

# **GEOLOGICAL SURVEY OF CANADA OPEN FILE 6084**

# POROSITY AND PERMEABILITY MEASUREMENTS FOR SELECTED PALEOZOIC SAMPLES IN QUEBEC

**D.** Lavoie

2009



Canada





## **GEOLOGICAL SURVEY OF CANADA OPEN FILE 6084**

Porosity and permeability measurements for selected Paleozoic samples in Quebec.

## **D.** Lavoie<sup>1</sup>

1. Geological Survey of Canada-Québec Division, 490 de la Couronne, Québec, QC

## 2009

©Her Majesty the Queen in Right of Canada 2009 Available from Geological Survey of Canada 601 Booth Street Ottawa, Ontario K1A 0E8

## Lavoie, D.,

2009: Porosity and Permeability measurements for selected Paleozoic samples in Quebec. Geological Survey of Canada, Open File 6084, 21 pages.

Open files are products that have not gone through the GSC formal publication process.

## **TABLE OF CONTENTS**

| Summary / Sommare                                                    | 2  |
|----------------------------------------------------------------------|----|
| Experimental                                                         | 3  |
| Regional geological setting of the Paleozoic succession in Québec    | 3  |
| Hydrocarbon system and plays in the Cambrian-Ordovician of Québec    | 6  |
| Porosity-permeability data                                           | 7  |
| St. Lawrence Platform                                                | 7  |
| The Humber Zone                                                      | 8  |
| Hydrocarbon systems and plays in the Silurian and Devonian of Québec | 9  |
| Porosity-permeability data                                           | 10 |
| Conclusions                                                          | 12 |
| Acknowledgements                                                     | 12 |
| References                                                           | 13 |

samples 16

Table 2: Porosity and permeability measurements for late Ordovician to Middle Devonianand Carboniferous samples19

### **Summary**

A total of 167 field samples were collected in 2005 and 2006 in order to provide some porosity and permeability data for Paleozoic rocks in Quebec. Samples were collected in the three major tectonostratigraphic domains of the Paleozoic of Quebec; namely the Cambrian-Ordovician shallow marine St. Lawrence Platform (southern Quebec and Anticosti Island), the coeval deep-water sediments preserved in the Taconian Humber Zone (eastern Quebec) and the late Ordovician to Middle Devonian Gaspé Belt (Gaspé Peninsula). Two samples were taken from the thin Carboniferous veneer in southern Gaspé Peninsula. Porosity and permeability measurements were realized at the AGAT laboratories in Calgary. In all domains, some sandstones have relatively high porosity and permeability values. Carbonates are generally characterized by low porosity and permeability values, except for hydrothermal dolomites.

#### Sommaire

Un total de 167 échantillons de terrain furent récoltés en 2005 et 2006 dans le but de générer des données de porosité et de perméabilité pour les roches du Paléozoïque du Québec. Les échantillons proviennent des trois principaux domaines tectono-stratigraphiques du Paléozoïque du Québec ; la Plate-forme du Saint-Laurent du Cambrien-Ordovicien (sud du Québec et Île d'Anticosti), les sédiments contemporains d'eau profonde préservés dans la Zone taconienne de Humber (est du Québec) et la Ceinture de Gaspé de l'Ordovicien tardif – Dévonien Médian (péninsule de Gaspésie). Deux échantillons proviennent de la mince zone d'affleurements du Carbonifère dans le sud de la Gaspésie. Les mesures de porosité et de perméabilité furent réalisées au laboratoire AGAT à Calgary. Dans tous les domaines, certains grès ont des valeurs de porosité et de perméabilité relativement élevées. Les carbonates ont généralement caractérisés par des valeurs de porosité et de perméabilité faibles, à l'exception des dolomies hydrothermales.

2

## Experimental

167 samples were sent in 2005 and 2006 to the AGAT laboratory in Calgary. Values of porosities were obtained using a pressure chamber, whereas permeability values ( $K_{max}$  which represents the addition of the horizontal and vertical components of K) were estimated using water injection on 2.5 to 3.8 cm diameter plugs drilled from field samples. These are usual procedures for the oil and gas industry.

While sampling, great care was taken in taking the least altered samples. However, the values presented in this report should be evaluated with great care as sub-aerial weathering did affect these samples. These values are nevertheless considered useful as they present some qualitative and relative ideas on the reservoir potential of identified hydrocarbon plays.

### **Regional geological setting of the Paleozoic successions in Quebec**

The Paleozoic successions of eastern Canada represent hydrocarbon frontier basins. The successions consist of three major tectonostratigraphic packages that are bounded by tectonically-controlled unconformities. The rock packages which have unique source rocks and reservoir units and specific trap types include 1) the Cambrian-Ordovician autochthonous St. Lawrence shallow marine platform and coeval allochthonous deep water facies preserved in the Taconian thrust belt of the Humber Zone, 2) the Silurian-Devonian shallow to deep marine Gaspé Belt and 3) the Devonian-Permian mostly terrestrial Maritimes Basin (Fig. 1).



Fig 1: Simplified geological map of eastern Canada. The Paleozoic basins in Quebec consists of the Cambrian-Ordovician St. Lawrence Platform (1) and Humber Zone (2) as well as the Silurian-Devonian Gaspé Belt (3) and the Carboniferous Maritimes basin (4).

The Taconian unconformity separates the Cambrian-Ordovician from the Silurian-Devonian whereas the Acadian unconformity occurs at the base of the Late Devonian-Permian rock package.

Over the past five years the Geological Survey of Canada and its partners have acquired new hydrocarbon systems data, to produce the first ever regional hydrocarbon play assessment for Paleozoic basins in eastern Canada. A total of 13 conventional and 1 unconventional (shale gas) plays have been identified in Cambrian-Devonian strata (Lavoie et al., 2009a and b). The conventional plays include six plays in Cambrian-Ordovician strata (Fig. 2): 1) Cambrian rift sandstones, 2) Lower Ordovician hydrothermal dolomite (HTD), 3) carbonate thrust slices at the Appalachian structural front, 4) Middle-Upper Ordovician HTD, 5) passive margin slope clastics, 6) foreland sandstones and carbonates. A seventh play in southern Quebec (7 on Fig. 2) overlies the Cambrian-Ordovician strata and consists of unconsolidated Quaternary sediments. The unconventional play (U1; Fig. 2) corresponds the Upper Ordovician Utica Shale and correlative units (Lavoie et al., 2008a).



Figure 2: Schematic cross-section of the Cambrian-Ordovician St. Lawrence Platform and coeval Appalachian Humber Zone. The 7 conventional and one unconventional (U1) plays are presented.

Six plays in Silurian-Devonian strata have been identified (Fig. 3): 1) Lower Silurian sandstones, 2) Lower Silurian HTD, 3), Upper Silurian HTD reefs, 4) lowermost Devonian HTD reefs, 5) Lower Devonian fractured carbonates, and 6) Lower Devonian nearshore sandstones.



Figure 3: Schematic cross-section of the Silurian-Devonian Gaspé Belt. The 6 conventional plays are presented.

Amongst the new data generated by the eastern Canada Paleozoic project, samples for

evaluation of porosity and permeability were collected in all these sedimentary belts. Field samples are not commonly used by the industry, because of surface weathering. However, this information provides an early appraisal of potential for reservoir rocks in the Paleozoic successions of Québec. This contribution reports 165 new porosity and permeability values for the Lower Cambrian to Middle Devonian of Quebec and 2 from the Carboniferous. Some units with significant subsurface information (e.g., the Lower Ordovician dolomites of the Beekmantown Group that hosts the St. Flavien gas field) were not sampled.

In the following sections, a brief summary of current exploration plays for the Cambrian-Ordovician and Silurian-Devonian will be presented and complemented with discussions on the new porosity-permeability data (Tables 1 and 2).

#### Hydrocarbon plays in the Cambrian-Ordovician of Quebec

In the Quebec Cambrian-Ordovician successions, potential hydrocarbon source rocks are found in organic-rich shales deposited in Lower Ordovician passive margin, Middle Ordovician deep ocean basin and Upper Ordovician foreland basin (Lavoie et al., 2009c). Geochemical analyses suggest that hydrocarbons from Cambrian-Ordovician rocks in southern Quebec were sourced from Upper Ordovician foreland basin black shales (Lavoie et al., 2009a and b). High quality reservoirs in the Cambrian-Ordovician are recognized in hydrothermal dolomites (HTD) in Lower Ordovician passive margin and in the Middle/Upper Ordovician foreland basin carbonates. This potential is supported by production (Saint-Flavien gas field in Lower Ordovician dolostones of the Beekmantown Group; Bertrand et al., 2003) and by recent discovery (Gentilly #1 well in Middle/Upper Ordovician dolostones of the Black River Group; Lavoie et al., 2009a). Other significant potential reservoirs consist of nearshore and fluvial sands, and thick successions of turbidites and slope channel-fill sands (Lavoie et al., 2009a). The carbonate and clastic reservoirs are involved in stratigraphic and tectono-diagenetic traps in the St. Lawrence Platform and in foothill-style traps at the Appalachian structural front (Lavoie et al., 2009a).

**Porosity-permeability data.** Table 1 presents the porosity and permeability values for various units of the St. Lawrence Platform and Humber Zone. Clastic-dominated units are in black characters whereas carbonate-dominated units are in red.

#### St. Lawrence Platform

In the St. Lawrence Platform of southern Quebec, clastics are found at or near the base of the Paleozoic successions (Cairnside Formation or basal sandstone unit) or overlying the Sauk-Tippecanoe unconformity (La Gabelle Formation). Both intervals show relatively high porosity and permeability values. The Cairnside Formation at the top of the Potsdam Group consists of well-sorted and texturally mature quartz arenite. The La Gabelle Formation and the unnamed basal sandstone near Quebec City are coarse-grained, relatively impure and poorly cemented.

For carbonates in southern Quebec, the dolostones of the Beekmantown Group have the highest porosity – permeability values. In the St. Flavien gas field, the secondary porosity of the reservoir dolostone ranges from 3 to 15% with permeabilities up to 70 mD (Béland and Morin, 2000; Bertrand et al., 2003), although the distribution of porous intervals is highly irregular. No efforts were made in sampling more Beekmantown dolostones. One of the main exploration targets in southern Quebec is hydrothermal dolomites in the Trenton-Black River interval. For these units, there are few hydrothermally dolomitized intervals recognized in outcrops. Along the Sainte-Anne River, the samples LKA-2006-69 and 70 (Leray Formation of the Black River Group) as well as samples LKA-2006-71 and 72 (Sainte-Anne Formation of the Trenton Group) are diffusely dolomitized and interpreted to reflect distal hydrothermal alteration. They have

slightly higher than average porosity and permeability compared to unaltered Ordovician limestones. High porosity and permeability values for Lower and Middle/Upper Ordovician hydrothermal dolomites on Anticosti Island were petrophysically and core-documented in Hu and Lavoie (2008).

Along the southwestern coast of Anticosti Island, Lower Silurian (late Llandoverian) carbonates of the Chicotte Formation are dominated by nearshore encrinite facies (Desrochers, 2006). The Chicotte Formation samples (Table 1) have very high porosity and permeability values, the origin of which is still not documented.

#### The Humber Zone

In the Humber zone, some relatively significant reservoir potential is known from the Lower Cambrian Green Sandstone informal unit (Lavoie et al., 2003) with number of core and petrophysical porosity – permeability values (Parke wells, Hu and Lavoie, 2008). The porosity is of secondary origin and is largely derived from fractures with subordinate leaching of alumino-silicates (Lavoie et al., 2009a). New field samples from the Green Sandstones show low to moderate porosity and permeability (Table 1).

The higher porosity field samples are found in the Lower Cambrian Saint-Nicolas Formation near Quebec City and in the Upper Cambrian Kamouraska Formation in eastern Quebec. The Saint-Nicolas Formation (Lavoie et al., 2003) is roughly time equivalent with the Green Sandstone and consists of coarse-grained, mineralogically and texturally immature sandstone. At some localities, these sandstones are host to significant volume of bitumen and impsonite (Lavoie et al., 2009a). Porosity results primarily from microfractures and from subordinate secondary leaching of metastable alumino-silicates (Lavoie et al., 2009a); however, even with relatively good porosity values (up to 5.1%; Table 1), permeability is very low. The Kamouraska Formation is a well-sorted, medium-grained quartz arenite succession of Late Cambrian to earliest Ordovician age (Lavoie, 2008); locally the Kamouraska host small pockets of natural gas that were encountered during shallow aquifer-drilling (Lavoie et al., 2009a). In thin section, some secondary dissolution is visible with various amount of bitumen in the pore space (Hubert, 1973) and given its brittle nature, significant open fractures are visible in field outcrops. Some porosity values are relatively high (up to 3.3%; Table 1) although as with the Saint-Nicolas Formation, permeability values are minimal.

In the Humber Zone, carbonates are subordinate deep water deposits that consist of resedimented material from the shallow marine St. Lawrence Platform (Lavoie, 2008; Lavoie et al., 2009a).

#### Hydrocarbon systems and plays in the Silurian-Devonian

Rock-Eval analyses identify fair to poor source rocks in the Silurian-Devonian succession of the Gaspé Belt, limited to Lower Devonian foreland basin shaly limestone and thin Lower Devonian coals (Lavoie et al., 2009c). Oil-source rock correlation indicates that oil in Lower Devonian reservoirs in Gaspé can best be tied with either Middle or Upper Ordovician shales with some contributions from these Devonian sources (Roy, 2008). Good quality reservoir has been known for decades in the Lower Devonian Gaspé Sandstone (York River Formation) with this play being plagued by inadequate seal; nevertheless, some production is now established in the Haldimand field (40 BOE/day; operator press releases and Lavoie et al., 2009a). The Lower Devonian sandstones are highly porous and are very prospective shallow targets (Lavoie et al., 2009a). For carbonates, the Lower Devonian fractured and hydrothermally altered Upper Gaspé Limestones are reservoirs of small gas and condensate accumulations in the Galt field (Kirkwood et al., 2005; Lavoie et al., 2009a). The Lower Devonian HTD formed in association with significant fracture networks, a prerequisite for enhanced permeability and reservoir potential (Lavoie et al., 2009a). Hydrothermal dolomites in the Silurian succession have been recently documented (Lavoie and Morin, 2004; Lavoie and Chi, 2006 and in press) and have never been tested in the subsurface. The Silurian-Devonian succession is involved in major folds and cuts by faults that exhibit a variable cinematic (Pinet et al., 2008). A significant number of seismic anomalies and bright spots (hydrocarbon indicators?) are observed in the untested Silurian succession. Maturation data for the Silurian-Devonian domain indicate both oil and gas potential (Roy, 2008; Lavoie et al., 2009a).

**Porosity-permeability data.** Table 2 presents the porosity and permeability values for various units of the Gaspé Belt. Clastic-dominated units are in black characters whereas carbonate-dominated units are in red.

Within the Gaspé belt, sandstones are characterized by higher average and maximum porosity and permeability values (Table 2). The best values are found in the immature, coarsegrained and little cemented alluvial sandstones of the Battery Point (Gaspé Sandstones Group, Lavoie, 2008); these sandstones yielded higher porosity values, with an average close to 10% although a high clay content results in low connectivity of the primary pore space (Kmax usually less than 0.2 mD). Similarly, the nearshore sandstones of the York River Formation (Gaspé sandstone Group, Lavoie, 2008) yield high porosity values (average of 6.3%) but again with relatively low permeability (Kmax less than 0.1 mD). These good porosity and fair to poor permeability intervals are recognized in electric logs from wells that intercept these units (Hu and Lavoie, 2008)

Lower Silurian nearshore sandstones are also characterized by some high porosity and permeability values (Table 2). For these, the higher values can be found in the coarse-grained and immature litharenite of the Weir Formation (maximum of 9.2%). Slightly younger sandstone units (Val Brillant and Anse Cascon formations) correspond to mineralogically more mature quartz arenite, that yielded relatively high porosity values (2.8 and 2.6%, respectively) although all these Lower Silurian sandstones are characterized by low permeability (highest values less than 0.1mD). The porosity of the Lower Silurian sandstones is poorly documented in wells as only one electric log is available (Hu and Lavoie, 2008).

The petrophysical characteristics of the fractured and hydrothermally altered carbonates of the Lower Devonian Upper Gaspé Limestones (Indian Cove and Forillon formations) have been documented at Galt (Hu and Lavoie, 2008) with subsurface porosity and permeability values up to 7% and 600 mD. These high values were not replicated by our limited field sample dataset (Table 2).

The recognition of hydrothermal dolomites in Lower Silurian (Sayabec and La Vieille formations), Upper Silurian (West Point Formation) and lowermost Devonian (West Point Formation) has generated new ideas on prospective plays for the Silurian-Devonian Gaspé Belt (Lavoie et al., 2009a and b). However, these specific dolomites have never been tested in the subsurface. Some specific sampling was done in order to preliminarily characterize the significant porosity visible in hand specimens.

The Lower Silurian hydrothermal dolomites are represented by samples LKA-2005-71, 72 and 146 (Table 2); these are characterized by high porosity values (up to 5.6%) and fair to poor permeability (up to 1.22 mD). Interestingly, a fracture and brecciated sample from the reef facies of the Sayabec Formation (LKA-2005-85) has yielded one of the highest porosity (6.6%) and permeability value (4.68 mD) for the Lower Silurian succession, this sample is totally impregnated with bitumen.

The Upper Silurian Anse-à-la-Barbe Member of the West Point Formation (Bourque et

al., 1986; Lavoie, 2008) is locally fractured and slightly dolomitized (sample LKA-2005-113); porosity and permeability values are low (Table 2). The lowermost Devonian pinnacle reefs of the West Point Formation are intensely brecciated and dolomitized at one locality in northern Gaspé, very high temperature and massive dolomitization is documented (Lavoie et al., 2008b). One sample from this locality (LKA-2005-63) has yielded the highest porosity (7.5%) and one of the highest permeability value (1.79 mD) for the carbonate dataset.

#### Conclusions

Porosity and permeability measurements on 167 samples from the Paleozoic rocks of Quebec were done in order to generate preliminary and qualitative estimates of potential reservoir units. It should be cautioned that the most permeable and porous field samples for these Cambrian to Carboniferous units might not be indicative of conditions in the subsurface. Therefore, the values presented here should be evaluated with this limitation.

Some sandstones have yielded relatively high porosity and permeability values for the Cambrian-Ordovician (St. Lawrence Platform and Humber Zone), the Silurian-Devonian (Gaspé Belt) and the Carboniferous (Maritimes Basin) successions. For carbonates, with the exception of the porous coarse-grained limestones of the Chicotte Formation, high values are only obtained for demonstrated and hypothesized hydrothermal dolomites. For all these cases, besides the Lower Devonian sandstones, porosity is of various secondary origin and the higher permeability values relate to more or less intense (micro)fracturing.

## Acknowledgements

Nicolas Pinet (GSC-Q) is thanked for his critical reading of this contribution.

## References

- Béland, P., et Morin, C., 2000. Le gisement de gaz naturel de Saint-Flavien, Québec. Ministère des Ressources Naturelles du Québec, 19 p.
- Bertrand, R., Chagnon, A., Duchaine, Y., Lavoie, D., Malo, M., and Savard, M.M., 2003.
  Sedimentologic, diagenetic and tectonic evolution of the Saint-Flavien gas reservoir at the structural front of the Québec Appalachians: Bulletin of Canadian Petroleum Geology, v.51, p. 126-154.
- Bourque, P.-A., Amyot, G., Desrochers, A., Gignac, H., Gosselin, C., Lachambre, G., and Laliberté, J.Y., 1986. Silurian and Lower Devonian reef and carbonate complexes of the Gaspé Basin, Québec – a summary: Bulletin of Canadian Petroleum Geology, v. 34, p. 452-489.
- Desrochers, A., 2006. Rocky shoreline deposits in the Lower Silurian (upper Llandovery, Telychian) Chicotte Formation, Anticosti Island, Quebec. Canadian Journal of Earth Sciences, v. 43, p. 1205-1214.
- Hu, K., and Lavoie, D., 2008. Porosity and permeability evaluation and geological interpretations from core data and geophysical logs for 18 wells in the Paleozoic successions of Eastern Canada and implications for hydrocarbon exploration.

Geological Survey of Canada, Open File 5485.

- Hubert, C. 1973. Kamouraska, La Pocatière, and Saint-Jean-Port-Joli area. Ministère des Richesses Naturelles, Québec, Geological Exploration Service, Geological Report 151
- Kirkwood, D., Lavoie, M., and Marcil, J.-S., 2005. Structural style and hydrocarbon potential in the Acadian foreland thrust and fold belt, Gaspé Appalachians, Canada: in Swennen, R., Roure, F., and Granath, J., eds., Deformation, fluid flow and reservoir appraisal in foreland

fold-and-thrust belts: American Association of Petroleum Geologists, Hedberg Series, No. 1, p. 412-430.

- Lavoie, D., 2008. Appalachian foreland basins, 1. Canada. In K.J. Hsü (series ed.) Sedimentary basins of the World Sedimentary basins of the World USA and Canada, Miall, A., (ed.). Elsevier Science, p. 63-105.
- Lavoie, D., and Morin, C., 2004. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in Northern Gaspé – Matapédia: Constraint on timing of porosity and regional significance for hydrocarbon reservoirs: Bulletin of Canadian Petroleum Geology, v. 52, p. 256-269.
- Lavoie, D., and Chi, G., 2006. Hydrothermal dolomitization in the Lower Silurian La Vieille Formation in northern New Brunswick: geological context and significance for hydrocarbon exploration: Bulletin of Canadian Petroleum Geology, v. 54, p. 380-395
- Lavoie, D., and Chi, G., in press. Lower Paleozoic foreland basins in eastern Canada: tectonothermal events recorded by faults, fluids and hydrothermal dolomites. Bulletin of Canadian Petroleum Geology.
- Lavoie, D., Burden, E., and Lebel, D., 2003. Stratigraphic framework for the Cambrian-Ordovician rift and passive margin successions from southern Québec to western Newfoundland: Canadian Journal of Earth Sciences, v. 40, p. 177-205.

Lavoie, D., Hamblin, A.P., Thériault, R., Beaulieu, J., and Kirkwood, D., 2008a. The Upper
Ordovician Utica Shale and Lorraine Group flysch in southern Québec.
Tectonostratigraphic setting and significance for unconventional gas. Geological Survey of
Canada Open File 5900.

- Lavoie, D., Urbatsch, M., Chi, G., 2008b. Fault-controlled hydrothermal dolomitization of pinnacle reefs of the Lower Devonian West Point Formation in Northern Gaspé, GAC-MAC Annual Meeting , Québec, Canada, Program with Abstracts
- Lavoie, D., Pinet, N., Castonguay, S., Dietrich, J., Giles, P., Fowler, M., Thériault, R., Laliberté, J.-Y., St. Peter, C., Hinds, S., Hicks, L., and Klassen, H., 2009a. Hydrocarbon systems in the Paleozoic basins of eastern Canada Presentations at the Calgary 2007 workshop.
  Geological Survey of Canada, Open File 5980, 1 DVD.
- Lavoie, D., Pinet, N., Castonguay, S., Hannigan, P., Dietrich, J., Hamblin, T., and Giles, P.,
  2009b. The Cambrian Devonian frontier basins in eastern Canada: Assessment of
  hydrocarbon potential of the most promising plays. Canadian Society of Petroleum
  Geologists, Annual Meeting, Calgary 2009. Program with abstracts.
- Lavoie, D., Obermajer, M., and Fowler, M., 2009c. Rock Eval data for Paleozoic rocks of Quebec. Geological Survey of Canada, Open File 6050, 1 CD.
- Pinet N., Lavoie D., Keating, P., Brouillette, P., 2008. Gaspé belt subsurface geometry in the northern Québec Appalachians as revealed by an integrated geophysical and geological study. 1- Potential field mapping. Tectonophysics, v. 460, p. 34-54.
- Roy, S., 2008. Maturation thermique et potential pétroligène de la Ceinture de Gaspé, Gaspésie, Québec, Canada. Ph.D. thesis, Institut National de la Recherche Scientifique – Eau, Terre et Environnement, Québec, Canada. 471 p

Table 1: Porosity and Permeability data for Cambrian-Ordovician units of the St. Lawrence Platform and the Taconian Humber Zone

|                     |                  |                   |        |         | PO         |           |
|---------------------|------------------|-------------------|--------|---------|------------|-----------|
| Sample<br>St Lawren | Formation / unit | Age of unit       | east   | north   | (%)        | Kmax (mD) |
|                     | Cairneide        | Upper Cambrian    | 610738 | 5006152 | 36         | 0.1       |
| LKA-2000-40         | Cairnside        | Upper Cambrian    | 610750 | 5090152 | 3,0<br>3,0 | 0,1       |
| LKA-2000-49         | Cairnside        | Upper Cambrian    | 610750 | 5090145 | 3,0<br>6.2 | 0,01      |
| LKA-2000-50         | Callfiside       | Opper Cambrian    | 010750 | 5090145 | 0,2        | 0,02      |
| Average             |                  |                   |        |         | 4,5        | 0,4       |
| LKA-2006-60         | La Gabelle       | Middle Ordovician | 671146 | 5147825 | 7,4        | 0,04      |
| LKA-2006-61         | La Gabelle       | Middle Ordovician | 671146 | 5147825 | 3,6        | 0,01      |
| LKA-2006-62         | La Gabelle       | Middle Ordovician | 671146 | 5147825 | 6,8        | 0,56      |
| Average             |                  |                   |        |         | 5,9        | 0,2       |
| LKA-2006-25A        | Basal sandstone  | Middle Ordovician | 355768 | 5216251 | 9.2        | 1.09      |
| LKA-2006-26         | Basal sandstone  | Middle Ordovician | 355768 | 5216251 | 0,8        | 0,01      |
| Average             |                  |                   |        |         | 5          | 0,6       |
| I KA-2006-35        | Lerav            | Middle Ordovician | 293747 | 5181956 | 25         | 0.03      |
| LKA-2006-36         | Leray            | Middle Ordovician | 293745 | 5181951 | 17         | 0.03      |
| LKA-2006-63         | Leray            | Middle Ordovician | 689491 | 5152472 | 0.7        | 0.01      |
| LKA-2006-64         | Leray            | Middle Ordovician | 689502 | 5152433 | 1.1        | 0.01      |
| LKA-2006-65         | Leray            | Middle Ordovician | 689575 | 5152160 | 1.7        | 0.01      |
| LKA-2006-66         | Leray            | Middle Ordovician | 690223 | 5151511 | 0.6        | 0.01      |
| LKA-2006-69         | Leray            | Middle Ordovician | 723171 | 5177000 | 2.1        | 0.03      |
| LKA-2006-70         | Lerav            | Middle Ordovician | 723171 | 5177000 | 1.7        | 0.04      |
| Average             |                  |                   |        |         | 1,5        | 0.02      |
| I KA-2006-51        | Quareau          | Upper Ordovician  | 615484 | 5093866 | 07         | 0.01      |
| LKA-2006-71         | Sainte Anne      | Upper Ordovician  | 723171 | 5176998 | 1.3        | 0.01      |
| LKA-2006-72         | Sainte Anne      | Upper Ordovician  | 723175 | 5176990 | 1 7        | 0.1       |
| LKA-2006-37         | Pont-Rouge       | Upper Ordovician  | 293735 | 5181913 | 1.8        | 0.06      |
| LKA-2006-38         | Pont-Rouge       | Upper Ordovician  | 293769 | 5181776 | 1.3        | 0.01      |
| Average             |                  |                   |        |         | 1,4        | 0,04      |
| I KA-2006-28        | Deschambault     | Upper Ordovician  | 355801 | 5216253 | 4 1        | 0.01      |
| LKA-2006-39         | Deschambault     | Upper Ordovician  | 294002 | 5180308 | 0.6        | 0.01      |
| LKA-2006-43         | Deschambault     | Upper Ordovician  | 294162 | 5179938 | 1          | 0.03      |
| LKA-2006-44         | Deschambault     | Upper Ordovician  | 304468 | 5177047 | 0.4        | 0.14      |
| LKA-2006-45         | Deschambault     | Upper Ordovician  | 304469 | 5177049 | 1.6        | 0.05      |
| LKA-2006-53         | Deschambault     | Upper Ordovician  | 615526 | 5093822 | 3          | 0.01      |
| LKA-2006-54         | Deschambault     | Upper Ordovician  | 609169 | 5089436 | 2.1        | 0.04      |
| LKA-2006-57         | Deschambault     | Upper Ordovician  | 665445 | 5142044 | 0.7        | 0.01      |
| LKA-2006-59         | Deschambault     | Upper Ordovician  | 665445 | 5142044 | 0.7        | 0.01      |
| LKA-2006-68         | Deschambault     | Upper Ordovician  | 690223 | 5151511 | 1.4        | 0.03      |
| LKA-2006-73         | Deschambault     | Upper Ordovician  | 723195 | 5177027 | 1,6        | 0,01      |
|                     |                  | 1.1               |        |         | ,          | ,         |

| LKA-2006-74<br><b>Average</b> | Deschambault    | Upper Ordovician | 723286 | 5177120 | 1,8<br><b>1,6</b> | 0,01<br><b>0,03</b> |
|-------------------------------|-----------------|------------------|--------|---------|-------------------|---------------------|
| LKA-2006-29                   | Neuville        | Upper Ordovician | 355832 | 5216239 | 2                 | 0,01                |
| LKA-2006-32                   | Neuville        | Upper Ordovician | 355635 | 5215248 | 1,2               | 0,01                |
| LKA-2006-34                   | Neuville        | Upper Ordovician | 359155 | 5214982 | 2,5               | 0,04                |
| LKA-2006-41                   | Neuville        | Upper Ordovician | 294283 | 5180216 | 0,8               | 0,01                |
| LKA-2006-46                   | Neuville        | Upper Ordovician | 304588 | 5177079 | 0.9               | 0.01                |
| LKA-2006-75                   | Neuville        | Upper Ordovician | 726893 | 5163603 | 1.5               | 0.05                |
| Average                       |                 |                  |        |         | 1,5               | 0,02                |
| AN-1                          | Chicotte        | Lower Silurian   | 470450 | 5471000 | 8,1               | 3,64                |
| AN-2                          | Chicotte        | Lower Silurian   | 470450 | 5471000 | 6,7               | 2,21                |
| 128                           | Chicotte        | Lower Silurian   | 492750 | 5453100 | 9,5               | 11,4                |
| Average                       |                 |                  |        |         | 8,1               | 5,75                |
| Humber Ze                     | one             |                  |        |         |                   |                     |
| LKA-2005-8                    | Green Sandstone | Lower Cambrian   | 460320 | 5271948 | 0,5               | 0,01                |
| LKA-2005-13                   | Green Sandstone | Lower Cambrian   | 406537 | 5233498 | 0,5               | 0.01                |
| LKA-2005-17                   | Green Sandstone | Lower Cambrian   | 379534 | 5203049 | 0,6               | 0,01                |
| LKA-2005-18                   | Green Sandstone | Lower Cambrian   | 325425 | 5179942 | 1,6               | 0,02                |
| LKA-2005-29                   | Green Sandstone | Lower Cambrian   | 328129 | 5178934 | 2,2               | 0,01                |
| LKA-2005-30                   | Green Sandstone | Lower Cambrian   | 326956 | 5178750 | 1,6               | 0,02                |
| LKA-2005-38                   | Green Sandstone | Lower Cambrian   | 323735 | 5178255 | 1,1               | 0,02                |
| Average                       |                 |                  |        |         | 1.2               | 0.02                |
| LKA-2005-12                   | Saint-Roch      | Lower Cambrian   | 406588 | 5233567 | 1,6               | 0,01                |
| LKA-2005-16                   | Saint-Roch      | Lower Cambrian   | 391181 | 5208435 | 0,7               | 0,02                |
| LKA-2005-21                   | Saint-Roch      | Lower Cambrian   | 363906 | 5191262 | 0,9               | 0,01                |
| LKA-2005-33                   | Saint-Nicolas   | Lower Cambrian   | 325442 | 5176297 | 0,9               | 0,02                |
| LKA-2005-34                   | Saint-Nicolas   | Lower Cambrian   | 311251 | 5165553 | 5,1               | 0,01                |
| LKA-2005-35                   | Saint-Nicolas   | Lower Cambrian   | 310126 | 5163997 | 1,2               | 0,01                |
| LKA-2005-36                   | Saint-Nicolas   | Lower Cambrian   | 325423 | 5177978 | 3,4               | 0,01                |
| LKA-2005-37                   | Saint-Nicolas   | Lower Cambrian   | 325423 | 5177978 | 2,5               | 0,01                |
| LKA-2005-42                   | Saint-Roch      | Lower Cambrian   | 464350 | 5305879 | 0,5               | 0,01                |
| LKA-2005-43                   | Saint-Roch      | Lower Cambrian   | 464336 | 5305870 | 0,5               | 0,02                |
| Average                       |                 |                  |        |         | 1.7               | 0.01                |
| LKA-2005-10                   | Saint-Damase    | Upper Cambrian   | 438657 | 5265292 | 0,5               | 0,02                |
| LKA-2005-14                   | Saint-Damase    | Upper Cambrian   | 407858 | 5218132 | 2,3               | 0,01                |
| LKA-2005-20                   | Saint-Damase    | Upper Cambrian   | 369377 | 5188474 | 0,5               | 0,01                |
| LKA-2005-23                   | Saint-Damase    | Upper Cambrian   | 366085 | 5187367 | 0,7               | 0,01                |
| LKA-2005-25                   | Saint-Damase    | Upper Cambrian   | 363629 | 5182235 | 0,5               | 0,02                |
| LKA-2005-31                   | Breakeyville    | Upper Cambrian   | 327786 | 5163926 | 0,9               | 0,01                |
| LKA-2005-32                   | Breakeyville    | Upper Cambrian   | 326600 | 5173835 | 2,1               | 0,01                |
| LKA-2005-41                   | Saint-Damase    | Upper Cambrian   | 457670 | 5296378 | 0,8               | 0,01                |
| LKA-2005-46                   | Saint-Damase    | Upper Cambrian   | 496420 | 5341750 | 2,4               | 0,01                |
| LKA-2005-66                   | Saint-Damase    | Upper Cambrian   | 600537 | 5401140 | 0,7               | 0,01                |

| LKA-2005-69         Saint-Damase         Upper Cambrian         608220         5402982         0,5           Average         1.1 | 0,01<br><b>0,01</b><br>0,01<br>0,01 |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Average         1.1           LKA-2005-9         Kamouraska         Upper Cambrian         436831         5265285         1.4    | <b>0,01</b><br>0,01<br>0,01         |
| LKA-2005-9 Kamouraska Upper Cambrian 436831 5265285 1.4                                                                          | 0,01<br>0,01                        |
| LKA_2005_0 Kamouracka – Upper Cambrian 436831 5265285 14                                                                         | 0,01<br>0,01                        |
| LKA-2005-9 Kamouraska Opper Cambhan 430031 5205205 1,4                                                                           | 0,01                                |
| LKA-2005-11 Kamouraska Upper Cambrian 434405 5259104 3,1                                                                         | 0.01                                |
| LKA-2005-15 Kamouraska Upper Cambrian 407637 5218818 1,3                                                                         | 0,01                                |
| LKA-2005-19 Kamouraska Upper Cambrian 372422 5192417 1,3                                                                         | 0,01                                |
| LKA-2005-22 Kamouraska Upper Cambrian 366982 5186005 1,9                                                                         | 0,01                                |
| LKA-2005-24 Kamouraska Upper Cambrian 364135 5182589 2,6                                                                         | 0,01                                |
| LKA-2005-26 Kamouraska Upper Cambrian 361904 5181571 0,5                                                                         | 0,01                                |
| LKA-2005-27 Kamouraska Upper Cambrian 361005 5180878 2,5                                                                         | 0,01                                |
| LKA-2005-28 Kamouraska Upper Cambrian 357811 5179854 1                                                                           | 0,01                                |
| LKA-2005-44 Kamouraska Upper Cambrian 481434 5310559 0,5                                                                         | 0,01                                |
| LKA-2005-45 Kamouraska Upper Cambrian 489318 5328121 3,3                                                                         | 0,01                                |
| LKA-2005-70 Kamouraska Upper Cambrian 611166 5395690 1,5                                                                         | 0,01                                |
| LKA-2005-86 Kamouraska Upper Cambrian 311877 5439706 2,1                                                                         | 0,02                                |
| average 1.8                                                                                                                      | 0,01                                |
|                                                                                                                                  |                                     |
| LKA-2005-40 Rivière-Ouelle Lower Ordovician 459456 5295795 0,5                                                                   | 0,01                                |
| LKA-2005-47 Rivière-Ouelle Lower Ordovician 537138 5361570 0,5                                                                   | 0,01                                |
| LKA-2005-67 Rivière-Ouelle Lower Ordovician 607697 5408657 1,1                                                                   | 0,01                                |
| average 0.7                                                                                                                      | 0,01                                |
| LKA-2005-39 Tourelle Middle Ordovician 454471 5274416 0.5                                                                        | 0.01                                |
| LKA-2005-56 <b>Tourelle</b> Middle Ordovician 686702 5447338 0.5                                                                 | 0.01                                |
| average 0.5                                                                                                                      | 0.01                                |

Table 2: Porosity and permeability values for the Late Ordovician-Middle Devonian Gaspé Belt and two values for the Carboniferous Maritimes Basin

| Po           |              |                  |        |         |     |           |  |
|--------------|--------------|------------------|--------|---------|-----|-----------|--|
| Sample       | Formation    | Age of unit      | east   | north   | (%) | Kmax (mD) |  |
| Gaspé Bel    | t            |                  |        |         |     |           |  |
| LKA-2005-138 | Garin        | Upper Ordovician | 301029 | 5342184 | 1,2 | 0,01      |  |
| LKA-2005-144 | Garin        | Upper Ordovician | 306482 | 5349162 | 0,5 | 0,01      |  |
| average      |              |                  |        |         | 0,9 | 0,1       |  |
| LKA-2005-107 | White Head   | Upper Ordovician | 400099 | 5378585 | 0,6 | 0,01      |  |
| LKA-2005-110 | White Head   | Upper Ordovician | 364783 | 5382961 | 1,1 | 0,01      |  |
| average      |              |                  |        |         | 0,9 | 0,01      |  |
| LKA-2005-48  | Cabano       | Lower Silurian   | 547750 | 5349037 | 0,9 | 0,01      |  |
| LKA-2005-49  | Cabano       | Lower Silurian   | 548295 | 5350244 | 2,4 | 0,05      |  |
| average      |              |                  |        |         | 1.7 | 0,3       |  |
| LKA-2005-51  | Val Brillant | Lower Silurian   | 550886 | 5350830 | 2,4 | 0,01      |  |
| LKA-2005-62  | Val Brillant | Lower Silurian   | 297268 | 5424195 | 0,9 | 0,01      |  |
| LKA-2005-73  | Val Brillant | Lower Silurian   | 583830 | 5370496 | 2,8 | 0,05      |  |
| average      |              |                  |        |         | 2   | 0.2       |  |
| LKA-2005-127 | Weir         | Lower Silurian   | 349551 | 5337969 | 1   | 0,01      |  |
| LKA-2005-128 | Weir         | Lower Silurian   | 349541 | 5337989 | 9,2 | 0,09      |  |
| LKA-2005-142 | Weir         | Lower Silurian   | 307425 | 5348000 | 0,5 | 0,01      |  |
| LKA-2005-143 | Weir         | Lower Silurian   | 307896 | 5348509 | 2,7 | 0,01      |  |
| average      |              |                  |        |         | 3.4 | 0,03      |  |
| LKA-2005-129 | Anse Cascon  | Lower Silurian   | 349514 | 5338071 | 0,5 | 0,01      |  |
| LKA-2005-130 | Anse Cascon  | Lower Silurian   | 349543 | 5338142 | 1,7 | 0,01      |  |
| LKA-2005-131 | Anse Cascon  | Lower Silurian   | 349501 | 5338285 | 1,9 | 0,01      |  |
| LKA-2005-140 | Anse Cascon  | Lower Silurian   | 301029 | 5342184 | 1,9 | 0,01      |  |
| LKA-2005-141 | Anse Cascon  | Lower Silurian   | 306272 | 5345748 | 2   | 0,1       |  |
| LKA-2005-145 | Anse Cascon  | Lower Silurian   | 308516 | 5341827 | 2,6 | 0,01      |  |
| average      |              |                  |        |         | 1.8 | 0,03      |  |
| LKA-2005-52  | Sayabec      | Lower Silurian   | 551452 | 5350067 | 0,5 | 0,01      |  |
| LKA-2005-54  | Sayabec      | Lower Silurian   | 544139 | 5346171 | 1,3 | 0,01      |  |
| LKA-2005-57  | Sayabec      | Lower Silurian   | 290720 | 5420058 | 0,5 | 0,01      |  |
| LKA-2005-58  | Sayabec      | Lower Silurian   | 290354 | 5419912 | 0,6 | 0,01      |  |
| LKA-2005-60  | Sayabec      | Lower Silurian   | 299594 | 5425395 | 0,7 | 0,01      |  |
| LKA-2005-64  | Sayabec      | Lower Silurian   | 711613 | 5417802 | 0,8 | 0,01      |  |
| LKA-2005-71  | Sayabec      | Lower Silurian   | 591090 | 5368721 | 4,8 | 0,01      |  |
| LKA-2005-72  | Sayabec      | Lower Silurian   | 591090 | 5368721 | 5,6 | 1,22      |  |
| LKA-2005-74  | Sayabec      | Lower Silurian   | 584790 | 5370615 | 0,5 | 0,01      |  |
| LKA-2005-76  | Sayabec      | Lower Silurian   | 584927 | 5370733 | 0,5 | 0,01      |  |

| LKA-2005-77  | Sayabec      | Lower Silurian | 585929 | 5371747 | 0,6        | 0,01 |
|--------------|--------------|----------------|--------|---------|------------|------|
| LKA-2005-78  | Sayabec      | Lower Silurian | 587533 | 5372258 | 0,5        | 0,1  |
| LKA-2005-84  | Sayabec      | Lower Silurian | 584578 | 5367360 | 0,5        | 0,04 |
| LKA-2005-85  | Sayabec      | Lower Silurian | 584578 | 5367360 | 6,6        | 4,68 |
| LKA-2005-115 | La Vieille   | Lower Silurian | 364412 | 5340437 | 0,6        | 0,06 |
| LKA-2005-121 | La Vieille   | Lower Silurian | 354327 | 5338397 | 0,6        | 0,12 |
| LKA-2005-132 | La Vieille   | Lower Silurian | 349391 | 5338424 | 0,5        | 0,01 |
| LKA-2005-133 | La Vieille   | Lower Silurian | 349376 | 5338431 | 0,6        | 0,01 |
| LKA-2005-136 | La Vieille   | Lower Silurian | 332637 | 5331508 | 4          | 0,05 |
| LKA-2005-139 | La Vieille   | Lower Silurian | 301770 | 5341838 | 2,7        | 0,01 |
| LKA-2005-146 | La Vieille   | Lower Silurian | 288871 | 5335940 | 3,9        | 0,02 |
| LKA-2005-148 | La Vieille   | Lower Silurian | 701510 | 5335979 | 0,7        | 0,01 |
| LKA-2005-149 | La Vieille   | Lower Silurian | 701508 | 5335992 | 1,4        | 0,01 |
| LKA-2005-152 | La Vieille   | Lower Silurian | 701062 | 5336910 | 0,8        | 0,01 |
| Average      |              |                |        |         | 1.7        | 0,3  |
|              |              |                |        |         |            |      |
| LKA-2005-53  | St-Léon      | Upper Silurian | 552536 | 5348765 | 0,8        | 0,01 |
| LKA-2005-55  | St-Léon      | Upper Silurian | 543320 | 5347301 | 2,8        | 0,02 |
| LKA-2005-79  | St-Léon      | Upper Silurian | 601802 | 5377834 | 0,7        | 0,02 |
| LKA-2005-137 | Gascon       | Upper Silurian | 332238 | 5330619 | 4          | 0,11 |
| Average      |              |                |        |         | 2.1        | 0,04 |
|              |              |                |        |         |            |      |
| LKA-2005-92  | West Point   | Upper Silurian | 376083 | 5427570 | 0,7        | 0,01 |
| LKA-2005-93  | West Point   | Upper Silurian | 376102 | 5427523 | 0,6        | 0,01 |
| LKA-2005-113 | West Point   | Upper Silurian | 357390 | 5386251 | 1          | 0,01 |
| LKA-2005-117 | West Point   | Upper Silurian | 362846 | 5339291 | 0,5        | 0,01 |
| LKA-2005-118 | West Point   | Upper Silurian | 355035 | 5337929 | 0,5        | 0,03 |
| LKA-2005-119 | West Point   | Upper Silurian | 355328 | 5339549 | 0,8        | 0,01 |
| LKA-2005-120 | West Point   | Upper Silurian | 355245 | 5339708 | 1          | 0,01 |
| LKA-2005-122 | West Point   | Upper Silurian | 352336 | 5333674 | 0,7        | 0,18 |
| LKA-2005-123 | West Point   | Upper Silurian | 352375 | 5333680 | 3,6        | 0,47 |
| LKA-2005-124 | West Point   | Upper Silurian | 352325 | 5333665 | 1,4        | 0,09 |
| LKA-2005-126 | West Point   | Upper Silurian | 352560 | 5333297 | 2,4        | 0,18 |
| average      |              |                |        |         | 1,2        | 0,09 |
| 1 KA-2005 50 | West Point   | Lower Dovenier | 200075 | 5425207 | 15         | 0.02 |
| LKA-2005-59  | West Point   | Lower Devonian | 299010 | 5425207 | 1,5<br>7 5 | 1 70 |
| LKA-2005-05  | west Point   | Lower Devonian | 200003 | 5410119 | 7,5<br>4 E | 1,79 |
| average      |              |                |        |         | 4.5        | 0,9  |
| LKA-2005-111 | Indian Point | Lower Devonian | 365268 | 5384988 | 1.9        | 0.06 |
|              |              |                | 000200 |         | .,0        | 0,00 |
| LKA-2005-81  | Forillon     | Lower Devonian | 600776 | 5368555 | 0,6        | 0,01 |
| LKA-2005-104 | Forillon     | Lower Devonian | 400761 | 5381055 | 0,6        | 0,01 |
| average      |              | -              |        |         | 0.6        | 0.01 |
| -            |              |                |        |         |            |      |
| LKA-2005-80  | Indian Cove  | Lower Devonian | 600692 | 5368010 | 0,7        | 0,01 |
| LKA-2005-91  | Indian Cove  | Lower Devonian | 375623 | 5426315 | 1,4        | 0,01 |
| average      |              |                |        |         | 1.1        | 0,01 |

| LKA-2005-112                   | Fortin           | Lower Devonian | 365185 | 5385176 | 0,8                 | 0,01               |
|--------------------------------|------------------|----------------|--------|---------|---------------------|--------------------|
| LKA-2005-87                    | York River       | Lower Devonian | 326473 | 5422162 | 0,6                 | 0,01               |
| LKA-2005-89                    | York River       | Lower Devonian | 352764 | 5408708 | 5,5                 | 0,01               |
| LKA-2005-90                    | York River       | Lower Devonian | 364642 | 5410932 | 3,8                 | 0,01               |
| LKA-2005-99                    | York River       | Lower Devonian | 386699 | 5402190 | 9,6                 | 0,04               |
| LKA-2005-101                   | York River       | Lower Devonian | 405003 | 5397511 | 12,1                | 0,08               |
| average                        |                  |                |        |         | 6.3                 | 0,03               |
| LKA-2005-94                    | Battery Point    | Lower Devonian | 387427 | 5415654 | 17,2                | 4,3                |
| LKA-2005-95                    | Battery Point    | Lower Devonian | 393933 | 5409162 | 7,1                 | 0,06               |
| LKA-2005-96                    | Battery Point    | Lower Devonian | 391247 | 5410263 | 8,2                 | 0,17               |
| LKA-2005-98                    | Battery Point    | Lower Devonian | 391329 | 5410354 | 6,8                 | 0,15               |
| LKA-2005-100                   | Battery Point    | Lower Devonian | 405067 | 5397277 | 7,6                 | 0,1                |
| average                        |                  |                |        |         | 9,4                 | 1                  |
| Maritimes                      | Basin            |                |        |         |                     |                    |
| LKA-2005-106                   | Bonaventure      | Carboniferous  | 386251 | 5375698 | 6,6                 | 0,05               |
| LKA-2005-109<br><b>average</b> | Cannes-de-Roches | Carboniferous  | 406263 | 5377745 | 15,9<br><b>11.3</b> | 14,5<br><b>7.3</b> |