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Origin of hydrothermal sulphide and dolomite
mineralizing fluids in southern Northwest
Territories and northern Alberta

S.A. Gleeson! and P. Gromek!

Gleeson, S.A. and Gromek, P., 2006: Origin of hydrothermal sulphide and dolomite mineralizing fluids in
southern Northwest Territories and northern Alberta; in Potential for Carbonate-hosted Lead-zinc
Mississippi Valley-type Mineralization in Northern Alberta and Southern Northwest Territories:
Geoscience Contributions, Targeted Geoscience Initiative, (ed.) P.K. Hannigan; Geological Survey of
Canada, Bulletin 591, p. 61-73.

Abstract: Bulk fluid-inclusion analyses were carried out on matrix dolomite, sulphides, coarse-grained
dolomite and late-stage calcite from Great Slave Reef, Hay West, Windy Point and Qito mineral properties
in Northwest Territories and selected areas in northern Alberta. The study shows that there is no systematic
difference in the major solute sources in any phase from early to late in the paragenesis or spatially through-
out the study area. The halogen compositions of all the samples indicate that the bulk of the fluids originated
as highly evaporated seawater. However, some of the coarse dolomite and all the late-stage calcite samples
show evidence for mixing between this saline fluid and a dilute, probably meteoric, water.

Résumé : Nous avons effectué des analyses d’inclusions fluides totales dans de la dolomite matricielle,
des sulfures, de la dolomite a grain grossier et de la calcite de phase tardive provenant des propriétés
minieres de Great Slave Reef, de Hay West, de Windy Point et de Qito, dans les Territoires du Nord-Ouest,
etd’endroits choisis dans le nord de I’ Alberta. L’ étude révele qu’il n’existe aucune différence systématique
dans les principales sources de solutés a n’importe quelle phase du début a la fin de la paragenese ou
spatialement dans 1’ensemble de la région a 1’étude. Les compositions des éléments halogenes de tous les
échantillons indiquent que la plus grande partie des fluides sont dérivés d’eau de mer hautement évaporée.
Toutefois, quelques-uns des échantillons de dolomite a grain grossier et tous les échantillons de calcite de
phase tardive montrent des indices de mélange entre ce fluide salin et de I'eau diluée, d’origine
probablement météorique.
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INTRODUCTION

This study is part of a Targeted Geoscience Initiative enti-
tled “Potential for carbonate-hosted Pb-Zn (MVT) deposits
in northern Alberta and southern NWT”, a collaborative pro-
ject between the Geological Survey of Canada, the C.S. Lord
Northern Geoscience Centre and the Alberta Geological Sur-
vey (Hannigan 2001, 2002; Hannigan et al., 2002). The pri-
mary aim of this study was to characterize the chemistry of
brines responsible for base metal mineralization and dolo-
mite precipitation in Alberta and the southern Northwest
Territories by carrying out crush-leach analyses of fluid
inclusions in sulphide and carbonate samples on a regional
scale. These data were then used to constrain the origin of the
fluids, and to constrain (where possible) the nature of water-
rock interactions that occurred along the flow path to the site
of mineral precipitation.

PARAGENESIS

The carbonate and ore mineral assemblages in the Pine
Point ore district and more regionally in the Western
Canadian Sedimentary Basin region have been documented
by many authors including Skall (1975), Kyle (1977, 1981),
Krebs and Macqueen (1984), Rhodes et al. (1984), Qing
(1991), and Qing and Mountjoy (1994), among others. It is
beyond the scope of this study to discuss the regional
paragenetic relationships in any depth and such studies are
documented elsewhere in this volume (e.g. Coniglio, et al.,
2006; Rice and Lonnee, 2006; Turner, 2006).

In summary, in the Pine Point area, the paragenesis of
the alteration assemblage is characterized in terms of the
relationship to ore, and is separated into three stages (pre-ore,
main event of ore deposition, and post-ore). The pre-ore stage
is characterized by an early diagenetic dolomitization result-
ing in the recystallization of the host limestone. This was fol-
lowed by the formation of the coarser “Presqu’ile dolomite”
facies, which in some places is succeeded by coarse-crystal-
line white “saddle” dolomite. The ore stage typically involves
the precipitation of marcasite, pyrite, sphalerite and galena
(Krebs and Macqueen, 1984). The sulphides are associated
with syngenetic saddle dolomite and some bitumen occur-
rences. Following ore deposition, further fracturing, dissolu-
tion, and saddle dolomitization occurred. The latest mineral
phases observed in this study are fracture- and vug-fills of
coarse calcite, native sulphur and bitumen (e.g. Kyle, 1981).

Sample classification and selection

The crush-leach technique uses approximately 1-2 g of
clean mineral separate and ideally is carried out on samples
that have been characterized by microthermometry. One of
the limitations of the study was being able to confidently
relate the sampled mineral phases to any of the published
paragenetic schemes. For example, the Krebs and MacQueen
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(1984) paragenesis strongly depends on the relationship
between the different dolomite phases and sulphides in the
ore deposits. In much of the core sampled in this study, no
sulphides were identified, and therefore, we could not cate-
gorically place our data into their paragenetic sequence. As a
result, and in view of the large sample volumes used in the
study, we divided the dolomite samples in terms of their grain
size, resulting in fine-grained early “matrix” dolomite host-
ing the mineralization and later coarse-grained dolomite
including samples of saddle dolomite. In some of the coarse
dolomite samples that had ample sample material and con-
tained different coloured dolomite, an effort was made to pick
separate dolomite phases. These samples are referred to as #1
etc. in Table 1.

In total 15 samples of the fine-grained “matrix” dolomite
were analyzed from the Great Slave Reef (GSR), Hay West,
and northern Alberta areas; 32 coarse-grained dolomite sam-
ples were analyzed from GSR, Hay West, and Windy Point
areas; 12 sulphide analyses were completed from GSR; and
14 analyses of medium- to coarse-grained calcite from the
northern Alberta, GSR, Windy Point, and Qito areas were
completed. The general sample areas in the Northwest
Territories are shown in Figure 1 and the reader is referred to
Turner (2006) for the detailed locations of the drill core and
outcrop samples. The locations of the samples from northern
Alberta are shown in Figure 2 (after Rice and Lonnee, 2006).
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Figure 1. The area near Great Slave Lake, Northwest
Territories, showing the Pine Point mining camp and the
Great Slave Reef (GSR), Hay West, Qito, and Windy Point
sampling sites (after Turner, 2006). Detailed location
information on individual samples within these sampled
areas may be found in Turner (2006).
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Figure 2. Sample location map, northern Alberta (after
Rice and Lonnee, 2006).

Methodology

Sample preparation and analytical technique

Specific sample phases were carefully cut from core or
hand sample using a trim rock saw. The samples were crushed
and sieved to a -2 mm size fraction and hand picked under a
binocular microscope to obtain 2 g of a clean mineral sepa-
rate. In some cases, where the amount of available sample
was limited, it was necessary to analyze impure mineral
separates. In this instance, the compositions and relative
proportions of the sample and the contaminant phases were
recorded. Following crushing, sieving, and cleaning, all
samples were then washed in ultra-clean water and heated
overnight on a hot plate, then dried in an oven. A portion of
the sample (1-2 g) was ground to a fine powder in an agate
mortar and pestle in a clean and controlled environment. Half
the powder was transferred to an unreactive vial and 5 ml of
clean water was added. These samples were shaken, and
filtered through 0.2 micron filters to give a clean leachate.
Anions (CL, Br, F and sulphate) were analyzed using a Dionex
DX600 ion chromatograph (IC) at the University of Alberta.
Sodium and K were analyzed on the same leachate using
atomic adsorption spectroscopy (AAS). Ten ml of an acidi-
fied La-solution was added to the remainder of the crushed
sample, this solution was centrifuged and the cations were
analyzed by Norwest Labs in Edmonton by Inductively Cou-
pled Plasma — Atomic Emission Spectrometry (ICP-AES)
for the major cations (Na, K, Mg, Mn, Fe, and Ca) and Induc-
tively Coupled Plasma—Mass Spectrometry (ICP-MS) for
the minor and trace elements (e.g. S, Ba, B, Cd, Co, Pb, Li, Ni,
Sr, As, Be, Bi, Cd, Cr, Cu, Mo, Ag, Th, Sn, Ti, and Zn). The
data for the 73 crush-leach samples that were analyzed are
presented in Table 1. In many samples, Cl, Br, total SO, Na,
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K, Ca, Li, Mg, Fe, Mn, Si, Ba, B, Pb, Sr, and Zn were
detected. Fluoride, Co, and Ni were detected in a small num-
ber of samples. Anions and cations of significance to this
study are presented in this section.

Results

Itis important to note that the results in Table 1 do not rep-
resent the concentrations of the elements in the mineralizing
fluids, because the number and total volume of inclusions in
each sample is unknown; rather, these are the concentrations
measured in the leachates. In order to calculate full fluid
chemical analyses, detailed microthermometric data from
each sample are needed. This data was only available for a
small number of samples, therefore, the data are discussed
below in terms of molar element ratios in the mineralizing
fluids.

Anion geochemistry

Fine-grained “matrix” dolomite

Chlorine and sulphate were identified in all fine-grained
“matrix” dolomite samples and concentrations vary from
1.11t0216.88 ppm and 0.2 to 132.08 ppm, respectively. Bro-
mide was detected in all but five dilute samples, and ranged
from 0.04 to 2.06 ppm. The maximum fluoride concentration
in the leachates was 0.39 ppm, however, it was not detected in
three of the Hay West and three of the northern Alberta sam-
ples (Table 1).

The Cl/Br (molar) ratios for the fine-grained “matrix”
dolomite range from 48 to 402 (Fig. 3). The lowest ratio
comes from the GSR property, whereas ratios from Hay West
samples range from 289 to 402, and those from northern
Alberta have values between 129 and 254 (Table 2).

20

B G SR matrix dolomite

[ Hay West matrix dolomite

16 [l Alberta matrix dolomite
[Jaito calcite

[1GSR sphalerite
] g E
0 [

[IGSR galena
B GSR coarse dolomite
0-100 ' 100-200' 200-300 300400 400-500 500-600' 600-700 700-800 800-900 900-1000 1000-1100
CI/Br molar

=
n

[IHay West coarse dolomite
[—_IWindy Point coarse dolomite
[1GSR calcite

[ 1Hay West calcite

Frequency

Figure 3. Histogram of the molar CI/Br ratio of fluid
inclusions hosted by fine-grained “matrix” dolomite,
sulphides, coarse-grained dolomite and calcite from
all five study areas. The CI/Br molar ratio of seawater
is approximately 565 (Fontes and Matray, 1993).
Values less than seawater represent Br-enriched
brines, and values greater than seawater may have a
halite dissolution component to the fluids.
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Sulphides

Chlorine and Br concentrations in the leachates from
sphalerite and galena from the GSR property range from 5.78
to 14.31 ppm, and 0.04 to 0.11 ppm, respectively (Table 1).
Fluoride was present at low levels in two GSR samples (0.01
and 0.03 ppm). The sulphate data is not reported, as the
degree of contamination by the sulphide host minerals cannot
be assessed.

Galena and sphalerite samples cannot be differentiated in
terms of their CI/Br ratios in the fluids (Fig. 3). CI/Br ratios
for galena and sphalerite from the GSR area range from 186
to 393 (Table 2).

Coarse-grained dolomite

In general, the coarse-grained dolomite samples ana-
lyzed in the study contain large numbers of fluid inclusions
and consequently have high solute concentrations in the
leachates.

Anion concentrations of the GSR leachates (determined
for 17 samples) have Cl values ranging from 6.78 to 352.80
ppm, Br values from 0.09 to 2.03 ppm (with the exception of
two leachate analyses (C-421042 and C-421025) for which
no results could be obtained), and F concentrations from
0.07 to 0.18 ppm (detected in three samples). Sulphate data
was acquired from 16 samples, with one of these samples
(C-421060), having an anomalously high SO, value of
>500 ppm. With the exception of samples C-421060 and
C-421047-dol#2, all samples have SO, values that are less
than their associated chloride values, suggesting that Cl is
the dominant anion in the fluids.

The leachates from 11 Hay West samples consistently
have high Cl values (ranging from 91.81 ppm to 368.60 ppm),
high Br values (0.52-2.93 ppm) and F below the detection
limits of the technique. The sulphate values are variable
(4.47-114.40 ppm) but are consistently lower than the associ-
ated C1 concentrations in the leachates.

The CI and Br values from the five Windy Point samples
(134.65-415.32 ppm and 0.64-3.48 ppm, respectively) are
comparable with those from Hay West and, similarly, F is not
detected. The SO, values in the leachates, however, are much
less variable and range from 1.25 to 6.12 ppm (Table 1).

The samples from GSR have a relatively wide range of
Cl/Br ratios (170-999). Two samples (C-421025 and
C-421042) have high concentrations of Cl in the leachates
but Br was not detected, suggesting that these two samples
also have Cl/Brratios in excess of 999. The samples from Hay
West and Windy Point have C1/Br ratios in the range 241 to
413 and 253 to 550, respectively (Fig. 3).

GSR samples have variable SO,/Br molar ratios that
range from 7 to 208, whereas the values from the Hay West
samples vary from 2 to 52. The five samples from Windy
Point have a much more restricted range (1-7).
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Calcite

Fluid inclusions in the late-stage calcite samples have
lower salinities and are less abundant than those observed in
the other phases sampled. Therefore, the total salinity of the
leachates is lower and in many cases it was not possible to
detect Br. Chloride, which was detected in all the calcite
leachates from GSR, varies from 1.60 to 87.32 ppm, Br from
0.05 to 1.00 ppm (detected in six samples), and SO, ranging
from 0.60 to 203.20 ppm (detected in eight samples). A single
leachate from the Hay West area had Cl, Br, and SO, values
of 107.65 ppm, 0.93 ppm, and 2.15 ppm, whereas a single
leachate from the Qito area had Cl, Br and SO, values of
27.91 ppm, 0.17 ppm, and 1.81 ppm, respectively. Although
Cl was detected in one of the two calcites sampled from north-
ern Alberta, Br and F were not detected in any of the samples.
Sulphate concentration was detected in one Alberta calcite
sample, giving a value of 18 ppm.

Fluid inclusions in samples from GSR had CI/Br ratios
from 14 to 592 (Fig. 3). The Qito and Hay West samples had
values of 370 and 261, respectively. The SO,/Br ratios over
all three areas were highly variable and ranged from 2 at Hay
West and 9 at Qito to 3380 at GSR (Table 2).

Cation chemistry

Fine-grained “matrix” dolomite

Sodium and K concentrations were commonly below the
detection limit of the ICP-AES for most samples, however,
when they were detected, Na (detected in six samples) ranged
from 2.6 to 13 ppm, whereas K (detected in six samples)
ranged from 2.2 to 8.2 ppm (Table 1). Sodium and K, mea-
sured by AAS, give leachate values of 0.72 to 54.39 ppm and
1.31 to 16.31 ppm, respectively. Calcium and Mg data were
not reported, as contamination by the host mineral will have
affected the concentration of these elements. Strontium was
detected in all the fine-grained “matrix” dolomite leachates
and had values ranging from 0.074 to 1.35 ppm, but may also
have a contribution from the host mineral. Iron, which was
detected in the GSR samples and one sample from northern
Alberta (C-406495), ranged from 0.12 to 3.12 ppm, whereas
Mn, which was detected in all fine-grained “matrix” dolomite
leachates, ranged from 0.08 to 0.925 ppm. Barium and B were
detected in most samples and had values ranging from 0.005
t00.73,and 0.011 and 0.116, respectively. Lead was detected
in all leachates: Zn was detected in all but one leachate from
the Northwest Territories, and their concentrations were as
high as 3.28 ppm and 8.66 ppm, respectively (both of which
are determined from leachates from the GSR samples). Lith-
ium, Cd, Co, and Ni were also detected in some of the
fine-grained “matrix” dolomite leachates but these elements
showed no systematic spatial variation.

The K/Na and Li/Na molar ratios in fine-grained “matrix”
dolomite inclusions varied from 0.053 to 1.316 and 0.002 to
0.013, respectively (Table 2). The highest K/Na and Li/Na
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values come from one of the northern Alberta samples
(C-421247). This sample and another northern Alberta sam-
ple in the same location (C-421247 and C-421248, see Fig. 2)
have the highest Sr/Na ratio values (0.051 and 0.042, respect-
ively). Lower Sr/Na values occur at GSR and Hay West
(0.007-0.027). The Zn/Na molar ratios of the matrix dolo-
mite samples have values ranging from 0.0020-0.01299
(Table 2). Unlike the Ba/Na molar ratios, the B/Na ratios are
relatively consistent in all the sample areas and have a modal
value of about 0.005 (Table 2).

Sulphides

Sodium was not detected in many of the sulphide
leachates using ICP-AES so the number of ratios calculated
is limited. Potassium was consistently below the detection
limit of this technique and was only detected in three samples
using AAS (Table 1). All samples yielded high Ca concentra-
tions, ranging from 131 to 564 ppm (n=11) in the GSR
leachates (Table 1). Calcium concentrations in all samples
were significantly higher than Na. Magnesium values were
also highly variable, with a range of 1.9 to 218 ppm. Zinc, Pb,
Fe, Mn, and Cd had highly variable concentrations depending
on the host mineral. Boron and Li were rarely detected in the
sulphide leachates and Ba was also less common; this may be
due to a smaller number of inclusions in the samples.

The K/Na ratios from the GSR area range from 0.010 to
0.102 (Table 2). The Ca/Naratios range from 20.0 to 69.0 and
Sr/Na ratios from 0.009 and 0.221. On the basis of the small
data set there is no systematic relationship between the two
elements; i.e. the sample with the highest Ca/Naratio does not
also have the highest Sr/Na ratio.

Coarse-grained dolomite

The concentrations of Na and K in the leachates analyzed
by AAS from GSR, Hay West, and Windy Point were similar,
ranging from 3.75 to 98.5 ppm (n=32) and 0.34 to 14.6 ppm
(n=32). Manganese, which was identified in all the leachates,
ranged from 0.05 to 0.621 ppm, whereas Fe (detected in nine
leachates) ranged from 0.12 to 3.39 ppm, most of those being
from the GSR area. Strontium, which was present in all the
leachates, had variable concentrations, from 0.125 to 150
ppm (Table 1). Barium, B, Li, Pb, and Zn were detected in
many samples but there appeared to be no systematic varia-
tion between sample sites.

The fluids in the coarse-grained dolomite samples from
GSR have K/Na molar ratios from 0.040 to 0.605, values
from Hay West varied from 0.053 to 0.126, and Windy Point
samples ranged from 0.010 to 0.029 (Table 2). In total there
was no significant variation in the K/Na molar ratio between
samples from GSR and Hay West, although the K/Na ratios
from Windy Point are in general lower than in the other areas.

S.A. Gleeson and P. Gromek

Most of the Sr/Na ratios from GSR data fall within a rea-
sonably narrow range (0.007-0.03) with the exception of one
sample that had an anomalously large ratio of 7.102. Two
samples from Hay West (both 0.05) and one from Windy
Point (0.048) had Sr/Na molar ratios that were slightly higher
than the GSR data.

The bulk of the Li/Na data from GSR have values around
0.002 but there was a single elevated value at 0.004 in sample
C-421047. This sample also had an elevated K value. The
Li/Namolar ratios from Hay West varied from 0.002 to 0.003
and the single ratio obtained from the Windy Point area had a
value of 0.002.

The Zn/Na and Pb/Na molar ratios were quite variable,
although commonly Zn concentrations in the fluids were at
least an order of magnitude greater than Pb. The Pb/Na ratios
for GSR samples were as high as 0.01124 and the Zn/Na val-
ues varied between 0.0003 and 0.0607. The Hay West and
Windy Point data for both ratios were comparable with the
GSR fluids.

Calcite

The calcite leachates are quite dilute and Na, K, and Li are
generally below the detection limits of the I[CP-AES with the
exception of three Na values of 3.2, 4.9, and 5.5 ppm. Sodium
and K values acquired by AAS, range from 1.53 to 45.68 ppm
and 0.14 to 5.59 ppm, respectively. Iron was detected in only
one GSR sample (0.22 ppm), and values for B, Pb, and Zn are
comparable with those from the Hay West and Qito samples.
The calcite samples from northern Alberta (C-421247 and
C-421248) have elevated Ba values (see Table 1). The Sr con-
centrations of the leachates are detectable in all samples,
ranging from 0.159 to 130 ppm.

Only one K/Na molar ratio is measured in the northern
Alberta samples (Table 2); this ratio has a value of 0.063 and
is comparable to the ratios of the GSR fluids (0.023-0.086)
and the single Qito sample (0.012), but is lower than the Hay
West sample (0.126).

DISCUSSION

Charge balance and contamination issues

Once the data have been acquired, an assessment of the
quality of the data is carried out. In particular, one of the
major concerns is whether the data generated truly represent
the composition of the fluid inclusions or have been contami-
nated by the host mineral. One of the first steps in assessing
the quality of the data is a charge balance calculation, since in
most hydrothermal fluids the overall charge is neutral. Such
acalculation is only possible if you have both anion and cation
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data on the fluids. If the units of the analyses are not molar,
charge balance is carried out using the following equation
(Shepherd et al., 1985):

ZCharge * (Concentration / Atomic mass) cation

ZCharge * (Concentration / Atomic mass) anion

Ideally, the charge balance should be within about 10 % of
unity. In this study a charge balance calculation was carried
out where possible on the samples analyzed by IC and AAS.
This calculation, therefore, is based on the Cl, Br, F, Na, and
K values measured in the sulphides and the Cl, Br, F, SO, Na,
and K compositions of the carbonate minerals; that is, all the
fluids analyzed are missing at least one major solute from the
charge balance calculations. The charge balance for the car-
bonate and sulphide minerals range from 0.1 to 1.5, with the
majority of the fluids having a charge balance of 0.4 to 0.5.
This suggests that there is an excess of anions in the fluids and
is consistent with the lack of Ca and Mg data for the leachates.
The fluids will also contain carbonate species, which cannot
be analyzed using the IC technique so in reality, the anion
excess is even greater than suggested by the charge balance.

The problem of contamination by mineral inclusions will
also affect some of the other analyses. Several of the calcite
samples have anomalously high Sr and sulphate concentra-
tions, suggesting that there are small inclusions of celestite
(SrSO,) present in the samples. Equally, some of the coarse-
grained dolomite samples have high Zn, Pb, S or sulphate
concentrations, which may indicate the presence of small
sulphide inclusions in the host mineral. Two of the northern
Alberta samples likewise have anomalous compositions.
C-421247 and C-421248 have high sulphate values and all
the elemental ratios to Na seem anomalously high, suggesting
that the samples are depleted in Na. At the time of writing this
report there are no microthermometric data available for
these samples, so it is difficult to judge whether this is truly
representative of the fluids in these samples.

Origins of the fluids and water-rock
interaction

The bulk of the fluids analyzed in this study have Cl/Br
ratios that are lower than seawater (Cl/Br molar ratio of 565;
Fontes and Matray, 1993); that is, these fluids are relatively
Br- enriched brines (Fig. 3). They are found in fine-grained
“matrix” dolomite, sulphides, coarse-grained dolomite, and
calcite from all the sample areas. This suggests that the fluids
originated as seawater, which evaporated past the point of
precipitation of halite, and for some samples, past K-Mg salt
saturation. This suggestion is in agreement with a previous
fluid inclusion halogen study on the Pine Point deposits
(Tesler, 1999).

There are some variations in the data from the predicted
behaviour of evaporated seawater in terms of Na-CI-Br con-
centrations. Some of the data plot on or close to the seawater
evaporation trajectory (SET; Fig. 4). Most of the data,
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Figure 4. Data for all Br-enriched samples plotted on
Na-CI-Br diagram (after Kesler et al., 1995). There is no
systematic variation in composition between sample
localities or across the paragenesis. Many of the samples
sit to the left of the seawater evaporation trajectory (SET)
suggesting that there has been some modification of the Na
content of the fluids on the flow path. The source for the
data for the SET is Fontes and Matray (1993).

however, lie to the left of this line, suggesting that there has
been some loss of Na or gain of Cl in the fluids relative to
evaporated seawater compositions.

Chlorine and Br are thought to be relatively conservative
in most geological environments and, therefore, such shifts
are commonly interpreted to be the result of the loss of Na
during water-rock interaction. If these samples did indeed
originate as evaporated seawater, the bulk of them have lost
up to a maximum of half their Na to account for the shift to the
left of the evaporated seawater line. One of the samples from
Windy Point (C-421222) has an extremely low Na/Br ratio of
7. In this sample, a large amount of Na has been lost (approx.
90%).

One coarse-grained dolomite and one calcite sample
(C-421021 and C-421053 from GSR) have elevated CI/Br
ratios, suggesting that these fluids have acquired Cl relative to
Br. However, neither sample has a Na/Br ratio significantly
higher than seawater values. This relationship may suggest
that if the Cl excess is being produced from the dissolution of
halite, then these two samples have lost significant Na. Alter-
natively, the CI could have been acquired from a Cl-bearing
mineral that does not contain much Na, such as sylvite, but
neither sample has elevated K (see below).

A third, more enigmatic group of samples has also been
identified in this study. The samples (n = 4) of this group are
characterized by very low Cl/Br and Na/Br ratios that lie off



Contents

the SET (Fig. 4) and are found only in matrix dolomite and
calcite from the GSR study area. One possible explanation is
that these fluids have anomalously high levels of Br, as a
result of dissolution of Br-rich evaporites.

Recognizing fluid mixing and identifying end-members
can be problematic using the Na-Cl-Br molar ratio diagram.
In order to assess potential end members, absolute Cl and Br
data have been calculated for the small number of samples
that have sufficient microthermometric salinity data (Turner,
2006). These data are then plotted on a log-log plot (Fig. 5;
Carpenter, 1978). Even with a small amount of well-con-
strained data, several conclusions can be drawn. The diagram
highlights the large spread of Br for relatively constant Cl
concentrations in the GSR dolomite samples. One sample lies
to the left of the seawater evaporation curve, suggesting there
may be a component of a halite dissolution fluid. The matrix
dolomite sample is highly Br-enriched, and sits off the seawa-
ter evaporation curve, suggesting that normal evaporative
processes are unlikely to produce this signature. The bulk of
the coarse-grained dolomite samples in the study do plot on or
close to the SET, and, thus can be interpreted as having
formed from evaporated seawater. It should be noted how-
ever, that mixing the Br-enriched matrix dolomite fluid and
the somewhat Cl-enriched end-member could also produce
this spread of data. Another feature emphasized by the dia-
gram is that although some of the coarse-grained dolomite
and calcite have similar halogen ratios, their salinity is less
than most of the coarse-grained dolomite and the sulphides.
This suggests that these samples may represent a mixture of
the coarse-grained dolomite-forming fluids and a dilute fluid,
possibly meteoric water.

In terms of the alkali metal ratios of the fluids, the K/Na
and Li/Na ratios of the fluids are comparable in the coarse-
grained dolomite samples from the Hay West and GSR areas.
The compositions of the fluids, however, have been modified
from an evaporated seawater composition and may have been
enriched in either K or Li, or a combination of both elements
(Fig. 6), since Figure 4 suggests that Na depletion cannot
fully account for the variation. In order to assess whether K
has been significantly modified, the data have been plotted on
a K-CI-Br diagram (Fig. 7). The matrix dolomite samples
have highly variable K/Br ratios. The bulk of the coarse-
grained dolomite samples from GSR and Hay West plot on
the evaporative path for normal seawater, suggesting that if
this is the origin for these fluids, their K concentrations have
not been strongly modified along their flow path. All the
Windy Point coarse-grained dolomite samples show a
marked depletion in K, suggesting that their dolomitizing
fluids had a different water-rock interaction history. Some of
the late-stage calcite samples have low apparent K/Br ratios,
but since many of these samples are bromine-enriched, it is
likely that they may actually be slightly enriched in K.

Most of the coarse-grained dolomite samples from Hay
West and GSR should have K/Na ratios on or close to the sea-
water evaporation curve, past the point of halite precipitation
but before the precipitation of K-Mg salts. This suggests that
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Figure 5. Log-log plot of absolute Cl concentrations (ppm)
against Br (ppm). Absolute concentrations are derived
using the mean salinity calculated from microthermometric
data (from Turner, 2006). The error bars represent the full
spread of the microthermometric data. This plot outlines
the end-member compositions encountered in this project:
1. a Cl-rich fluid possibility indicating some input from halite
dissolution fluids; 2. a Br-rich fluid, here found in one matrix
dolomite sample from the GSR property; 3. the bulk of the
data sits on or near the seawater evaporation trajectory
past the point of halite dissolution. The possibility that these
fluids may represent a mixing of fluids 1 and 2 is unlikely but
cannot be ruled out without a more detailed petrographic
and microthermometric study; 4. the calcite samples and
one of the dolomite samples may have undergone some
mixing with a more dilute fluid, such as meteoric water.
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Figure 6. Plot of Li/Na vs. K/Na in fluid inclusions from
coarse-grained dolomite and fine-grained “matrix” dolomite.
The alkali elements in the fluids have compositions that
have been modified from those of evaporated seawater
(Fontes and Matray, 1993). All the fluids have elevated Li
contents, but K contents are consistent with evaporated
seawater. This suggests that the fluids did not acquire K
along their flow path by interaction with feldspathic
sequences. However, the slight elevation in Limay indicate
some interaction with clay- or mica-bearing sequences.
The two very high K-bearing samples from the Grosmont
Formation in northern Alberta are not plotted on this
diagram.
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Figure 7. The data plotted in K-CI-Br space. Although
many of the matrix dolomite samples have comparable
Cl/Br molar ratios, they have highly variable K/Br molar
ratios, which may suggest the presence of multiple fluids in
these samples. The bulk of the coarse-grained dolomite
from GSR and Hay West sits on the seawater evaporation
trajectory, indicating that the K content of these fluids has
not been modified by water-rock interaction subsequent to
their formation. A notable exception to this are the dolomite
samples from the Windy Point area, which have lost
significant K, suggesting that these fluids may have had a
different fluid-flow history.

the deviation from SET seen in Figure 6 is due to an enrich-
ment of Li in these samples. Indeed, the CI/Br ratio of the
GSR sample with high apparent K/Na (C-421047dol#2) is
171, close to the Cl/Br ratio of evaporated seawater to sylvite
saturation. Thus, normal evaporative processes could explain
the high K/Na ratio. The two matrix dolomite samples from
Alberta have compositions that are not compatible with the
SET. However, as discussed above, without the results of a
petrographic and microthermometric study on these samples,
itis not clear whether these data reflect contamination or rep-
resent a real K-rich fluid composition.

One of the common processes that can lower the Na con-
tent of basinal fluids is the albitization of Ca or K-bearing
feldspars. Many basinal fluids have a characteristic 2:1
relationship between Ca and Na concentrations. This is not
observed in the fluids analyzed in this study; however, such a
relationship may be masked by the subsequent addition of Ca
to the fluids by another process. Equally, the lack of enrich-
ment in K and the relative depletion in Na may indicate the
mineralizing fluids have not significantly interacted with
K-feldspar bearing sequences. The Li concentrations of the
fluids have also been altered somewhat. Neither limestone
nor feldspars contain significant amounts of Li and are
unlikely to explain the enrichment. Banks et al. (2002)
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suggested that micas and some clay minerals are the major
reservoir for Li in crustal rocks and it may be that the fluids in
this study have interacted with mica or clay-bearing units.
The levels of Li in these fluids however, are not high enough
to indicate significant interaction with crystalline basement
rocks (e.g. Banks et al., 2002), although minor interaction
with basement rocks and/or clastic sediments likely did
occur.

One of the unusual features of the fluids analyzed is the
high concentration of Ca and Mg. The microthermometric
data suggest that the ratio of Ca to Na of the type 1 fluid is at
least 10:1 (Turner, 2006). The concentrations of the divalent
cations (Ca, Mg, Sr, and Ba) in these fluids are significantly
higher than those predicted for seawater evaporation. It
would seem then, that these elements have been added to the
fluids on the flow path. Two major processes can add Cato a
basinal fluid. The first is dolomitization and should be
accompanied by an associated decrease in Mg concentrations
of the fluids resulting in a Ca/Mg ratio of approximately 10
(Carpenter, 1978). The Ca/Mg ratios of the fluids do vary
significantly, however, there is not enough data to assess
whether there is a negative correlation between the two ele-
ments. The second possibility is that at some point along the
flow path the fluid encountered and dissolved gypsum (e.g.
Muskeg Formation). Such a process should be associated
with an increase in sulphate. Unfortunately, no single mineral
phase could be analyzed for both Ca and SO4, however, many
of the dolomite samples do have elevated SO, contents rela-
tive to evaporated seawater and this may be a source for at
least some of the Ca.

CONCLUSIONS

In terms of the major solutes composition of the fluid
inclusions, it is not possible to identify any systematic chemi-
cal variations spatially or on the basis of the paragenesis, for
most of the study area. The major exception to this is the flu-
ids in the coarse-grained dolomite from the Windy Point area,
which have a consistent depletion in K relative to the other
samples. It is also important to note that in terms of solute
molar ratios, the data from the late-stage calcite phases are
comparable to the data from the earlier sulphide and coarse-
grained dolomite phases, suggesting that they had a similar
origin. However, the late-stage calcite fluids are less saline
(also see Turner, 2006), which suggests that the calcite-form-
ing fluids were modified, likely by dilution by a component
of meteoric water.

The halogen compositions of the mineralizing fluids indi-
cate that the bulk of the fluids are likely to have originated
from highly evaporated seawater. However, two GSR sam-
ples are relatively Cl-enriched and may have acquired their
salinities from the dissolution of evaporite deposits. Some of
the GSR late-stage calcite samples and one matrix dolomite
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sample contain a very Br-enriched fluid of enigmatic origin.
Some degree of mixing between these end members cannot
be ruled out and needs further investigation.

If the bulk of the fluids originated as evaporated seawater,
then the Na and Li compositions of the fluids have been modi-
fied on the flow path. A loss of Na without a significant gain
in K may suggest that if the fluids had interacted with feld-
spar-bearing sequences, they likely reacted to a small degree
with Ca-feldspars rather than K-feldspars. The Li composi-
tions of the fluids may be interpreted as indicating limited
interaction with mica or clay-bearing sequences.

The Ca, Sr, and Ba compositions of the fluids are signifi-
cantly higher than the concentrations expected for evapo-
rated seawater. Ca has been added to the fluids either by
dolomitization or by the dissolution of gypsum on the flow
path. Currently, itis not possible to distinguish between these
possibilities.
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