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Abstract - We investigate the potential of multiscale product as a 
measure for change detection in difference images. The rationale 
relies on exploiting the cross-scale correlation characteristics of 
signal and noise. We use Monte Carlo simulations to assess the 
detection and localization performances of the multiscale product 
for the detection of linear features of different widths. 
Comparisons are made with change detection based on single 
scale as well as other multiscale combination rules. Preliminary 
simulation results show that, overall, a good performance balance 
is obtained for change detection over the range of SNRs and line 
widths investigated. 
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I.  INTRODUCTION  
Despite the existence of more complex algorithms, per-

pixel univariate image differencing remains the most widely 
used change detection method (see [1] for a recent review). 
Generally, the technique employed to identify change pixels in 
a difference image consists in applying a threshold to the 
absolute value of each pixel. Pixels above the given threshold 
are then labeled as changes. Good image registration (accuracy 
< 0.5 pixel) and adequate radiometric rectification are 
prerequisite processing steps for these change detection 
algorithms. Obviously, pixels in the difference image having 
large absolute values relatively to assumed no-change areas 
will be easily identified (high signal-to-noise ratio, SNR).  As 
the SNR of change pixels decrease, however, performance of 
per-pixel change detection analysis will be reduced. The 
detection rate of true changes decreases, the detection rate of 
false changes increases, and the spatial localization of true 
changes is less accurate.  

Among others, the analysis of the difference image can be 
approached from the point of view of a feature detection 
problem. As such, the spatial scale at which the detection is 
performed plays an important role in the detection 
performance: better results are expected for those scales 
matching the spatial size of the area of changes. For earth 
observation remote sensing images, however, the selection of 
an appropriate scale is complicated by the facts that the spatial 
shape and extent of changes are not known a priori. 
Furthermore, the signal-to-noise ratio (SNR) of changes covers 
a wide range of values and changes of low SNR are frequent, 
requiring good spatial match to maximize detection 
performance. Consequently, a change detection strategy based 
on a combination of scales has a sound foundation.  

In this paper, we investigate the potential of multiscale 
product as a measure for change detection in difference images. 
The strategy consists in exploiting the cross-scale correlation 
characteristics of changes. Monte Carlo simulations were used 
to assess the detection and localization performances of the 
multiscale product for the detection of linear features of 
different widths. Comparisons were made with change 
detection based on single scale and other multiscale 
combination rules.  

II. MULTISCALE ANALYSIS FOR CHANGE ANALYSIS 
 

The present study finds its roots from ideas put forward in 
[2], [3]-[4], where point-wise multiscale product of gradient 
operators were used for (nonlinear) edge detection. The 
multiscale product exploits the cross-scale correlation of signal 
and noise, and result in enhancement of true edges (signal) and 
reduction/suppression of false edges (noise). Reference [5] has 
applied edge detection by scale multiplication in the wavelet 
domain on a difference image. Here, the focus is not on edges 
but rather on the areas of change themselves. We therefore 
concentrate on lowpass versions of the difference image. For 
change detection, we propose the following measure: 
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where i,j are the row and column pixel coordinates, and yk is 
given by: 
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where φ is the difference image, hk is a lowpass spatial filter of 
support size k (in pixels), and m and n are dummy integer 
variables. σyk is the standard deviation of yk for a given value of 
k. For the present experiment, we use a normalized box filter 
for hk such that the resulting output yk is the local average of 
pixel values within a window size of k x k pixels. The 
multiscale product involves thus the multiplication of a number 
of lowpass versions of the difference image. The cross-scale 
correlation coefficients, r, between pairs of yk outputs for φ(i,j) 
provided by real-valued independent and identical distributions 
input signal is easily computed as r1,3= 0.33, r1,5= 0.2 and r3,5= 

straby



0.6, where the indices refer to the windows pixel size (see (5) 
in [4]). 

 

In a way similar to [3]-[4], two important statistical 
properties of p are examined for φ(x) Gaussian. To avoid rather 
lengthy algebra, they are derived from Monte Carlo 
experiments in which the image difference pixel values were 
generated randomly from a normal distribution with zero-mean 
and unit variance. All estimations are based on the average of 
100 runs of 105 samples and the errors provided on estimations 
represent the standard deviation over the 100 runs. First, 
simulations indicate that the pdf of p is leptokurtic (Fig. 1). The 
variance of p is 0.102±0.002, the skewness is 0.0±0.4 and the 
kurtosis is 51±9. In other words, the pdf of p is highly peaked, 
non-Gaussian, symmetric and heavy-tailed. If only two scales 
were selected in (1), the resulting pdf would not have been 
symmetric. The use of an odd number of scales also preserves 
the sign of the changes. Second, the empirically derived 
autocorrelation function for p indicates that the multiscale 
product cannot be assumed a whitening process (i.e. produce an 
uncorrelated random variable). Although this is an expected 
result because of the smoothing process involved, the amount 
of correlation between neighboring pixels for p is much less 
important than for the single scale case k=5 where the 
normalized autocorrelation at a lag of 1 pixel is ~0.8 (and about 
0.65 for k=3). The autocorrelation function of p at pixel lag d = 
[0, ±1, ±2, ±3, …, ±6] is ρ(d) = [1.0000    0.2360    0.0976  
0.0305    0.0094    0.0004]. The amount of correlation at ρ(±1), 
although not excessive, is nevertheless non-negligible.  

III. SIMULATION EXPERIMENT AND RESULTS 
The performance of (1) is evaluated through the analysis of 

a pair of synthetic images. Fig. 2 shows one realization of the 
image pattern used for the change detection experiment. Fig. 2a 
is generated with all pixels equal to a constant value over 
which white Gaussian noise was added. Fig. 2b is generated 
similarly to Fig.2a, except that a line with a higher constant 
pixel value is introduced to simulate changed pixels (before the 
addition of noise). The line is 104 pixels long, that is half the 
width of the entire image. The example shown in Fig. 2b has a 
line width of 3 pixels. Fig. 2c is the difference image. Fig. 2d 
and 2e are respectively the multiscale average and product 
results. The multiscale average combination rule is given by 
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to 2e, where no change exists between the noise-free images, is 
used to determine the rate of false detection.  

 

Fig. 3 shows the detection results in a graphical form. Each 
small graph provides the detection results for a given SNR and 
a line width value. Graphs aligned horizontally have the same 
line width (changed pixels) while graphs aligned vertically 
have the same change SNR. Values used for the line widths are 
1, 3 and 5 pixels. Values utilized for the change’s SNR are 2, 3, 
5 and 17. The SNR is defined as the difference of signal (line to 
no-line) in the noise-free images divided by the expected noise 
standard deviation in the difference image. Simulation results 

are shown for change detection based on single scales (k =1, 3, 
and 5) as well as the two multiscale combination rules (average 
and product). Each curves within a graph is the cumulative 
sum, along the rows of the simulated image that include the 
region comprising the true change line (i.e. half-left side of the 
image), of pixels detected above a threshold adjusted to obtain 
a rate of false detection of 0.01. Hence, each graph provides the 
rate of detection as a function of spatial position in a direction 
perpendicular to the line (expressed in percent of total number 
of pixel in a line). The pixel position of the centre of the line in 
the image is equal to 11 for all graphs. 

 

The analysis of Fig. 3 reveals that, at low SNR (≤ 3), 
detection based on the multiscale average rule performs slightly 
better than the product rule, as the rate of false detection is 
lower at the edges the lines. Both multiscale measures 
outperform single scales detection that may have either a 
poorer true detection rate or a higher rate of false detection at 
the edges of the lines (blurring). As the SNR increase, the 
product rule gradually outperforms the average rule (again at 
the edges of the lines). The average rule at high SNRs produces 
a high rate of false detection at the edges of the lines, an effect 
much less severe with the product rule. As expected, per-pixel 
detection (k=1) outperforms all other measures for high SNRs. 
For k=3, 5, the rate of true detection are as good as for k=1 but 
significant blurring occurs at the edge of the line. Although the 
average rule is the best at low SNRs, its performance is tainted 
at high SNRs (blurring). Overall, the multiscale product rule 
provides a good performance balance for change detection over 
the range of SNRs and line widths investigated.  

 

Other combination rules, such as point-wise maximum of yk 
values have been examined. Normalized measures, such as 
standardization, have also been tested for the measure just 
mentioned and the average combination rule. None of these 
rules provided better results that the multiscale average and 
product rules.  

IV. CONCLUSION 
A preliminary investigation of multiscale product of 

lowpass versions of difference images has been conducted. For 
Gaussian white noise, we derived empirically that the pdf of 
the multiscale product is leptokurtic. We also shown that the 
amount of spatial correlation for p is much less important, at a 
lag of 1 pixel, than for the individual scales that are involved in 
the product (excepted for k=1 which is white noise). In 
situation for which the a priori spatial scale for best detection is 
unknown, the multiscale product rule provides, overall, a good 
performance balance for change detection over a range of 
SNRs and line widths. The present experiment is restricted to a 
rather simple case and more complex synthetic images as well 
as real images should also be tested for a thoughtful assessment 
of the method. Moreover, the choice of the spatial filter and its 
support size has not been investigated.  
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Figure 1.     Estimated pdf of p(x). 

Figure 2.     Synthetic images a), b). Difference image c) [from b)-a)].  
Multiscale average, d). Multiscale product, e). Line width is 3 pixels. SNR is 3. 



 
 
 
 
 
 
 

 
 
 

Figure 3.     Probability of detection of changes as a function position for different signal-to-noise ratios (SNR) and line widths (in 
pixels). 


