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Figure 1. Location map and generalized geology of the study area showing the surface expression of the main stratigraphic units.
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Table 1. ORM Structural map series

Title Open File| Scale Title Open File Scale

Halton Till Structural Model 5064 |1:250,000 | Lower Sediment Structural Model 5067 1: 250,000
Oak Ridges Moraine Structural Model| 5065 |1: 250,000 | Drift Thickness 2892 1: 200,000
Newmarket Till Structural Model 5066 |[1:250,000 | Bedrock Topography 3419 1: 200,000

Table 2. Subsurface data support for ORM sediment isopach. Note: Mapped units (Fig. 1)

also help constrain the geomelry of the isopach (Logan et al., 2005).

‘ Full Unit ‘Partial Unit

Data Class Penetration | Penetration
Training Data 11563 784
MOE Waterwells 10429 4449

Introduction

As part of a regional geological study (Sharpe et al., 1997, 2002) of the 11,000 km* Oak Ridges Moraine
and Greater Toronto areas (Figs. 1, 2) a 3-D stratigraphic model has been developed (Logan et al.,
2005). This poster is one of four that document the geology of the respective stratigraphic units (Table
1). The central figure of each of the four posters is a sediment thickness (isopach) map. The
surrounding information provides a description of the stratigraphic context, data support, confidence

estimate of the surface, and
overview of the geology. Two
related posters, based on earlier
modelling, document the bedrock
surface and Quaternary sediment
thickness (Brennand et al., 1998;
Russell et al., 1998).

Information on the composition and
geometry of geological strata are
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important for regional groundwater
resource assessment and
management. The 3-D structural
model can serve as a regional
stratigraphic  framework that
provides context for site-specific
work and supports the development
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Figure 2. Digital elevation model (DEM) of the area provides a datum for
structural surfaces and to characterize surface landforms (e.g. Holland Marsh
(HM) channel). Niagara Escarpment (NE) bounds the Oak Ridges Moraine
(ORM) fo the west.

of a hydrostratigraphic framework.
These frameworks provide vital
input for groundwater flow modeling
(e.g. Holysh et al., 2004).

Regional Stratigraphic Framework

The lithostratigraphic framework of the study area (Karrow, 1967; Boyce et al.,, 1995) has been
reinterpreted using basin analysis principles and event stratigraphic concepts (Fig. 3; Sharpe et al., 1996,
2002). A key revision is the mapping of a regional unconformity that is defined by drumlinized
Newmarket Till and tunnel channels (Barnett et al., 1998; Russell et al., 2003; Sharpe et al., 2004). To
permit mapping of the regional stratigraphy using archival data, the lithostratigraphic framework was
simplified to five principal units. They are, stratigraphically upward: 1) Paleozoic bedrock, 2) Lower
sediment, 3) Newmarket Till, 4) Oak Ridges Moraine and channel sediment, and 5) Halton Till. Lower
sediment has limited subsurface data and groups 10 formations found beneath Newmarket Till (Fig. 3),
described mainly from exposures at Scarborough Bluffs (Karrow, 1967).
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Figure 3. a) Lithostratigraphic framework and b) conceptual geological model of the ORM region.

Development of the 3-D model

The regional stratigraphic framework helped guide an automated expert system to construct a 3-D
stratigraphic model, using Maplinfo Pro® and Microsoft® Access® (Fig. 4; Logan et al., 2005). Primary
training data (e.g. ~5000 geotechnical, hydrogeological and sedimentologically logged boreholes,
measured bluff sections and reflection seismic profiles) were interpreted stratigraphically (Table 2).
Location verification and declustering routines were used to reduce >60,000 Ontario Ministry of the
Environment water well records to 22, 000 records (Kenny et al., 1997) tagged with a standard material
code (Russell et al.,, 1998). Using detailed geological mapping (Sharpe et al., 1997) and a 30m-grid
digital elevation model (DEM) (Kenny et al., 1999) for surface control, a set of stratigraphic training
surfaces were interpolated (Fig. 4). Guided by this training framework, water well records were
interpreted stratigraphically by an automated expert system (Logan et al., 2005). All data were then used
to interpolate final stratigraphic surfaces at a 30 m grid cell size (Fig. 4).
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of poor data coverage and quality.
exposure.

* The thickest 10% of the ORM landform is >62 m.

* The isopach surface covers an area of >2500 km®,
 ORM sediment is mapped in only 10% of tunnel channel area because

* ORM landform isopach (~2000 km*) covers twice the area of the surface

* Maximum thickness for the ORM landform is >200m.
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Figure 12. Four our cross-seclions of the ORM isopach surface showing regional variations in the ORM
thickness and geometry. Note that the thickest sediment occurs in basin lows (tunnel channels - tc) beneath
the moraine ridge. A-A' north-south cross-section; B-B', C-C', and D-D' west-east cross-sections.

o L
WAy EAE N

et Y

10

20

kilometres
scale
1:1 000 000
Lowest Confidence Highest Confidence

Figure 6. Confidence map showing data coverage for the ORM sediment stratigraphic unit.

Hydrogeological implications

Most rivers in the study area have their headwaters in thick sandy ORM ridge sediment. Baseflow
from the moraine contributes up to 50% of steam flow throughout the year. Headwater streams can
make the largest contribution to baseflow per unit area of a watershed (Hinton, 1995). For example,
in Duffins Creek, ORM headwaters contribute 39% of total baseflow from only 9% of total catchment
area. Structural, directional and sediment facies trends, as summarized in sedimentary models (e.g.
Fig. 13), control the hydraulic variability and groundwater flow paths within and between watersheds.
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Figure 5. Isopach or thickness map of ORM sediments.

Confidence Estimation

The accuracy of the model is directly related to the proximity and relative quality of data control points.
Confidence grids were produced for each stratigraphic surface to establish an estimation of potential
error. For Oak Ridges Moraine sediments, a 2 km buffer grid was produced around each data point
accounting for the lower accuracies perceived for water well records and data that only partially
pennetrates the unit. Confidence grids were converted to values ranging from 0 to 1, representing
lowest to highest confidence. The estimate for highest confidence relates to an error of +/- 1 m,
increasing to +/- 10 m for lowest confidence.
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Figure 7. Data-derived ORM sediment thickness histogram
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Figure 13. Depositional model illustrating a subaqueous fan element of the Oak Ridges Moraine (from Russell, 2001).
Note: i) rapid downflow facies changes from gravel to fine sand; ii) K values (m/s) of major facies are from Freeze and
Cherry, 1979; iii) sand changes rapidly to silt-clay facies perpendicular to main flow.

Summary

ORM isopach map of the ORM landform and associated sediment documents the distribution of
moraine and correlative strata in the study area. Seismic reflection data and continuous cored
boreholes support the isopach map patterns. ORM is predominantly silt, sand and gravel and it
forms an aquifer complex that has a significant role in the distribution of recharge to streams and to
deeper aquifers. Unit architecture consists of three stratigraphic elements associated with distinct
sedimentary sequences: i) tunnel channel sediment, ii) basin rhythmites, and iii) ridge sediment. The
spatial heterogeneity within each of these moraine elements, however, requires further definition.
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Introduction

Geological Characterization of Oak Ridges Moraine Sediment

Oak Ridges Moraine (ORM) landform forms the dominant east-west trending topographic feature in the a)

Greater Toronto Area (GTA) (Fig. 1). This elevated sandy landform is the principal recharge region for the GTA
(Sibul et al. 1977) and a prominent unconfined aquifer (~60,000 water wells) used for domestic and municipal
water supply (Turner, 1977). The extent, geometry and variability of this aquifer complex controls flow within

the regional groundwater system (Gerber et al., 2001).

Definition and extent

The isopach unit includes sand and gravel deposits that are younger than Newmarket Till and older than
Halton Till. It covers ~25 % of the study area, half of which is exposed at the surface. The (Fig. 3b) element
of the isopach is the ORM landform; however, the isopach includes deposits beyond the ORM landform
boundary, for example, tunnel channel fill, eskers (e.g. Brampton esker), and other moraines (e.g. Paris and

Gibraltar moraines).

The ORM landform extends ~160 km eastward from the Niagara Escarpment to Trenton with a surface area
of ~1000 km”. It consists of four sediment wedges (Albion Hills, Uxbridge, Pontypool, and Rice Lake (Fig. 1);
Barnett et al. 1998) that are up to 30-40 km long and 20 km wide. The extent of the moraine has been

variously defined using mapped outcrop (Sharpe et al. 1997), hummocky terrain (White 1975) or elevation.

Description of ORM form and sediment

ORM morphology is controlled by the topography of the underlying regional unconformity, depositional
processes, and postglacial erosion. The primary geological control on the unit thickness is valleys (channels)
that are completely buried beneath ORM. Seismic profiles show ORM sediment infilling steep-walled, tunnel
channels that are up to 5 km wide (Fig. 8; Pugin et al. 1999; Russell et al. 2003c). The unit is thickest (up to
245 m) along buried bedrock channels and sediment hosted channels (e.g. Caledon East, Nobleton). The
unit thins to the south beneath Halton Till and to the north as it offlaps on Newmarket Till. Along the Niagara
Escarpment the unit includes sediment adjacent to the ORM ridge that is part of other moraine complexes
(e.g. Gibraltar and Cheltenham). Local ORM landform detail may be identifiable (e.g. Holt fan), yet features

<1 km (erosional ridges) are rarely visible on the isopach map.
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Figure 8. Straligraphic architecture of the buried regional unconformity that underlies the Oak Ridges Moraine
synthesized from reflection seismic data. Note the different form and scale of tunnel channels (Tc).
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Figure 9. Stratigraphic and sediment

facies compose the Oak Ridges Moraine.

a) Log of Vaughan core showing three
depositional episodes of the moraine. b)
Log of Nobleton core showing thick

gravel deposit overlying an unconformity.

ORM surface sediment is mostly silt and fine sand (Sharpe et al. 1997). These textures continue in the
subsurface where borehole data suggest that the moraine is ~30-60 % silt and fine sand (Fig. 9). ORM
texture is highly variable, however, and sediment facies range from massive cobble gravel to clay
laminae. Major sediment facies can be correlated with seismic facies (Pugin et al. 1999) and downhole
geophysical signatures (Hunter et al. 1998). The ORM sediment has two distinct fining-upwards trends.
In channels it fines upward from gravel to sand to silt; and along the ridge, it fines from east to west.
Water well data can overestimate ORM clay content by an order of magnitude compared to GSC data
(~27% vs 1%, Fig. 11; Russell, 2001) because poor aquifer sediment is commonly reported as clay.

Sediment data have been used to infer several modes of moraine formation (Barnett et al. 1998;
Duckworth 1979; Gilbert 1997; Paterson and Cheel 1997; Russell 2001; Russell and Arnott, 2003;
Russell et al. 2003).
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Figure 10. Photographs of the textural variation within the Oak Ridges Moraine. a) massive
gravel with sand intraclast, b) planar-bedded, open-work gravel, ¢c) cross-stratified gravel, d) low-
angle cross-stratified medium sand, e) cross-stratified medium sand, f) diffusely-graded sand, g)
climbing, small-scale, cross-laminae, h) graded fine sand, silt with overlying clay laminae.

Stratigraphic architecture

The ORM consists of three stratigraphic elements associated with distinct sedimentary episodes
(Russell et al. 2003): i) tunnel channel sediment, ii) basin rhythmites, iii) ridge-building sediment.
This detailed stratigraphic information is mainly available for ORM sediments west of Uxbridge.

i) Channel sediment: Gravel deposits up to 30 m thick (Fig. 10a,b,c) are closely associated with
the regional unconformity (Russell et al. in press). Deeply incised tunnel channels also contain
diffusely graded fine sand that may be > 50 m thick (Fig. 9). There is little data on the lateral
extent of sediment facies within tunnel channels. Seismic data, however, indicate that sand
facies may extend up to several kilometres and gravel facies >0.5 km wide and 1-2 km long
(Pugin et al. 1999).

if) Rhythmites: The rhythmite interval is characterized by a ~10-20 m thick sequence of micro-
laminated fine sand to silt and clay (Fig. 10h). Core data indicate a discontinuity in strata from
settings within channels to inter-channel uplands.

ili) Ridge sediment: Ridge sediment shows a range of textures with rapid lateral facies changes
(Fig. 10). Sediment facies are part of subaqueous fan and eskerine settings that are aligned both
perpendicular and parallel to the moraine ridge (Russell and Arnott, 2003; Paterson and Cheel,
1997; Barnett et al. 1998).
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Figure 11. Moraine composition based on various data sources. Note difference in
apparent composition depending upon data source. For example, water well records
overestimate clay by over an order of magnitude as compared to GSC data from
continuous core.
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