm	3197
(unnamed Paleozoic)	3544

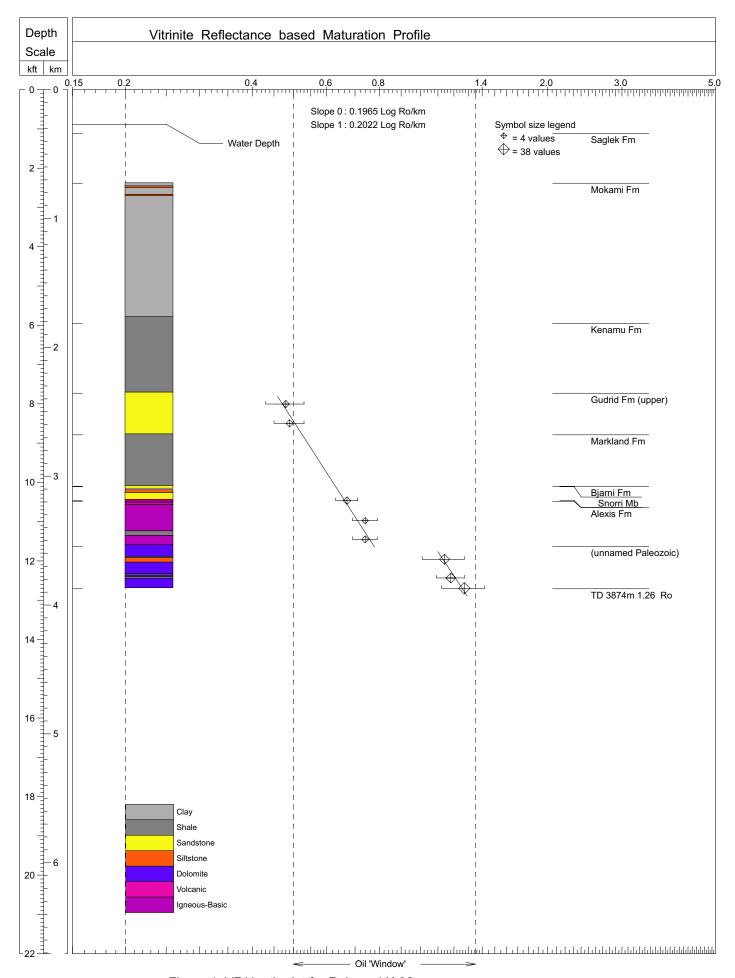


Figure 1. VR/depth plot for Roberval K-92

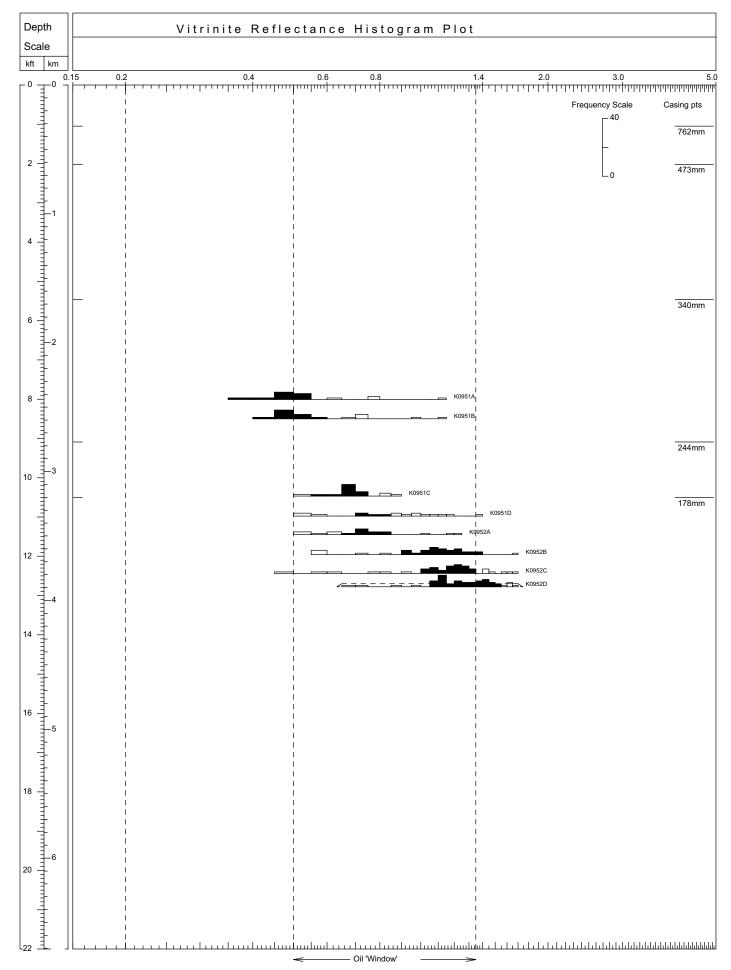


Figure 2. VR histograms/depth plot for Roberval K-92

Appendix I

Sample Preparation Method

Kerogen concentrate sample preparation

Preliminary wash (preparation for drill cuttings)

Dry samples in oven (25°C)

PALYNOLOGY Lab preparation

Place 20-30 grams in 250 ml plastic beaker.

Add 10% HCl till reaction ceases (removes carbonates).

Rinse 3 times.

Immerse in hot concentrated HF overnight (removes silicates).

Rinse 3 times.

Heat (60-65°C) in concentrated HCI (removes fluorides caused by HF).

Rinse 3 times.

Transfer to 15 ml test tube with 4-5 ml 4% Alconox.

Centrifuge at 1500 rpm for 90 sec.

Decant.

Rinse and centrifuge 3 times.

Float off organic fraction using 2.0 S.G. ZnBr solution.

Centrifuge at 1000 rpm for 8 min.

Float fraction into second test tube.

Wash and centrifuge 3 times.

Make kerogen smear slide.

Remaining kerogen material is made available to Organic Petrology Lab.

VITRINITE REFLECTANCE Lab preparation

Pipette off excess water and prepare as 2.5 cm (1") diameter plastic stubs to fit polisher.

Freeze dry and fix material for polishing with epoxy resin.

Polish with diamond-based suspension to obtain low relief, scratch-free surface.

Examine under oil lens, incident light at approximately 1000x magnification.

Whole rock sample preparation

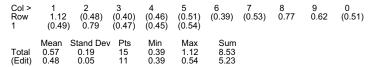
Set washed drill cuttings in epoxy to form 2.5 cm (1") diameter plastic stubs to fit polisher.

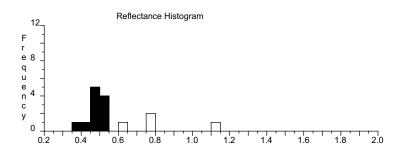
Grind and polish to obtain low relief, scratch-free surface.

Examine under oil lens, incident light at approximately 1000x magnification.

Appendix II (Powell and Snowdon 1983)

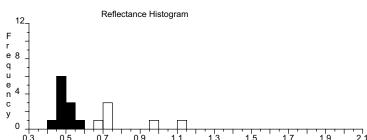
	Source V	itrinite %Ro	▶ 0.5	0.	7 0.9	1.1	1.3
Te	errestrial	Kerogen Type	IMMAT.	MARGINAL		MATURE	POST
1.	Vitrinite and inertinite dominated fluvial deltai		Biogenic		GAS		GAS
2.	Resinite-enriched (>10%) fluvial deltaic to pro-delta	III/II	Biogenic	Light naphthenic oil	Gas-naphthe	nic condensate	GAS
3.	Liptinite-enriched (>20%) fluvial-deltaic to pro-delta marine	11/111	Biogenic		Gas Waxy oil	condensate Light paraffinic oil	GAS
4.	Liptinite-dominated bacterial activity lacustrine	I/II	Biogenic		GAS Waxy oil	condensate Light paraffinic oil	DRY
5.	Marine Algal-dominated some terrestrial barred basins epeiric seas etc.	II	Biogenic		GAS Paraffinic-naph	condensate	DRY
6.		II/I	Biogenic	Heavy S-rich & asphaltic oil	to intermedia	condensate paraffinic	DRY GAS

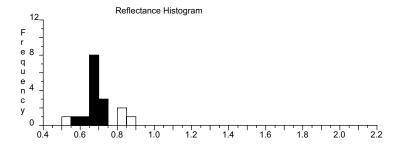

Hydrocarbon generation model compiled from Powell and Snowdon (1983) illustrating the different thresholds of hydrocarbon generation and products as related to thermal maturity, kerogen type and paleodepositional environment.


Appendix III

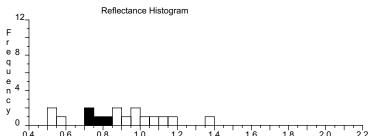
Data listings and basic statistics

Data listings and basic statistics for: Roberval K-92

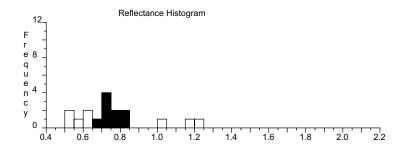



K0951B

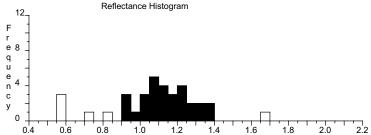
Col > Row 1	1 0.72 (0.51)			(0.49)		6 (0.52) (0.52)	8 0.98	9 0.70	0 0.73
Total	0.61	Stand Dev 0.20 0.04	Pts 17	Min 0.42	Max 1.12	Sum 10.30 5.39			


K0951C

Col > Row 1	1 0.88 (0.70)	2 (0.74) (0.69)	3 0.83 (0.67)	4 0.83 (0.68)	5 (0.58) (0.63)	6 (0.65) 0.51	7 (0.66) (0.65)	8 (0.68)	9 (0.65)	0 (0.73)
Total (Edit)	Mean 0.69 0.67	Stand Dev 0.09 0.04	Pts 17 13	Min 0.51 0.58	Max 0.88 0.74	Sum 11.76 8.71	i			

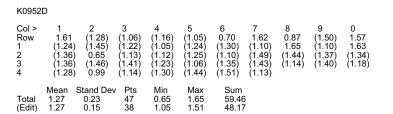

K0951D

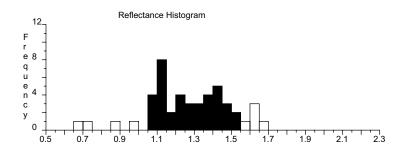
Col > Row 1	(0.71			1.36		6 (0.70) 0.87	7 1.04 0.91	8 (0.75)	9 0.52	0 1.07
	0.88	Stand Dev 0.23	17	Min 0.52	Max 1.36	Sum 14.95				


K0952A

Col > Row 1	1 (0.70) (0.71)	2) (0.81)) 0.63					8 1.15	9 (0.79)	0 (0.71)
Total (Edit)	Mean 0.76 0.74	Stand Dev 0.20 0.05	Pts 17 9	Min 0.52 0.68	Max 1.23 0.81	Sum 12.97 6.70			

K0952B


Col > Row 1 2 3	1 0.59 (0.90 (1.14 (1.38) (1.38)	3 (0.92) (1.25) (1.07) (1.18)	4 1.65 (1.23) (1.22) (1.17)		6 (1.34) (1.09) (1.13)	7 0.59 (1.00) (1.07)	8 (1.11) 0.81 (1.09)	9 (1.23) (1.06) (1.30)	0 (0.96) (1.22) 0.72	
Total	Mean 1.08	Stand Dev 0.23	/ Pts 35	Min 0.56	Max 1.65	Sum 37.87					



Data listings and basic statistics for: Roberval K-92

K0952	С										
Col > Row 1 2 3 4	1 0.55 0.63 (1.25 (1.27) 0.77	2 (1.14) (1.27)) (1.24)) (1.23)	3 (1.06) (1.07) (1.29) 1.42	4 (1.24) (1.12) 0.94 (1.30)	5 1.63 (1.17) (1.25) (1.34)	6 (1.17) (1.18) (1.04) (1.00)	7 (1.24) 0.82 (1.07) (1.08)	8 1.66 0.47 (1.30) 1.40	9 1.44 (1.21) (1.17) (1.04)	0 1.55 (1.23) 1.49 (1.18)	
Total	Mean 1.17	Stand Dev 0.26	Pts 41	Min 0.47	Max 1.66	Sum 47.92					

(
12_	Reflectance Histogram
F :	
e 8 _ q -	
u – e – n 4 –	_ 📥
c -	

