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An outline of reaction equilibrium

E. Froese

Froese, E., 2006: An outline of reaction equilibrium; Geological Survey of Canada, Current Research
2006-H2, 12 p.

Abstract: The consideration of the mole numbers of chemical species as variables characterizing a mac-
roscopic state makes it possible to define the affinity of a chemical reaction in terms of thermodynamic con-
cepts. This approach leads to the basic relationship of reaction equilibrium in a closed system with one
chemical reaction:
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where G is the total Gibbs energy, ξ is the extent of reaction,G i is the partial molar Gibbs energy of a species,

and v i is the stoichiometric coefficient. The partial derivative
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is commonly designated as the

Gibbs energy change of reaction and given the symbol ∆G. At arbitrary values of ξ, ξ can be regarded as a
constraint keeping the system in a metastable equilibrium. Upon release of this constraint, a negative value
of ∆G indicates a tendency of the reaction to proceed from reactants to products. Relationships required to
evaluate ∆G at a given pressure, temperature, and composition of solid and gaseous species are discussed.

Résumé : Si l’on considère le nombre de moles de chaque espèce chimique comme une variable
caractérisant un état macroscopique, on peut alors définir l’affinité d’une réaction chimique en termes de
concepts thermodynamiques. Cette approche permet d’établir une relation fondamentale décrivant l’équilibre
de réaction dans un système fermé où se déroule une seule réaction chimique :
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où G est l’énergie de Gibbs totale, ξ est le degré d’avancement de la réaction, Gi est l’énergie molaire de

Gibbs partielle d’une espèce, et vi est le coefficient stoechiométrique. La dérivée partielle
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est

couramment appelée changement d’énergie de Gibbs de la réaction, et désignée par le symbole ∆G. À des
valeurs arbitraires de ξ, on peut considérer ξ comme une contrainte qui maintient le système dans un
équilibre métastable. Une valeur négative de ∆G lorsque cette contrainte est enlevée indique que la réaction
a tendance à procéder des réactifs vers les produits. Les relations nécessaires pour évaluer ∆G à des valeurs
données de la pression, de la température et de la composition des espèces solides et gazeuses sont
examinées dans cet article.
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INTRODUCTION

Thermodynamics is a branch of macroscopic physics,
characterized by extending its field of study to include ther-
mal phenomena. It has widespread applications in most fields
of science. It provides the principles of chemical equilibrium
and, in this form, is essential in the study of reactions among
substances of geological interest. Here an outline of the ther-
modynamics of reaction equilibrium is given, with emphasis
on reactions at higher temperatures corresponding to meta-
morphic conditions. It is assumed that the reader has a stand-
ard textbook, e.g. Denbigh (1981), readily available. The
present paper is a revision of parts of GSC Papers 75-43 and
80-28 (Froese, 1976, 1981), placing greater emphasis on pre-
senting a chemical reaction as a constrained equilibrium. In
assigning a Gibbs energy content of a compound, the concept
of apparent free energy of formation (Berman, 1988) is used.
The Temkin model for multisite solutions is discussed with
an appropriate cautionary note (Wood and Nicholls, 1978). In
the thermodynamics of an electrochemical cell, the partial
molar Gibbs energy of electrons is explicitly used, following
the discussion in Denbigh (1981) of a cell not performing
work.

Thermodynamic analysis singles out a portion of matter,
known as a system, for study in terms of its macroscopic
properties and its interaction with the surroundings. The state
of the system is defined by its macroscopic properties or state
variables; if these persist with time, the system is in a state of
equilibrium. State properties show some interdependence,
but at least two variables are independent. Usually two state
variables, e.g. pressure and temperature, can be imposed on
the system as external conditions by the surroundings. In
some cases, this will determine all other properties within the
system and the system is in a state of stable equilibrium; how-
ever, there are systems which are not uniquely defined by two
imposed conditions. Thus CaCO3, at the same pressure and
temperature, may exist either as aragonite or as calcite. The
definition of such systems requires the specification of an
additional internal parameter known as a constraint. A system
subject to an internal constraint is in a state of metastable
equilibrium. This concept plays a central role in chemical
thermodynamics (Schottky et al., 1929) and has been
extensively discussed and used by Anderson (2005).

Changing the external conditions and internal constraints
may induce a transition of the system to a new state; this is
known as a process. Chemical thermodynamics considers
only quasistatic processes during which all state variables are
defined at each stage of the process. Hence a quasistatic pro-
cess consists of a continuous succession of equilibrium states
(Callen, 1985). If a system is subject to a constraint, and if the
constraint is released in small steps, an irreversible process
takes place in one direction and the system passes through a
series of metastable, constrained equilibrium states. The process

will stop when the constraint is totally released. At this stage,
the constraint is no longer a state variable and the system is in
a state of stable, unconstrained equilibrium defined entirely
by the external conditions. If a process can be induced by a
slight disturbance of this equilibrium, it is known as a revers-
ible process and takes the system through a sequence of stable
equilibrium states. Thus the transformation of aragonite to
calcite in the stability field of calcite represents an irreversible
process and the transformation of aragonite to calcite on the
aragonite-calcite equilibrium pressure-temperature curve is a
reversible process.

Thermodynamics seeks to find a measure of irreversibil-
ity as the driving force of a chemical reaction and to define the
conditions of stable equilibrium. This requires comparing
states at different stages of constraint. The importance of con-
straint lies in fixing the macroscopic properties of different
metastable states at the same external conditions, thus making
them accessible to thermodynamic analysis. Without a con-
straint, only the stable equilibrium state would exist. In ther-
modynamics, pressure and volume are accepted as given by
mechanics and three new state variables are derived: temper-
ature, internal energy, and entropy. In addition to the five fun-
damental variables, the mole numbers of chemical species
must be considered as state variables in chemical thermody-
namics and the principles of chemical equilibrium are
developed from relationships between these state variables.

TEMPERATURE

The property experienced physiologically as degree of
hotness tends to equalize between adjacent systems; they
reach the same temperature. This makes it possible to use the
properties of one system as a thermometer to measure the
temperature of another system. Long familiarity with the per-
fect gas law suggests the PV product of one mole of a gas for
this purpose. This product can be extrapolated to zero pres-
sure, where it becomes independent of the nature of the gas.
Thus

T PV P= →
−( ) •0 J mol 1 (1)

At the triple point of water (liquid water, ice, and steam)

T = −2271.2 J•mol 1 (2)

Introducing a new unit

1 K (kelvin) = 8.3145 J•mol-1 (3)

T = =
−

−

22712

83145
27316

. •

.
.

J mol •K

J•mol
K

1

1
(4)

where 8.3145 J•mol-1•K-1 is the gas constant R. Assuming a
linear temperature scale, there exists a zero temperature.
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RESTRICTIONS IN THE TREATMENT
OF REACTION EQUILIBRIUM

In order to define the state of a closed system, i.e. one of
fixed bulk composition, the mole number of species must be
given, in addition to two properties imposed on the system by
the surroundings, e.g. pressure and temperature. In a system
with only one chemical reaction, the mole number of any
species ni is given by

n n vi i
o

i= + ξ (5)

Where n i
o is the number of moles initially present, v i is the

stoichiometric coefficient, and ξ is the extent of reaction
defined by this relationship (De Donder, 1920; Schottky
et al., 1929; Prigogine and Defay, 1954). If the system ini-
tially consists of the number of moles of reactants as given by
the reaction equation, ξ can vary from 0 to 1. In a closed
system, the initial number of moles n i

o of all species is
constant and

dn v di i= ξ (6)

Thus there is only one independent composition state vari-
able ξ. In the treatment of reaction equilibrium, the extent of
reaction ξ will be considered as the only possible constraint.

Chemical thermodynamics deals only with systems of
uniform pressure and temperature equal to those of the sur-
roundings. Also, the composition of each phase in the system
is assumed to be uniform. With these restrictions, irreversibility
can be introduced only by a variation of ξ.

THE FIRST AND SECOND LAWS

The laws of thermodynamics will be illustrated by means
of an example showing different paths connecting states 1
and 2 in a closed system consisting of one mole of CaCO3
(Fig. 1). The paths include the reaction

aragonite = calcite (7)

with ξ going from 0 to 1.

According to the first law, if the heat q and work
w in going from state 1 to state 2 could be measured, one
would find, independent of path, their sum to be constant,
thus defining the change in a new state variable, the internal
energy U:

U U(P T (P T2 2 1 1, , , ,ξ ξ= − = = +∫∫1 0
1

2

1

2
) ) dq dw (8)

The values of q and w are positive, if energy is added to the
system.

In differential form and assuming only PV work

dU =dq – PdV (9)

where dU is the differential of a function of state of three vari-
ables P, T, ξ. In a quasistatic process, the state variables are
defined at each stage and, consequently, they are functions of
one independent variable that determines the sequence of
states along the path connecting the two states. Since heat and
work depend on the path, dq and dw are differentials of a
function of a single variable (Tunell, 1932).

Aragonite and calcite coexist in stable equilibrium along a
curve in the P-T field along which slight perturbations will
induce a reversible process. The curve becomes a surface in
the P-T-ξ diagram, and a line along this surface represents a
sequence of stable equilibrium states. According to the second

law,
q

T
along any path which includes a line along this surface

in P-T-ξ space defines the difference in a state variable, the
entropy S:

S (P2,T2, =1) - S (P1,T1, =0) =
dq

T
rev

1

2

∫ (10)

or, in differential form

d
dq

T
revS= (11)

However, for a path which includes the transformation of
aragonite to calcite in the P-T stability field of calcite, repre-
senting an irreversible process or a sequence of metastable
equilibrium states

dq

T
d< S (12)
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Figure 1. Irreversible and reversible paths of taking one mole of
CaCO3 from state 1 to state 2.



or

dq = TdS – dq’ (13)

where q’ is a positive number; it is the heat leaving the system
as a consequence of irreversible changes in the system and
thus is a measure of irreversibility. For historical reasons, q’
has been burdened with the mystifying name of uncompen-
sated heat. Its explicit evaluation plays a central role in
De Donder’s formulation of chemical thermodynamics (see
Prigogine and Defay, 1954). The combination of equations 9
and 13 relates q’ to the five fundamental variables:

dU + PdV – TdS = - dq’ (14)

REACTION EQUILIBRIUM

The evaluation of dq’ is greatly facilitated by keeping two
variables constant. Of particular interest is the restriction of
constant pressure and temperature:

d P T dqP T( ) ',U V S+ − = − (15)

Defining the expression in brackets as G, the total Gibbs
energy of the system

d dqP TG , '= − (16)

In the absence of gradients in pressure, temperature, and
composition, the only irreversible process here considered
giving rise to variation in q’ is entirely due to the change in
mole numbers of the species. In order to evaluate q’ in terms
of mole numbers, an additional postulate is introduced
(Denbigh, 1981, p. 77). It is assumed that the mole numbers
of species can be treated as state variables and, therefore, G is
a function of the mole numbers and dG can be expressed by

d dnP T

P T n

i

j

G
G

i
,

, ,

=
⎛
⎝
⎜

⎞
⎠
⎟∑ ∂

∂n
(17)

The partial derivative is the partial molar Gibbs energy
G i , which, for a pure species, is the same as the molar Gibbs
energy Gi. Its definition seems to require that the mole num-
bers are independent variables, as they are in an open system;
however, this definition is also commonly used in closed sys-
tems where they can not vary independently (e.g. Prigogine
and Defay, 1954; Denbigh, 1981). In such case, one can write

d G dn dqP T i iG , '= = −∑ (18)

If there is only one reaction, dn v di i= ξ and, making this
substitution and dividing by d , one obtains

∂
∂
G

ξ ξ

⎛
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⎞
⎠
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P T

i i
v G

dq

d
,

'
(19)

where
dq

d

'

ξ
is the affinity of a reaction as defined by De Donder

(see Prigogine and Defay, 1954). The partial derivative
∂
∂
G
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⎠
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P T,

has unfortunately acquired the designation Gibbs

energy change of reaction and the symbol ∆G, a practice criti-
cized by several authors (Bent, 1973; Spencer, 1974; Craig,
1987; MacDonald, 1990); however, in spite of the recom-
mendation to uproot this “weed in the field of thermodynam-
ics” (Bent, 1973), it continues to thrive. In contrast to normal
usage, G in this case refers to a rate of change and is mea-
sured in J•mol-1. The Gibbs energy change of reaction, G, is
zero for a reversible reaction (stable equilibrium) and negative
for an irreversible reaction (constrained or metastable equilib-
rium) proceeding to the right side of the reaction equation. It is

instructive to plot GP,T versus (Fig. 2). If
∂
∂
G

ξ

⎛
⎝
⎜

⎞
⎠
⎟

P T,

for a

given is negative, the reaction will proceed if the constraint
is released. Two cases can be recognized. A reaction involving

pure species terminates at =1 without
∂
∂
G

ξ

⎛
⎝
⎜

⎞
⎠
⎟

P T,

reaching

zero, or, if reactant and product species form solutions, zero is
reached at some intermediate value of (MacDonald, 1990;
Anderson, 2005).

Equation 19 provides, in striking simplicity, the funda-
mental thermodynamic relationship governing reaction equi-
librium. Its immense practical importance stems from the fact
that G can be obtained from the partial molar Gibbs energies
of the species. This, in turn, makes it unnecessary for the
closed system, represented by either one side of the reaction
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Gibbs energy
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P,T

ξ
G∂

∂
is slope of tangent
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Extent of reaction ξ0 1.0

Figure 2. The variation of the Gibbs energy of a system G with the
extent of reaction ξ.



equation, to exist physically. It can be assembled in a virtual
form from the properties of the species. In the extreme case, a
participating species may exist in a solution, and the other
species in the solution may not be involved in the reaction and
thus not belong to the closed system represented by the reac-
tion equation. Clearly, no physical system boundary can pass
through the solution. Practial application of this equation,
however, has to contend with the considerable problem of
finding measurable quantities for the partial molar Gibbs
energies of the individual species. An energy datum must be
established from which to measure G; then various energy
increments are calculated according to the variation of the
molar Gibbs energy G with temperature and pressure, and the
variation of the partial molar Gibbs energy G with composi-
tion. For this purpose, a standard state, designated by the
superscript o, is established for each species, as follows:

Solids: pure species, in a specified crystallographic
modification, at P = 1 bar and at any temperature.

Gases: the hypothetical perfect gas at P = 1 bar (designated
as Po) and at any temperature.

THE VARIATION OF G WITH
TEMPERATURE

The following discussion involves only molar properties.
Use will be made of the definition G = H – TS, where H
(enthalpy) is equal to U + PV, and the variation of H and S
with temperature will be considered separately. The enthalpy
H can be regarded as a function of P and T and

dH
H

T
dT

H

P
dP

P T

= ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

∂
∂

∂
∂

(20)

At P = 1 bar, H is the standard enthalpy Ho and the last

term is zero.
∂
∂
H o

P
T

⎛
⎝
⎜

⎞
⎠
⎟ is the standard heat capacityCP

o . Thus

dH C dTo
P
o= (21)

and

H H C dTT
o o

P
oT

= +∫298 298
(22)

The enthalpy of a compound AB is given by

H H Ho o o
298 298 298, , ,AB A B AB= + + ∆H f,298,

o (23)

where the last term is the enthalpy of formation from the ele-
ments, which can be measured. The enthalpies of the ele-
ments are not known. Any number can be assigned to them,
since they cancel out in a reaction equation. Usually a con-
vention of zero enthalpy in a specified state at 298.15 K is
chosen. Thus H Ho

f
o

298 298= ∆ , . If the compound changes to a

different modification, the enthalpy of transition ∆H tr
o must

be added to Ho and, beyond the transition temperature, a
different CP

o must be used in the integration. Thus

H H C dT H C dTT
o o

P
oT

tr
o

P
o

T

Ttr

tr

= + + +∫ ∫298 298
∆ (24)

The molar entropy of a compound at P = 1 bar is given by

S S S So o o
f
o

0 0 0 0K, AB K, A K, B K, AB= + + ∆ , (25)

In this case, the temperature of formation is taken at 0 K in
order to make use of the third law of thermodynamics. The
observation that the entropy change of a reaction tends to
decrease with decreasing temperature led to the generaliza-
tion that, for a reaction involving ordered compounds, ∆S o

would approach zero as the temperature approaches 0 K. The
entropies of the elements at 0 K are not known, but since they
cancel out in a reaction equation, the common convention is
to assign to them, in an ordered state, a value of zero. Thus
S So

f
o

0 0 0K K= =∆ , .

Since

H = U + PV (26)

dH = dU + PdV + VdP (27)

Also

dU = TdS – PdV (28)

Thus

dH = TdS + VdP (29)

At a constant pressure of P = 1 bar

dH TdSo o= (30)

dS
C dT

T
C d To P

o

P
o= = 1n (31)

S C d TT
o

P
oT

=∫0
1n (32)

For a polymorphic transition, the entropy of transition has
to be added and, beyond the transition temperature, a new
heat capacity function must be used in the integration. Thus

S C d T
H

T
C d TT

o
P
oT

tr
o

tr
P
o

T

Ttr

tr

= + +∫ ∫0
1 1n n

∆
(33)

The standard molar Gibbs energy is obtained from the
relationship

G H TST
o

T
o

T
o= − (34)

In subsequent formulas, the subscript T will be dropped
but a specified temperature, at a pressure of 1 bar, is indicated
by the superscript o . The numerical value of G o incorporates
the convention that H o

298 and S o
0 K of the elements in a speci-

fied state have been assigned values of zero. G o as used here
is designated as the apparent free energy of formation (∆Ga )
at a specified temperature and 1 bar in Berman (1988).
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THE VARIATION OF G
WITH PRESSURE

Since

G = U + PV – TS (35)

dG = dU + PdV + VdP –TdS – SdT (36)

Also

dU = TdS – PdV (37)

Thus

dG = VdP – SdT (38)

At constant temperature

∂
∂
G

P
V

T

⎛
⎝⎜

⎞
⎠⎟

= (39)

and

G G V dPo P* − =∫1
(40)

where G* is the molar Gibbs energy at pressure P. For solids,
the apparent free energy of formation (∆Ga ) at a specified
temperature and pressure in Berman (1988) is given by

G G V dPo P* = +∫1
. This is the relationship used to calculate the

variation of G with P for solids and could also be used for
gases; however, at this stage, some asymmetry creeps into the
development in an attempt to retain the services of the perfect
gas law even in an imperfect world. For a perfect gas

G G
RT

P
dP RT d

RT
P

P

perf o

P

P

P

P

o

o o

* − = =

=

∫ ∫ 1

1

n

n

P
(41)

where G perf* is the molar Gibbs energy of the perfect gas at
pressure P, andP o is equal to 1 bar. This relationship is repre-
sented by a straight line on a plot of G versus ln P (Fig. 3). The
real gas deviates from this behaviour, but the molar Gibbs
energy of the real gas approaches that of the perfect gas as
P → 0. Fortunately, the difference in volume (Vreal – Vperf)
approaches a fixed value as P → 0. For this reason, a fugacity
coefficient ϕ can be defined and evaluated by the relationship

RT G G V V dPperf real perfP
1

0
nϕ= − = −∫* * ( ) (42)

where G* is the Gibbs energy of the real gas at pressure P.
Two energy increments can be added as follows (Fig. 3)

G G RT
P

P
perf o

o

* − = 1n (43)

G G RTperf* *− = 1nϕ (44)

G G RT
P

P
o

o

* − = 1n
ϕ

(45)

Defining the fugacity f = P

G G RT
f

P
o

o

* − = 1n (46)

For gases, the apparent free energy of formation (∆Ga ), at
a specified temperature and pressure, in Berman (1988) is

given byG G RT
f

P
o

o

* = + 1n . The molar Gibbs energy G*, at a

specified temperature and pressure, is given by

Solids:

G G VdPo P* = +∫1
(47)
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Figure 3. Definition of fugacity.



Gases:

G G RT
P

P
RTo

o

* = + +1 1n nϕ (48)

G G RT
f

P
o

o

* = + 1n (49)

(P o is commonly omitted).

THE VARIATION OF G WITH
COMPOSITION

This is the most troublesome part of chemical thermody-
namics because there is no thermodynamic relationship for
this variation. Resort is taken to the model of an ideal solu-
tion, which can be derived from statistical mechanics and is
defined by

∂
∂

G

X
RT

P T
1n

⎛
⎝
⎜

⎞
⎠
⎟ =

,

(50)

where G
n i P T nj

=
⎛
⎝
⎜

⎞
⎠
⎟

∂
∂

G

, ,

is the partial molar Gibbs energy of a

species, best visualized as the Gibbs energy of one mole as it
exists in a solution, and X is the mole fraction. If the composi-
tion scale is chosen so that the mole fraction approaching zero
cannot be negative, and for a particular choice of mixing units
(e.g. Fe and Mg, not Fe2 and Mg2, in olivine), a solution
approaches ideal behaviour as X → 1 (Raoult’s Law) and as
X → 0 (Henry’s Law). Thus, for a solution following Raoult’s
Law

G G RT X
ideal

− =* 1n (51)

A deviation from Raoult’s Law can be used to define and
evaluate an activity coefficient γ by

G G RT
ideal

− = 1nγ (52)

and defining the activity a as Xγ the following relationship
(Fig. 4) is obtained

G G RT X RT RT− = + =* 1 1 1n n nγ a (53)

The partial molar Gibbs energy G, at a given temperature,
pressure, and mole fraction is given by

Solids:

G G VdP RT X RTo P
= + + +∫ 1 1

1
n nγ (54)

G G VdP RT ao P
= + +∫ 1

1
n (55)

Gases:

G G RT
P

P
RT RT X RTo

o
= + + + +1 1 1 1n n n nϕ γ (56)

G G RT
f

P
RTo

o
= + +1 1n na (57)

So far the effects of pressure and composition have been
clearly separated, but in order to conform to accepted confu-
sion, one can define the fugacity in a gaseous solution by f =
P X . Thus

RT
f

P
RT

P

P
RT

RT X RT

o o
1 1 1

1 1

n n n

n n

= +

+ +

ϕ

γ

(58)

and equation 56 becomes

G G RT
f

P
o

o
= + 1n (59)
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Figure 4. Definition of activity based on Raoult’s Law.



In Berman (1988), for a gaseous species in a solution, the
apparent free energy of formation (∆Ga ), at a given tempera-
ture, pressure, mole fraction, and activity coefficient is given

by G G RT
f

P
o

o
= + 1n .

In an ideal solution, ln is zero and setting Ppartial = PX

RT
f

P
RT

P

Po

partial

o
1 1n n=

ϕ
(60)

This relationship is known as the Lewis and Randall rule.
In all these equations, P o is commonly omitted because it is
equal to 1 bar. A further complication can be achieved by
combining ϕγ into one deviation term and calling it the
fugacity coefficient in a nonideal solution.

THE EQUILIBRIUM CONSTANT

The various expressions for the for the partial molar
Gibbs energy can now be substituted in the equation
∆G v Gi i=∑ to give

∆ ∆ ∆G G V dP RT Qo
s

P
= + +∫1

1n (61)

where Vs is the volume change of solids involved in the
reaction and Q is the continuous product of activity and
fugacity terms with each a and f raised to the power of its
stoichiometric coefficient. For pure species, the partial molar
Gibbs energy is identical to the molar Gibbs energy and it has
been used in the summation leading to equation 61. Since for

solids G G VdPo P* = +∫1
, if a reaction involves solids only, the

following relationship is valid

∆ ∆G G RT Q= +* 1n (62)

For stable equilibrium, G is zero and

∆ ∆G RT K V dPo
s

P
= − −∫1

1
n (63)

where Q, for the stable equilibrium condition, has been
replaced by K, the equilibrium constant. This marks the arrival
of the “most useful equation in chemical thermodynamics”
(Anderson, 2005). Since for each species G H TSo o o= − , for a
reaction

∆ ∆ ∆G H T So o o= − (64)

AN EXAMPLE CALCULATION

Goldschmidt (1912), on the basis of limited thermody-
namic data and various approximations, calculated the pres-
sure-temperature conditions of a reaction of geological
significance:

CaCO3 + SiO2 = CaSiO3 + CO2 (65)

This will be repeated here using a program (GEOTAB)
and a database (JUN92.GSC) provided by R.G. Berman. The
database is a somewhat modified version of the one published
in Berman (1988). As an example, at 2 kbar and 723°C, the
thermodynamic properties listed in Table 1 are obtained.
Therefore

∆ ∆ ∆G G V dPo
s= +∫1

P

(66)
+ = + −RT fCO1 21 1

2

1n J•mo

At 2 kbar and 724°C, ∆G= − −58 1 1J•mo Thus the equilib-
rium temperature at 2 kbar is bracketed between 723°C and
724°C. In Figure 5, the two calculations are compared.

The program GEOTAB also gives G CO 2 for a specified
mole fraction in an ideal mixture (as ∆Ga ) or in a nonideal
mixture of CO2 and H2O (as ∆Ga ) and RT f1n CO 2

can be
obtained from the relationship G G RT fo

CO CO CO2 2 2
n= + 1 .

Thermodynamic data at 656°C and 2 kbar indicate that this is
the equilibrium temperature for a mole fraction of X CO 2

= 05.
in an ideal solution (Table 2). Similarly, the equilibrium tem-
perature for the same mole fraction in a nonideal solution of
CO2 - H2O is 661°C at 2 kbar (Table 3).

PROBLEMS IN MULTISITE
(RECIPROCAL) SOLUTIONS

There has been much temptation, frequently not resisted,
to apply the ideal solution model to each distinctive lattice site
in a crystal. This approach can be traced back to Temkin
(1945) working on fused salt solutions. The ideal solution
model assumes inert mixing, without interaction of constitu-
ents. If applied to one lattice site, this model accounts for the
difference between the partial molar Gibbs energy in solution
G and the molar Gibbs energy of the pure species G*; how-
ever, for mixing on two lattice sites, this is the case only if a
rather stringent requirement is met, i.e. that ∆G = 0 for an
internal exchange reaction among species. Wood and
Nicholls (1978) have drawn attention to this limitation. Using
(Fe,Mg)(Al,Cr)2O4 spinels as an example, the exchange
reaction is

MgAl2O4 + FeCr2O4 = FeAl2O4 + MgCr2O4 (67)

The Temkin model gives the following expressions forG

G G RT X YFeAl O FeAl O Fe Al2 4
2 4

n= +* ( )1 2 (68)

G G RT X YMgCr O MgCr O Mg Cr2 4
2 4

n= +* ( )1 2 (69)

G G RT X YMgAl O MgAl O Mg Al2 4
2 4

n= +* ( )1 2 (70)

G G RT X YFeCr O FeCr O Fe Cr2 4
2 4

n= +* ( )1 2 (71)
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bar)1ataGG ∆°( kbar)2ataGG ∆(* )1,5.0

,(

==
∆

γ
2CO

kbar2at

X

GG a
∫P VdP
1

)( XPf

fRT

ϕ=
2COln

CaCO3  -1 334 147  - 1 326 673 –  7 474 – 

SiO2   - 973 383  - 968 652 –  4 731 – 

CaSiO3  - 1 751 137  -1 743 043 –  8 094 – 

CO2  - 615 750 –  - 552 275 –  63 475 

∆G°  - 59 357 – – – – 

dPVP
s∫ ∆

1
– – –  - 4 111 – 

Table 2. Thermodynamic data at 2 kbar and 656oC, X CO 2
= 0.5 in an ideal solution.

)( bar1ataGG ∆°  kbar)2ataGG ∆(* )0.1

(*

=
∆

2CO

kbar,2at

X
aGG

∫P VdP
1 )( ϕPf

fRT

=
2COln

CaCO3  - 1 348 551  - 1 341 058 –  7 493 – 

SiO2   - 980 994  - 976 263 –  4 731 – 

CaSiO3  - 1 765 097  - 1 756 988 –  8 109 – 

CO2  - 628 297 –  - 560 312 –  67 985 

∆G°  - 63 849 – – – – 

dPsVP∫ ∆
1

– – –  - 4 115 – 

Table 1. Thermodynamic data at 2 kbar and 723oC, X CO 2
= 1.0.

bar)1ataGG ∆°( kbar)2ataGG ∆(* )1,5.0

(

≠=
∆

γ
2CO

kbar,2at

X
aGG

∫P VdP
1 )( γϕXPf =

2CORT fln

CaCO3  -1 335 202  - 1 327 726 –  7 476 – 

SiO2   - 973 940  - 969 208 –  4 732 – 

CaSiO3  - 1 752 158  -1 744 064 –  8 094 – 

CO2  - 617 106 –  - 552 843 –  64 263 

∆G°  - 60 122 – – – – 

dPVP
s∫ ∆

1

– – –  - 4 114 – 

Table 3. Thermodynamic data at 2 kbar and 661oC, X CO 2
= 0.5 in a nonideal solution of CO2 – H2O.



where X is the atomic fraction on the tetrahedral site and Y is
the atomic fraction on the octahedral site. The power of two
arises from the fact that there are two atoms on the octahedral
site. From the relationship ∆G v Gi i=∑ it follows that

∆ ∆G G RT
X Y X Y

X Y X Y
= +*

( )( )

( )( )
1

2 2

2
n

Fe Al Mg Cr

Mg Al
2

Fe Cr

(72)

If, as above, the last term contains atomic fractions only,
i.e. there are no activity coefficients, it is equal to unity and
∆G can be zero only if ∆G* is zero. This is generally not the
case and for the spinel exchange reaction it is about
10 kJ•mol-1 (Wood and Nicholls, 1978). In order to make
∆G = 0, a deviation term equal to -∆G* must be introduced
when applying the ideal solution model to more than one
lattice site. Thus

∆ ∆ ∆G G RT
X Y X Y

X Y X Y
G= + −*

( )( )

( )( )
1

2 2

2 2
n

Fe Al Mg Cr

Mg Al Fe Cr

* (73)

The value of −∆G* can be partitioned among the partial
molar Gibbs energy values of the species (Wood and
Nicholls, 1978), as follows

G G RT X Y X Y GFeAl O FeAl O Fe Al Mg Cr2 4
2 4

n= + −* *( )1 2 ∆ (74)

G G RT X Y X Y GMgCr O MgCr O Mg Cr Fe Al2 4
2 4

n= + −* *( )1 2 ∆ (75)

G G RT X Y X Y GMgAl O MgAl O Mg Al Fe Cr2 4
2 4

n= + +* *( )1 2 ∆ (76)

G G RT X Y X Y GFeCr O FeCr O Fe Cr Mg Al2 4
2 4

n= + +* *( )1 2 ∆ (77)

It is seen that only for low values of ∆G* does the Temkin
model give a reasonable approximation to the energy differ-
ence G G− * , but in looking desperately for an approximation,
it may be necessary to accept this additional limitation, as has
been done, unwittingly, prior to the publication of Wood and
Nicholls (1978).

THE ELECTRON AS A SPECIES

The development of solid electrolytes made it possible to
extend electrochemical investigations to higher temperatures
(Sato, 1971). For this reason, the behaviour of the electron as
a species will be examined by considering an electrochemical
cell (Fig. 6) which has been used to measure the sulphur
fugacity (Schneeberg, 1973). The Ag and Ag2+xS electrodes
are in contact with the same electrolyte AgI. Two reactions
are taking place, each in stable equilibrium:

Ag electrode

4 4Ag 4Ag e Ag= ++ − (78)

4 4 4G G GAg Ag e
Ag

= ++ − (79)

Ag2+xS electrode

S 4Ag 4e 2Ag S2
Ag S

2
2 x+ + =+ − + (80)

G G G GS Ag
e

Ag S
Ag S2

2 x

2+ + =+
−

+
4 4 2 (81)

These reactions are related by two significant features:

1) G Ag + is the same for both because the electrolyte is a
conductor for Ag+ ions.
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2) G e− is different for the two reactions because the electro-
lyte is an insulator for electrons and, importantly, the dif-
ference can be measured by an electromotive force in a
wire of the same metal connecting the electrodes.

Adding the two reactions, one obtains

4Ag S 2Ag S 4(e e )2 2

Ag S Ag2 x

+ = − −− −+
(82)

4 2 4G G G G GAg S Ag S
e

Ag S

e

Ag

2 2

2 x+ = − −−

+
−( ) (83)

For the cell reaction without the electrons

∆G G G G= − −2 4Ag S Ag S2 2 (84)

and

∆G G= −−

+
−4( )G

e

Ag S

e

Ag2 x
(85)

The cell reaction is irreversible and represents a con-
strained or metastable equilibrium. The system has a value of
G higher than the minimum which is maintained by blocking
the flow of electrons. If the cell is short-circuited, the reaction
will go to completion (treating Ag2+xS as approximately
stoichiometric) and the system will achieve a minimum G.
For a common range of sulphur fugacity, e.g. f S 2

buffered by
the coexistence of pyrite and pyrrhotite, reaction 82 will
proceed to the right.

For a charged species, the partial molar Gibbs energy
includes an additional term given by z φ, where z is the
charge number of the species, is the Faraday constant
(96 485 J•V-1•mol-1) and φ is the electrical potential of the
phase in which the species occurs (Guggenheim, 1967). If
two wires of the same metal are attached to the two elec-
trodes, G e− , in each case, is the same in the electrode and the
wire. The difference in G e− between the two wires, and thus
between the two electrodes, is related to the difference in the
electrical potential φ of the two wires as follows (Denbigh,
1981):

( ( )G G
e

Ag

e

Ag Ag S Ag2 x
2 x

−

+

−
+− = − −F φ φ (86)

where the minus sign is due to the negative charge of the elec-
tron. The difference in electrical potential between leads of
the same metal attached to the electrodes can be measured by
an electromotive force ε and, taking ε= −+( )φ φAg S Ag2 x ,
according to the convention used in Denbigh (1981),

∆G= − 4Fε (87)

Thus, at 1 bar,

( )2 2 1 4

1 4

G RT a G G

RT f

o o o
Ag S Ag S Ag S

S

2 2 2

2

n

n

+ − −

− = − Fε
(88)

By measuring ε for a known fS2
, the expression in brack-

ets can be obtained and, if the activity of Ag2S is nearly inde-
pendent of fS2

, an unknown fS2
can be determined by

measuring ε.
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