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1. INTRODUCTION 
 
Remotely sensed images usually contain geometric distortions so significant that they 
cannot be used directly with map base products in a geographic information system 
(GIS).  Consequently, multi-source data integration (raster and vector) for cartographic 
applications, such as forestry, requires geometric and radiometric processing adapted to 
the nature and characteristics of the data in order to keep the best information from each 
image in the composite ortho-rectified image. 
 
The processing of multi-source data can be based on the concept of  �terrain-geocoded 
images�, a term originally invented in Canada in defining value-added products (Guertin 
and Shaw, 1981).  Photogrammetrists, however, prefer the term �ortho-image� in 
referring to the unit of terrain-geocoded data, where all distortions including the relief 
are corrected.  To integrate different data under the concept, each raw image must be 
separately converted to an ortho-image so that each component ortho-image of data set 
can be registered, compared, combined, etc. pixel by pixel but also with cartographic 
vector data in a GIS. 
 
Although geometric corrections have always been present in remotely sensed images, 
they have become a more significant problem in recent years.  In 1972, the impact of the 
distortions was quite negligible for the following reasons (Toutin, 1996): 
• The images, such as Landsat-MSS, were nadir viewing and the resolution was 

coarse (around 80-100 m); 
• The products, resulting from the image processing were analogue on paper; 
• The interpretation of the final products was performed visually; and 
• The fusion and integration of multi-source and multi-format data did not exist. 
 
Today, however, the impact of distortions is no longer negligible because: 
• The images are off-nadir viewing and the resolution is fine (sub-meter level); 
• The products resulting from image processing are fully digital; 
• The interpretation of the final products is realised on computer; 
• The fusion of multi-source images (different platforms and sensors) is in general 

use; and 

                                            
♥  Published in Remote Sensing of Forest Environments: Concepts and Case Studies, M. A. 
Wulder and S. E. Franklin Editors, Kluwer Academic Publishers, 2003, Chapter 6, pp. 143-180.  

straby



• The integration of multi-format data (raster/vector) is a general tendency in 
geomatics. 

 
Advances in every aspect of remote sensing ─the quality of acquired data, data 
processing, analysis and interpretation─ since the 1970s, have made it ever more 
important to accurately apply corrections to these geometric corrections.   
 
Although the literature is quite abundant, mainly in term of peer review articles, it is 
important to update this body of knowledge with the latest developments and research 
studies from around the world. An exhaustive list of books, journals and papers are 
given at the end of this Chapter.  This Chapter will then address: 
• The source of geometric distortions and deformations with different categorisations 

(section 2); 
• The modelling of the distortions with different models and mathematical functions 

(section 3); and  
• The geometric correction method with the processing steps and errors (section 4).   
 
Comparisons between the models and mathematical functions, their applicability and 
their performance on different types of images (frame camera, Visible and Infra-Red 
(VIR) oscillating or push-broom scanners, Synthetic Aperture Radar (SAR) sensors, 
high or medium resolution) are also addressed.  The errors, together with their 
propagation from the input data to the final results, are also evaluated through the full 
processing steps. 
 
2. GEOMETRIC DISTORTIONS AND MODELS 
 
2.1 Distortion sources 
 
Each image acquisition system (Figure 6-1) produces unique geometric distortions in its 
raw images; consequently the geometry of these images does not correspond to the 
terrain nor to end-user maps.  The geometric distortions vary considerably with different 
factors such as the platform (airborne versus satellite), the sensor (low to high 
resolution), and also the total field of view.  However, it is possible to make general 
categorisations of these distortions. 
 
The sources of distortion can be grouped into two broad categories: the Observer 
caused by the acquisition system (platform, imaging sensor and other measuring 
instruments, such as gyroscope, stellar sensors, etc.) and the Observed introduced by 
atmosphere and the Earth.  Deformations related to the map projection are also included 
in the Observed distortion category.  Terrain and most of GIS end-user applications are 
generally represented and performed respectively in a topographic space, not in the 
geoid or a referenced ellipsoid, leading to inconsistencies between maps and remotely 
sensed data.  Table 6-1 describes in more detail the sources of distortion for each 
category and sub-category.  Figures 6-1 and 6-2 illustrate the geometry of acquisition 
and the elliptical orbit approximation of remote sensing satellites around the Earth, 
respectively.   



 

 
Figure 6-1: Geometry of viewing of a satellite scanner in orbit around the Earth. 

 
Previous studies made a second-level categorisation into low, medium and high 
frequency distortions (Friedmann et al., 1983), where �frequency� is determined or 
compared to the image acquisition time.  Examples of low, medium and high frequency 
distortions are orbit variations, Earth rotation, and local topographic effects, 
respectively.  The proliferation of acquisition system designs since the 1980s has, 
however, rendered this classification obsolete.  For example, attitude variation is a high-
frequency distortion for Quickbird or airborne push-broom scanner, a medium-
frequency distortion for SPOT and Landsat- ETM+ or a low-frequency distortion for 
Landsat-MSS. 



 

Table 6-1.Description of error sources for the two categories, the Observer and the 
Observed, and the different sub-categories. 
CATEGORY SUB-CATEGORY DESCRIPTION 

The Observer 
  
or  

Platform Variation of the elliptic movement (Figure 2) 
Variation in platform attitude (low to high 
frequencies) 

 
The Acquisition 
System 

Sensor Variation in sensor mechanics (scan rate, 
scanning velocity, etc.)  
Viewing/look angles  
Panoramic effect with field of view  

 Measuring 
instruments 

Time-variations or drift  
Clock synchronicity 

The Observed  Atmosphere Refraction and turbulence 
 Earth Curvature, rotation, topographic effect 
 Map Geoid to ellipsoid 

Ellipsoid to map 
 
 
The geometric distortions of Table 6-1 are predictable or systematic and generally well 
understood.  Some of these distortions, especially those related to the instrumentation, 
are generally corrected at ground receiving stations or by image vendors. Others, for 
example those related to the atmosphere, are not taken into account and corrected 
because they are specific to each acquisition time and location and information on the 
atmosphere is rarely available.  They also are negligible for low-to-medium resolution 
images. 
 
The remaining distortions associated with the platform (Figure 6-2) are mainly orbit and 
Earth related (elliptic movement, Earth gravity, shape and movement) (Escobal, 1965; 
CNES, 1980; Light et al., 1980). Depending of the acquisition time and the size of the 
image, the orbital perturbations may cause a range of distortions.  Some effects include: 
• Platform altitude variation in combination with sensor focal length, Earth�s flatness 

and terrestrial relief can change the pixel spacing; 
• Platform attitude variation (roll, pitch and yaw) can change the orientation and the 

shape of VIR images; it does not affect SAR image geometry; 
• Platform velocity variations can change the line spacing or create line gaps/overlaps. 
 
The remaining sensor-related distortions include: 
• Calibration parameter uncertainty such as in the focal length and the instantaneous 

field of view (IFOV) for VIR sensors or the range gate delay (timing) for SAR 
sensors; 

• Panoramic distortion in combination with the oblique-viewing system, Earth 
curvature and topographic relief changes the ground pixel sampling along the 
column. 

 



The remaining Earth-related distortions include (Figure 6-1): 
• Rotation, which generates latitude-dependent displacements between image lines; 
• Curvature, which for large width image creates variation in the pixel spacing; 
• Topographic relief, which generates a parallax in the scanner direction. 
 
The remaining deformations associated with the map projection are: 
• The approximation of the geoid by a reference ellipsoid; 
• The projection of the reference ellipsoid on a tangent plane. 

 
Figure 6-2: Description of a satellite orbit and its approximation by an ellipse. XYZ 

are the geocentric frame reference system.  Ω is the longitude of the ascending node (N); 
ω is the argument of the perigee (P); (ω + v) is the argument of the satellite; ρ is the 

distance from the Earth centre (O) and the satellite. 



All these remaining geometric distortions require models and mathematical functions to 
perform geometric corrections of imagery: either through 2D/3D non-parametric models 
(such as 2D/3D polynomial or 3D rational functions) or with rigorous 3D parametric 
models.  With 3D parametric models, geometric correction can be performed step-by-
step with a mathematical function for each distortion or simultaneously with a 
�combined� mathematical function.  The first solution is generally applied at the ground 
receiving station when the image distributors sell added-value products (georeferenced, 
map oriented or geocoded) while the end users generally prefer and use the last solution.   
 
2.2 2D/3D non-parametric models 
 
The 2D/3D non-parametric models, based on different mathematical functions (Table 6-
2), can be used when the parameters of the acquisition systems or a rigorous 3D 
parametric model are not available.  Since they do not reflect the source of distortions 
described previously, these models do not require a priori information on any 
component of the total system (platform, sensor, Earth and map projection). 
 
Table 6-2. Mathematical equations and numbers of unknown terms for the different 
geometric models.  For each geometric model there are two equations. In some 
conditions, specific terms, such as XY2 for 2D or XZ, YZ2 or Z3, etc. for 3D, can be 
dropped of the polynomial functions, when these terms can not be related to any 
physical element of the image acquisition geometry; it also reduces correlation between 
terms. 

Geometric 
Models 

Mathematical Functions* 
P2D, P3D & R3D 

Number of 
unknown terms 
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1st order: 8 + 8 
2nd order: 20 + 20 
3rd order: 40 + 40 

* X, Y, Z are the cartographic coordinates; i, j, k are integer increments; m, n and p are 
integer values, generally comprised between 1 and 3 with m + n + p being the order of 
the polynomial functions 
 
2.2.1 2D Polynomial Functions 
 
Since the 2D polynomial functions, with their formulation, are well known and 
documented for the last 20 years (Billingsley, 1983), only a few characteristics are 
given.  The polynomial functions of the 1st order (6 terms) allow for only correcting a 
translation in both axes, a rotation, scaling in both axes and an obliquity (Table 6-2).  
The polynomial functions of the 2nd order (12 terms) allow for correction, in addition to 



the previous parameters, torsion and convexity in both axes.  The polynomial function of 
the 3rd order (20 terms) allows for correction of the same distortions as a 2nd order 
polynomial function with others, which do not necessarily correspond to any physical 
reality of the image acquisition system.  In fact, previous research studies demonstrated 
that 3rd order polynomial functions introduce errors in the relative pixel positioning in 
ortho-images (Caloz et Collet, 2001) or in geocoding and integration of multi-sensor 
images (Toutin, 1995a). 
 
Since the 2D polynomial functions do not reflect the sources of distortion during the 
image formation and do not correct for terrain relief distortions they are limited to 
images with few or small distortions, such as nadir-viewing images, systematically-
corrected images and/or small images over flat terrain.  Since these functions correct for 
local distortions at the ground control point (GCP) location they are very sensitive to 
input errors; hence GCPs have to be numerous and regularly distributed.  Consequently, 
these functions neither should be used when precise geometric positioning is required 
for multi-source/multi-format data integration. 
 
The 2D polynomial functions were mainly used in the 70�s and 80�s on images 
(Billingsley, 1983), whose systematic distortions, excluding the relief, had already been 
corrected for by the image providers.  As mentioned in the Introduction, a good 
geometric accuracy was not a key point in the analysis of analogue images.  However, 
while it is now known that 2D polynomial functions are not suitable for accurately 
correcting remote sensing images, some users still apply them, apparently without 
knowing implications for subsequent processing operations and resulting digital 
products.  Some comparisons of processing and of results based on 2D polynomial and 
3D parametric functions will be provided in a later section. 
 
2.2.2 3D Polynomial Functions 
 
The 3D polynomial functions are an extension of the 2D polynomial function by adding 
Z-terms related to the third dimension of the terrain (Table 6-2).  However, apart from 
relief they are prone to the same problems as other non-parametric functions: i.e. they 
are applicable to small images, they need numerous regularly distributed GCPs, they 
correct locally at GCPs, they are very sensitive to errors, they lack robustness and 
consistency in operational environments.  Their use should be thus limited to small 
images or to systematically correct images, where all distortions except the relief have 
been pre-corrected.   
 
3D polynomial functions have been recently used with the following georeferenced 
image data sets: SPOT-HRV (level 1B), Landsat-TM (level bulk or georeferenced) (Palà 
and Pons, 1995) and IKONOS Geo-products (Hanley and Fraser, 2001).  Kratky (1989) 
used 3rd order 3D polynomial functions to approximate a 3D parametric model 
developed for SPOT raw images in order to reduce the computing time for 
implementing his solution on-line into a stereo-workstation.  One reason was that the 
real-time computation of his preferred mathematical model was not feasible. 
 



The terms related to terrain elevation in the 3D polynomial function could be reduced to 
aiZ for VIR images and to aiZ and ajZ2 for SAR images, whatever the order of the 
polynomial functions used.  The main reason is that there is no physical interrelation in 
the X and Z or Y and Z directions for most of the sensors used. 
 
2.2.3 3D Rational Functions 
 
These 3D rational functions have recently drawn interest from the civilian 
photogrammetric and remote sensing communities due to the launch of the civilian high-
resolution IKONOS sensor in 1999, and subsequently EROS-A1 and QuickBird-2 
sensors in 2000 and 2001, respectively.  The major reason of their recent interest is that 
Space Imaging does not release information on the IKONOS satellite and the sensor.  
The 3D rational functions can be used in two ways: 

1. To approximate an already-solved existing 3D parametric model; and 
2. To normally compute the unknowns of all the polynomial functions with GCPs. 

 
The first approach is performed in two steps. A 3D regular grid of the imaged terrain is 
first defined and the image coordinates of the 3D grid ground points are computed using 
the already-solved existing 3D parametric model.  These grid points and their 3D ground 
and 2D image coordinates are then used as GCPs to resolve the 3D rational functions 
and compute the unknown terms of polynomial functions. 
 
This approach has been proven adequate for aerial photographs and satellite images 
(Tao and Hu, 2001a).  However, they found that the results are very sensitive to GCP 
distribution for SPOT images.  When the image is too large, the image itself has to be 
subdivided and separate 3D rational functions are required for each sub-image.  It 
sometimes results in �less user-friendly� processing than a 3D parametric model.  Image 
vendors or government agencies that do not want to deliver satellite/sensor information 
with the image, are the main users of this piecewise approach.  They thus provide with 
the image all the parameters of 3D rational functions.  Consequently, the users can 
directly process the images for generating ortho-images or DEM or even post-process to 
improve the rational function parameters.  This method is recently adopted by Space 
Imaging to sell their IKONOS Geo images with the 3rd-order rational functions 
parameters (Dial and Grodecki, 2002).  However, this approach is considered unsuitable 
for endusers because it requires the knowledge of a 3D parametric model.  In this 
situation, the user can directly use and apply the 3D parametric model.  Furthermore, 
this approximation of the 3D parametric model will not generally be as precise than the 
3D parametric model itself. 
 
The second approach can be performed by the endusers with the same processing 
method as with polynomial functions.  Since there are 40 and 80 parameters for the four 
2nd and 3rd order polynomial functions (Table 6-2), a minimum of 20 and 40 GCPs, 
respectively are required to resolve the 3D rational functions.  However, the rational 
functions, such as the 2D/3D polynomial functions, do not model the physical reality of 
the image acquisition geometry and they are sensitive to input errors.  Consequently in 



an operational environment, many more GCPs will be required to reduce their error 
propagation. 
 
Rational functions, such as the 2D/3D polynomial functions, mainly correct locally at 
GCP locations, and the distortions between GCPs are not entirely eliminated.  A 
piecewise approach as described previously should then be used for large images 
(SPOT, Landsat, IRS), however the number of GCPs will increase proportionally to the 
number of sub-images, making the method impractical.  
 
In conclusions, the 3D rational functions are certainly the best selection among the non-
parametric functions, but only when no 3D parametric solution, such as described 
below, is available. 
 
2.3 3D parametric models 
 
3D parametric models to perform the geometric correction differ depending on the 
sensor, the platform and its image acquisition geometry: 
• The instantaneous acquisition systems, such as photogrammetric cameras, Metric 

Camera (MC) or Large Format Camera (LFC); 
• The rotating or oscillating scanning mirrors, such as Landsat-MSS, TM or ETM+; 
• The push-broom scanners, such as SPOT-HRV, IRS-1C/D, IKONOS or Quickbird; 
• The SAR sensors, such as ERS-1/2, RADARSAT-1/2 or ENVISAT. 
 
It is possible to create an overall model for the development of 3D parametric functions, 
which will take into account the unique characteristics of each platform and which will 
fully correct all distortions described previously.  The 3D parametric functions should 
model the distortions of the platform (position, velocity, attitude for VIR sensors), the 
sensor (viewing angles, panoramic effect), the Earth (ellipsoid and relief) and the 
cartographic projection.  The geometric correction process can address each distortion 
one by one and step by step or simultaneously.  It is better to consider the overall 
viewing geometry (platform + sensor + Earth + map), because some of their distortions 
are correlated and have the same type of impact on the ground.  It is theoretically more 
precise to compute one �combined� parameter only than each component of this 
�combined� parameter, separately. 
 
Some examples of �combined� parameters include: 
• The �orientation� of the image is a combination of the platform heading due to 

orbital inclination, the yaw of the platform, the convergence of the meridian; 
• The �scale factor� in along-track direction is a combination of the velocity, the 

altitude and the pitch of the platform, the detection signal time of the sensor, the 
component of the Earth rotation in the along-track direction; and 

• The �levelling angle� in the across-track direction is a combination of platform roll, 
the viewing angle, the orientation of the sensor, the Earth curvature; etc. 
 

Considerable research has been carried out to develop robust and rigorous mathematical 
models describing the acquisition geometry related to different types of images (VIR 



and SAR) and of platforms (spaceborne and airborne) (Table 6-3).  The general starting 
point of these research studies is generally the well-known collinearity condition and 
equations (Wong, 1980) for VIR images and the Doppler and range equations for radar 
images (Curlander, 1986) (Table 6-4). It should be noted that the collinearity equations 
were adapted as radargrammetric equations to process radar images (Leberl, 1972; 1990; 
Konecny et al., 1986) and later as an integrated and unified mathematic equations to 
indiscriminately process VIR or radar images (Toutin, 1995b). 
 
Table 6-3. References on research studies for the development of 3D parametric models 
applied to different platforms and sensors.   

Platforms and Sensors Airborne Spaceborne 
Medium Resolution VIR  13, 17, 18, 23, 26, 28, 

37, 40, 44, 46, 50, 71 
High Resolution VIR 11, 14, 21 10, 57, 59, 63, 66, 67 

SAR 8, 15, 24, 29, 30, 42, 62 7, 19, 31, 39, 61 
 
Table 6-4. 3D parametric models with their mathematical equations for VIR and SAR 
images (Wong, 1980; Curlander, 1986). 

3D Parametric 
Models 

Mathematical Equations Description of Parameters 

 
 

VIR Images 
 

(Collinearity 
Equations) 

              m11 (X - X0) + m12 (Y � Y0) + m13 (Z � Z0) 
x = -f 
              m31 (X - X0) + m32 (Y � Y0) + m33 (Z � Z0) 
 
               m21 (X - X0) + m22 (Y � Y0) + m23 (Z � Z0) 
y = -f 
               m31 (X - X0) + m32 (Y � Y0) + m33 (Z � Z0) 
 

(x, y) the image coordinates 
(X, Y, Z) the map coordinates 
(X0, Y0, Z0) the projection 
centre coordinates 
-f the focal length of the VIR 
sensor 
[mij] the 9 elememts of the 
orthogonal 3-rotation matrix 

 
 

SAR Images 
 
(Doppler-range 

Equations) 

 

PS
PSVVf PS

−
−•−=

λ
)()(2  

 
PSr −=  

f the Doppler value 
r the range distance 
S and V S  the sensor position 
and velocity 
P and V  the target-point 
position and ground velocity 

P

λ  the radar wavelength 
 
 
The collinearity equations are valid for an instantaneous image or scanline acquisition, 
such as photogrammetric cameras (LFC, MC), VIR scanner sensors (SPOT, Landsat) 
and the Doppler-range equations are valid for a SAR scanline.  However, since the 
parameters of neighbouring scanlines of scanners are highly correlated, it is possible to 
link the exposure centres and rotation angles of the different scanlines to integrate 
supplemental information, such as: 



• The ephemeris and attitude data using celestial mechanic laws (Figure 6-2) for 
satellite images; or  

• The global positioning system (GPS) and inertial navigation system (INS) data for 
airborne images. 

 
The integration of the different distortions and the derivation of equations for different 
sensors are outside the scope of this Chapter.  They are described for photogrammetric 
cameras in Wong (1980), for Landsat data in Salamonowicz (1986) and Shu (1987), for 
SPOT data in Guichard (1983) and Toutin (1983) and for SAR data in Leberl (1972) or 
Curlander (1982).   For example, the solution for the 3D parametric functions given in 
Guichard (1983) and Toutin (1983, 1995) starts from the collinearity equations written 
in the instrument reference system.   They have been adapted to suit the geometry of 
scanner imagery, but also have benefited from theoretical work in celestial mechanics to 
better determine the satellite�s osculatory orbit and parameters than simply using a 
�constant ellipse� orbit (Figure 6-2).  The collinearity equations were then converted 
into the cartographic projection system with elementary transformations (rotations and 
translations), which are functions of parameters describing the geometric distortions 
described in a previous Section, namely: 
• Rotation from the sensor reference to the platform reference; 
• Translation to the Earth�s centre; 
• Rotation which takes into account the platform time variation; 
• Rotation to align the z-axis with the image centre (M0) on the ellipsoid; 
• Translation to the image centre (M0); 
• Rotation to align the y-axis in the meridian plane; 
• Rotation to have xM0 y tangent to the ellipsoid; 
• rotation to align the x-axis in the image scan direction; and 
• rotation-translation into the cartographic projection. 
 
The final results, which link the 3D cartographic coordinates to the image coordinates, 
are two equations: 

Pp + y (1 + δγX) - τH - Ho∆T* = 0                  (1) 
 

X + θ  H   + αq(Q + θX -  H  ) - Q∆R = 0      (2) 
                       cosχ             cosχ 
 
with:   X = (x - ay)(1 +  h ) + by2 + cxy (3) 

  No 
H = h -  x2                                             (4) 

                  2No 
 
Each parameter has a mathematical parametric formula (Toutin, 1983) that represents the 
physical realities of the full viewing geometry (satellite, sensor, Earth, map projection): 
 
 H  is the altitude of the point corrected for Earth curvature; 
 Ho  is the satellite elevation at the image centre line; 
 No  is the normal to the ellipsoid; 



 a  is a function of the rotation of the Earth; 
α is the instantaneous field-of-view ; 

 p, q  are the image coordinates; 
 P, Q  are the scale factors in Y and X, respectively; 
 τ and θ  are a function of the levelling angles in Y and X, respectively; 

∆T* and ∆R are the non-linear variations in attitude if they exist (∆T*: 
combination of pitch and yaw, ∆R: roll); 

x, y and h are the ground coordinates; 
b, c, χ, δγ, are known 2nd order parameters. 

 
2.4 Comparisons of non-parametric and parametric models 
 
Table 6-5 summarises the main characteristics and comparisons of the 2D/3D non-
parametric methods and the 3D parametric methods.  The main differences between 2D 
and 3D models are noted in bold type.  Some major differences between non-parametric 
and parametric models are noted in italic type, which enables the 3D parametric models to 
be more consistent and robust.  The 2D/3D differences are mainly related to the capability 
of 3D models to integrate the terrain elevation information in the different processing steps: 
• By adding the Z- elevation to the GCPs; and 
• By adding DEM or a mean elevation in the rectification process. 
 
Table 6-5: Comparison of the different characteristics between 2D/3D non-
parametric models and 3D parametric models. 

 2D/3D Non-Parametric Model  3D Parametric Model 

Does not respect the viewing geometry Respects the viewing geometry 

Not related to geometric distortions Reflects the geometric distortions 

Do not use metadata (ephemeris and attitude) Uses metadata (ephemeris and attitude) 

2D models do not use terrain elevation  Uses terrain elevation information 

Corrects image locally at GCPs Corrects the image globally 

Does not filter blunders Filters blunders with the knowledge of the 
geometry 

Individual adjustments of one image Simultaneous adjustment of more than one 
image 

Image-to-image correction Image-to-ground correction 

Needs many (>20-60) GCPs Need few (3-8) GCPs 

Sensitive to GCPs distribution Not sensitive to GCPs distribution 

Problem of choice for tie points GCPs choice as a function of each image 
 



Furthermore, in order to make a qualitative comparison between non-parametric and 
parametric models, the two extreme models (2nd-order 2D polynomial and 3D 
parametric) were applied to a data fusion of panchromatic SPOT-image and two 
airborne SAR images (C-band and HH-polarization) (Figure 6-3). These results are used 
from a previous research study over Sherbrooke, Quebec with 200-m elevation 
topography (Toutin, 1995a).  Figure 6-3 shows a composite image using IHS 
transformation (assigning SPOT-PLA to hue and the two other airborne SAR to intensity 
and saturation).  They were rectified with a 3D parametric model using a DEM (top) and 
2D non-parametric model (bottom).  The road vector (accuracy of 3-5 m) has also been 
registered on each sub-image.  The radiometric processing operations performed (HIS, 
LUT, etc.) are exactly the same for both sub-images, only the geometric processing differs. 
 

 
Figure 6-3: Composite sub-ortho-images (4 by 3 km; 5-m pixel spacing) of SPOT-

PLA and two C-HH SAR airborne images using IHS transformation with the overlay of 
digital road network files: processed with 2D 2nd-order polynomial method (below), and 

3D parametric method (above). SPOT Image © CNES, 1996 



The top image is much more homogeneous in its colours, surfaces and variations. As 
there is greater contrast between the elements, their boundaries are clear and well 
defined.  In the bottom image, the colour variations are greater, giving an impression of 
texture, and the image seems more blurred. As there is less contrast between the 
elements, they appear less well defined.  Using the vector file from the topographic map, 
the analysis of certain cartographic elements showed, in the bottom image (letters a to d 
refer to parts of the image identified in Figure 6-3), that: 
a: The linear elements (roads and rivers) are doubled or even disappear (bridge, 

roads), which corresponds to a relative error of registration; 
b: The lack of sharpness in this part prevents us from distinguishing the road from the 

forest and areas of bare soil; 
c: On surface elements, artefacts are created; there is an inversion between forest 

(green) and cutovers (burgundy); 
d: The texture and colour variations do not correspond to the real information. 
 
These examples, with other similar ones, which can be clearly identified on these sub-
images, show that geometric registration errors have generated radiometric merging 
errors, artefacts and erroneous information in the composite image, which do not 
correspond to any physical reality.   
 
The road vector file, registered to these sub-images, allows us to check the geometric 
accuracy.  Visual analysis confirms the earlier statistical error results for the polynomial 
method (30-50 m), but shows an improvement for the photogrammetric method (10 m), 
with maximum errors of 20 metres. Checks on other parts of images illustrate the 
consistency of the results. These values correspond to the absolute error of registration. 
Since these tests and comparisons were performed on small sub-images over rolling 
topography, the differences will be then more pronounced on larger images rougher over 
topography. 
 
The general superiority of 3D parametric modeling over non-parametric modeling is 
mainly due to the fact that the 3D mathematical functions correspond to the physical reality 
of the viewing geometry and take into account all the distortions generated in the image 
formation.  It is thus more robust in an operational environment to detect errors.  Since all 
the parameters have a physical meaning, they are also easy to interpret when bad or 
erroneous results occur.  
 
Previous research studies with medium-resolution images (Salamonowicz, 1986; Novak, 
1992; Toutin, 1995a; de Sève et al., 1996), review papers and books (Leberl, 1990; Bannari 
et al., 1995; Calloz et Collet, 2001) are all in agreement with these above statements. More 
recently with high-resolution images, 3D rational models show worse and less consistent 
results (Toutin et al., 2002) and some inconsistencies in the results were not explained 
(Davis and Wang, 2001).  Table 6-6 gives comparisons for the three new high-resolution 
sensors geometrically processed with 3D rational functions and 3D parametric functions.  
They are the statistical results (root mean square and maximum errors in metres) 
computed on Independent Check Points (ICPs) from 3D 1st-order rational model and 3D 
parametric model adjustment for EROS A1, IKONOS and QuickBird-2 (Toutin et al., 



2002).  The results on ICPs for the 3D parametric models are always two-to-three times 
better than with 3D 1st-order rational models.  However, other studies demonstrated the 
feasibility of 3D non-parametric models with high-resolution images, only in a well-
controlled research environment with only one image acquired over a flat terrain (Hanley 
and Fraser, 2001; Tao and Hu, 2001b) but rarely or never realized by end-users in an 
operational environment.  More research should be thus performed to evaluate the true 
applicability and the limitations of these 3D rational functions for high-resolution images.   
 
Table 6-6: Results (root mean square and maximum errors in metres) computed on 
Independent Check Points (ICPs) from 3D 1st-order rational model and 3D parametric 
model adjustment for EROS A1, IKONOS and QuickBird-2 images (Toutin et al., 2002). 

High-resolution Image
Correction Model 

RMS Errors
(m) 

Maximum 
Errors (m) 

EROS A1 X        Y X         Y 
3D 1st-order Rational 8.0     13.2  20       23 
3D Parametric  3.9       3.5  6.2      6.0 

IKONOS   
3D 1st-order Rational 2.2       5.2  5.1       10.4 
3D Parametric  1.3       1.3 3.0       3.0 

QuickBird-2   
3D 1st-order Rational 4.0       2.1 9.5       4.3 
3D Parametric  1.4       1.3 2.5       2.8 

 
 
These arguments presented in these research studies to support the 3D rational models as 
Universal Sensor Model include simplified mathematical functions, easier to use, fast 
computation and universality of its form due to sensor independence (frame camera, 
scanner) (Madani, 1999).  Since no application with SAR or airborne scanner sensors and 
very few with medium-to-high resolution VIR sensors were performed, can 3D rational 
models be called a Universal Sensor Model?  Furthermore, Madani (1999) also addressed 
their disadvantages:  
• Inability to model local distortions (such as with CCD arrays or worse with SAR 

sensors); 
• Limitation in the image size; 
• Difficulty in the interpretation of the parameters due to the lack of physical meaning; 
• Potential failure to zero denominator; and  
• Potential correlation between the terms of polynomial functions. 
 
Furthermore, the arguments of simplified mathematical functions and of universality, easy 
to develop and to use, can also be applied to already-existing 3D parametric models. In 
fact, some of 3D parametric models were �mathematically generalized� (Leberl, 1972; 
Masson d�Autumne, 1979; Konecny, 1986; Toutin, 1995b) and they have all these 
advantages in addition to the general advantages previously mentioned for 3D parametric 
models. 
 



In these conditions, 3D rational models should mainly be used when no 3D parametric 
models has been developed.  In fact, the parameterisation of models has always been a 
major issue in scientific research and achievements.  When it becomes theoretically and/or 
practically impossible, statistical methods such as 3D rational models take over. 
 
3. METHODS, PROCESSING AND ERRORS 
 
Whatever the mathematical functions used, the geometric correction method and 
processing steps are more and less the same.  The processing steps are (Figure 6-4): 
• Acquisition of image(s) and pre-processing of meta data; 
• Acquisition of the ground points (control/check/pass) with image coordinates and 

map coordinates X, Y, (Z); 
• Computation of the unknown parameters of the mathematical functions used for the 

geometric correction model for one or more images; 
• Image(s) rectification with or without DEM. 
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Figure 6-4: Description of the geometric correction method and processing steps.  
The ellipse symbols are input/output data and the box symbols are processes. 
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The main differences in the processing steps between non-parametric and parametric 
models are in italic style and between 2D non-parametric and 3D models are in bold style.  
The metadata are useless for non-parametric models because the models do not reflect the 
geometry of viewing, while the Z-elevation coordinates for GCPs and DEM/DSM are of 
no use for 2D non-parametric models. 
 
3.1 Acquisition of images and metadata 
 
With VIR images, different types of image data with different levels of pre-processing 
can be obtained, but more the image providers unfortunately use a range of terminology 
to denominate the same type of image data.  Standardization should be better defined, 
mainly for the convenience of end-users:  
• Raw images with only normalization and calibration of the detectors (e.g. level 1A 

for SPOT or 1B for QuickBird-2) without any geometric correction are satellite-
track oriented.  In addition, full metadata related to sensor, satellite (ephemeris and 
attitude) and image are provided; 

• Geo-referenced images (e.g. level 1B for SPOT or 1G for Landsat-ETM+) 
corrected for systematic distortions due to the sensor, the platform and the Earth 
rotation and curvature are satellite-track oriented.  Generally, few metadata related 
to sensor and satellite are provided; some of metadata are related to the 1B 
processing; or  

• Map-oriented images, also called geocoded images, (e.g. level 2A for SPOT or 
Cartera Geo for IKONOS) corrected for the same distortions as geo-referenced 
images are North oriented.  Generally, very few metadata related to sensor and 
satellite are provided; most of metadata are related to the 2A processing and the 
ellipsoid/map characteristics. 

 
For the sake of understanding, the easiest terminology defined for SPOT images are 
used.  The raw �level 1A� images are preferred by photogrammetrists because 3D 
parametric models derived from co-linearity equations are well known and developed 
and easily used in softcopy workstations. Since different 3D parametric models are 
largely available for such VIR images, raw 1A-type images should be now favoured by 
the remote sensing community too.  Specific software to read and pre-process the 
appropriate metadata (ephemeris, attitude, sensor and image characteristics) have to be 
realized for each image sensor according to the 3D parametric model used.  Using 
celestial mechanics laws and Lagrange equations (Escobal, 1965; CNES, 1980; Light et 
al., 1980) the ephemeris (position and velocity) can be transformed into osculatory 
orbital parameters (Figure 6-2) (Toutin, 1983).  Since the Lagrange equations take into 
account the variation of the Earth gravitational potential to link the different positions of 
the satellite during the image formation, it is more accurate and robust than using a 
constant ellipse with 2nd-order time-dependent polynomial functions (Guichard, 1983; 
Toutin, 1983; Bannari et al., 1995).  This statement is more applicable when long 
images from a same orbit are used with path processing (Toutin, 1985; Sakaino et al., 
2000) or a block bundle adjustment method (Veillet, 1991; Toutin et al., 2001a; Toutin, 
2003a).  3D parametric models also well applied to high-resolution airborne images 



(Gibson, 1984; Ebner and Muller, 1986) or spaceborne images, such as QuickBirb-2 
(Toutin and Cheng, 2002) for achieving pixel accuracy or better.  Some results were 
presented using 3D rational functions with raw SPOT images (Tao and Hu, 2001a), but 
not with high-resolution spaceborne or airborne images. 
 
Since they have been systematically corrected and georeferenced, the �level 1B� images 
just retain the terrain elevation distortion, in addition to a rotation-translation related to 
the map reference system.  A 3D 1st-order polynomial model with Z-elevation 
parameters could thus be efficient depending of the requested final accuracy.  For 
scanners with across-track viewing capability, only the Z-elevation parameter in the X-
equation is useful. The 2nd-order non-parametric models could also be used (Palà and 
Pons, 1995) for correcting some residual errors of the 1B processing.  When possible, 
solutions to overcome the non-parametric model approximation are either to convert the 
1B-images back into 1A-images using the metadata and the reverse transformation (Al-
Roussan et al., 1997), or to �re-shape and re-size� the 1B-images to the raw imagery 
format (Valadan Zoej and Petrie, 1998).  This 1B-geometric modelling can be 
mathematically combined with normal 1A 3D parametric model to avoid multiple image 
resampling.  Although this mathematical procedure used for 1B images works better 
than non-parametric models, it is still recommended that raw images with 3D rigorous 
parametric models (co-linearity equations) be directly used.  
 
The map-oriented images (�level 2A�) also retain the elevation distortion but image 
lines and columns are no more related to sensor-viewing and satellite directions. A 3D 
1st-order polynomial model with Z-elevation parameters in both axes can thus be 
efficient depending of the requested final accuracy.  Such as for level 1B, 2nd-order non-
parametric models (polynomial or rational) can be used for correcting some residual 
errors of the 2A processing, but it is generally no longer possible to convert back the 2A 
image with the reverse transformation. These 2D/3D non-parametric models were 
recently applied with IKONOS Geo images to achieve pixel accuracy or better:  

• 2D first-order polynomial and rational models (Hanley and Fraser, 2001);  
• 3D first-order polynomial models (Fraser et al., 2002); 
• 3D third-order rational models by Space Imaging using the 1st approach 

(described in 2.2.3) with coefficients computed from their camera model (Dial 
and Grodecki, 2002); 

• 3D 1-order rational models using the 2nd approach (described in 2.2.3) with 
computation of the model parameters using GCPs (Tao et al., 2001b).   

 
Although the results, generally achieved in a well-controlled research environment using 
(sub-)images acquired over flat terrain, are in the order of pixel accuracy or sometimes 
better due to good quality of cartographic data, no results, to our knowledge, were 
published with IKONOS images in high relief terrain.  Care must be then taken by end 
users in the extrapolation of these results to any image acquired over any terrain and 
processed with any cartographic data. 
 
However, a 3D parametric model has been still approximated and successfully 
developed for IKONOS Geo images using basic information of the metadata and 



celestial mechanics laws and applied to various images acquired over flat-to-rough 
topography (Toutin and Cheng, 2000; Toutin, 2003b).  Even approximated, this 3D 
parametric model (�using a global geometry and adjustment�) has been proven to be 
more robust (Toutin et al., 2002) and to achieve more consistent results over the entire 
image than 3D rational models (�using a local adjustment�) (Davis and Wang, 2001). 
 
SAR images are standard products in slant or ground range presentations.  They are 
generated digitally during post-processing from the raw signal SAR data (Doppler 
frequency, time delay). Errors present in the input parameters related to image geometry 
model will propagate through to the image data.  These include errors in the estimation 
of slant range and of Doppler frequency and also errors related to the satellite's 
ephemeris and the ellipsoid.  Assuming the presence of some geometric error residuals, 
the parameters of a 3D parametric model reflect these residuals.  As mentioned 
previously, the 3D parametric model starts generally either from the traditional Doppler 
and range equations (Curlander, 1982), from the equations of radargrammetry (Leberl, 
1990), or from generalized equations (Leberl, 1972; Toutin, 1995b).  Due to the large 
elevation distortions in SAR images, 2D polynomial models cannot be used, even in 
rolling topography (Toutin, 1995a) or to extract planimetric features (de Sève et al., 
1996).  Furthermore, since different 3D SAR parametric models are largely available, no 
attempt has been done, to our knowledge, to apply 3D polynomial or rational models to 
SAR images (spaceborne or airborne). 
 
3.2 Acquisition of GCPs 
 
Whatever the VIR and/or SAR geometric model used, some GCPs have to be acquired 
to refine the parameters of the mathematical functions with a least-square adjustment 
process in order to obtain a cartographic standard accuracy.  The number of GCPs is a 
function of different conditions: the method of collection, the sensor type and resolution, 
the image spacing, the geometric model, the study site, the physical environment, the 
GCP definition, the map accuracy and the final expected accuracy.   
 
Figures 6-5 to 6-7 are GCP examples for different sensors (Landsat-7 ETM+, 
RADARSAT-SAR fine mode and IKONOS) in different contexts (flat to mountainous 
terrain, urban or rural environment).  If GCPs are determined a priori without any 
knowledge of the images to be processed 50% of the points may be rejected (Toutin and 
Carbonneau, 1989).  If GCPs are determined a posteriori with knowledge of the images to 
be processed, the reject factor will be smaller (20-30%).  Consequently, all the aspects of 
GCP collection do not have to be considered separately, but as a whole to avoid too 
large discrepancies in accuracy of these different aspects. For example, do not use GPS 
survey to process Landsat data in mountainous study site, or do not use road intersection 
and 1: 50,000 topographic maps to process IKONOS images if you expect 1-2 m final 
accuracy, etc.  The weakest aspect in GCP collection, which is of course different for 
each study site and image, will thus be the major source of error in the error propagation 
and overall error budget of the bundle adjustment.   



 
 

Figure 6-5: Three examples of GCP collection for Landsat-7 ETM+ images with 
different features and accuracy and their respective location on 1:50,000 topographic 
map. A road intersection with better than one-pixel accuracy (left); a lake feature with 
one-to-two pixel accuracy (centre); the top of a mountain with better two-to-three pixel 

accuracy (right) and its location on 1:50,000 scanned topographic map. 
 
 
Since non-parametric models do not reflect the geometry of viewing and do not filter 
errors, many more GCPs than the theoretical minimum are required to reduce the 
propagation of input errors in the geometric models. When the map and positioning 
accuracy is in the same order of magnitude as the image resolution, twice as many is a 
minimum requirement: around 20, 40 or 80 GCPs should then be acquired for 2nd-order 
2D polynomial, 3D polynomial or 3D rational models respectively. The 3rd-order models 
obviously required more, mainly the rational functions.  Furthermore, to insure 
robustness and consistency in an operational environment, it is safer to collect more than 
twice the minimum required mentioned previously.  It is then a restriction in the use of 
such non-parametric models.   When more than one image is processed, each image 
requires its own GCPs and the geometric models are generally computed separately, 
which does not set-up a relative orientation or link between the images.  GCPs should be 
spread over the full image(s) in planimetry and also in the elevation range for the 3D 
models.  It is also better to have medium-accurate GCPs than no GCP at the tops of 
mountains, such as it is shown with Landsat-7 (Figure 6-5, right).  If the image is larger 
than the study site it is recommended to reduce the GCP collection to the study site area 
because the non-parametric models only correct locally. 



 
Figure 6-6: Example of stereo GCP collection on RADARSAT-SAR fine mode 

stereo-images: a field corner with one-to-two pixel accuracy and its location on 1:20,000 
scanned topographic map. RADARSAT Images © Canadian Space Agency, 2001 

 

 
Figure 6-7: Example of GCP collection on IKONOS image: a sidewalk corner with 
one-to-two pixel accuracy and its location on digital 1-m pixel ortho-photo.  It is more 

precise than the road intersection. IKONOS Images © Space Imaging LLC, 2000 



With 3D parametric models, few GCPs (1 to 6) are required per image.  When more 
than one image is processed a spatio-triangulation method with 3D block-bundle 
adjustment can be used to process all images together (VIR and SAR). It enables users 
to drastically reduce the number of GCPs for the block with the use of tie points (TPs) 
(Veillet, 1991; Sakaino et al., 2000; Toutin et al., 2001a, b; Dial and Grodecki, 2002).  
When the map and positioning accuracy is of the same order of magnitude as the image 
resolution, twice (or a little less) the theoretical minimum is recommended.  When the 
accuracy is worse, the number should be increased depending also of the final expected 
accuracy (Savopol et al., 1994).  Since more confidence, consistency and robustness can 
be expected with parametric models (global image processing, filtering input errors) 
than with non-parametric models, it is not necessary to increase the number of GCPs in 
operational environments.  GCPs should preferably be spread at the border of the 
image(s) to avoid extrapolation in planimetry, and it is also preferable to cover the full 
elevation range of the terrain (lowest and highest elevations).  Contrary to non-
parametric models, it is not necessary to have a regular distribution in the planimetric 
and elevation ranges.  Since the parametric models correct globally the GCP collection 
has to be performed in the full image size, even if the study site is smaller.  First, it will 
be easier to find GCPs over the full image than over a sub-area and more homogeneity is 
thus obtained in the different area of the image. 
 
GCP cartographic co-ordinates can be obtained from global positioning system (GPS), 
air photo surveys, paper or digital maps, ortho-rectified images, chip data base, etc. The 
cartographic co-ordinates obtained from these sources have drastically different 
accuracies: from better than 1 m with GPS to 25-50 m with paper maps, certainly the 
most common GCP source used around the world.  Consequently, with lower accuracy 
more GCPs must be used (Savopol et al., 1994).  The image co-ordinates are plotted 
interactively on the screen or automatically using GCP chip database and image 
correlation tools.  When more than multiple image with overlapping coverage are 
processed the image co-ordinates are obtained simultaneously in �double monoscopy� 
because some workstations do not have full stereoscopic capabilities for multi-sensor 
images.  This plotting will then create artificial X- and Y-parallaxes (few pixels) 
between the images, and the parallax errors will propagate through the bundle 
adjustment (relative and absolute orientations). The error propagation is larger with SAR 
images than with VIR images due to a lower plotting accuracy (1-2 pixels versus 1/3-1/2 
pixel), and increases with smaller intersection angles, but also with shallower same-side 
SAR look angles (Toutin, 1998; 1999).  Consequently when possible, true stereoscopic 
plotting using human depth perception, which enables a better relative correspondence 
of the GCP between the images and a better absolute positioning on the ground, should 
be used.   
 
3.3 Geometric model computation by least-square adjustment 
 
When more than one image (VIR or SAR) is processed, a spatio-triangulation process 
based on a block adjustment can be applied to simultaneously compute all geometric 
models (Figure 6-4).  Figure 6-8 is an example of a block over the Canadian Rocky 
Mountains (BC) with 15 Landsat-ETM+ images using three rows and five strips (Toutin 



et al., 2001b).  All model parameters of each image/strip are determined by a common 
adjustment so that the individual models are properly tied in and the entire block is 
optimally oriented in relation to the GCPs.  With the spatio-triangulation process, the 
same number of GCPs is theoretically needed to adjust a single image, an image strip or 
a block.  However, some tie points (TPs) between the adjacent images have to be used to 
link the images and/or strips.  Elevation of TPs (ETPs) must be added when the 
intersection geometry of the adjacent images is weak, such as with intersection angles 
less than 15°-20° (Toutin et al., 2001a, b).  There are a number of advantages to the 
spatio-triangulation process, namely to: 
• Reduce the number of GCPs; 
• Obtain a better relative accuracy between the images; 
• Obtain a more homogeneous and precise mosaic over large areas; and 
• Generate homogeneous GCP network for future geometric processing. 
 

 
Figure 6-8: Image block of 15 Landsat-7 ETM+ images over Rocky Mountains, 

Canada generated from five strips and 3 rows.  The lined images are acquired from the 
same orbit and date and can be used as a single image with path processing. 



 
Whatever the number of images (spatio-triangulation or single image) and the geometric 
models (parametric or non-parametric) used, each GCP contributes to two observation 
equations: an equation in X and an equation in Y.  The observation equations are used to 
establish the error equations for GCPs, TPs, and ETPs.  Each group of error equations 
can be weighted as a function of the accuracy of the image and cartographic data. The 
normal equations are then derived and resolved with the unknowns computed.  In 
addition for the 3D parametric models, conditions or constraints on osculatory orbital or 
other parameters can be added in the adjustment to take into account the knowledge and 
the accuracy of the ephemeris or other data, when available.  They thus prevent the 
adjustment from diverging and they also filter the input errors.  
 
Since there are always redundant observations to reduce the input error propagation in 
the geometric models a least-square adjustment is generally used.  When the model 
equations are non-linear, which is the case for 2nd- and higher order non-parametric and 
parametric models, some means of linearization (series expansions or Taylor�s series) 
must be used.  A set of approximate values for the unknown parameters in the equations 
must be thus initialized:  
• To zero for the non-parametric models, because they do not reflect the image 

acquisition geometry; or 
• From the osculatory orbital and sensor parameters of each image for the 3D 

parametric models.   
 
More information on least-squares methods applied to geomatics data can be obtained in 
Mikhail (1976) and Wong (1980).  The results of this processing step are: 
• The parameter values for the geometric model used for each image; 
• The residuals in X and Y directions (and Z if more than one image is processed) for 

each GCP and their root mean square (RMS) residuals; 
• The errors and bias in X and Y directions (and Z if more than one image is 

processed) for each Independent Check Point (ICPs) if any, and their RMS errors; 
and  

• The computed cartographic coordinates for each point, including ETPs and TPs. 
 
When more GCPs than the minimum theoretically required are used, the GCP residuals 
reflect the modelling accuracy, while the ICP errors reflect the final accuracy.  As 
mentioned previously, this final accuracy is mainly dependent on the geometric model 
and the number of GCPs used versus their cartographic and image co-ordinates.   
 
When no ICP is available, RMS residuals can be carefully used as an approximation of 
the final accuracy, only when using 3D parametric models.   However, the fact that 
RMS residuals can be small with 2D/3D non-parametric models does not mean 
necessarily a good accuracy because these models correct locally at GCPs and the least-
square adjustment minimises residuals at GCPs.  Errors are still present between GCPs.  
On the other hand with the use of overabundant GCPs with 3D parametric models, the 
input data errors (plotting and/or map) do not propagate through the parametric models 
but are mainly reflected in the GCP residuals due to a global adjustment.  Consequently, 



it is thus �normal and safe� with 3D parametric models to obtain RMS residuals in the 
same order of magnitude than the GCP accuracy, but the model by itself will be more 
precise.  In contrast to polynomial methods, which are sensitive to GCP number and 
spatial distribution (including their elevation), the 3D parametric models are not affected 
by these factors because it precisely retains the complete viewing geometry, given that 
there is no extrapolation in planimetry and also in elevation. 
 
3.4 Image rectification 
 
The last step of the geometric processing is the image rectification (Figure 6-4). To 
rectify the original image into a map image, there are two processing operations: 
• A geometric operation to compute the cell coordinates in the original image for 

each map image cell; and 
• A radiometric operation to compute the intensity value or digital number (DN) of 

the map image cell as a function of the intensity values of original image cells that 
surround the previously-computed position of the map image cell. 

 
3.4.1 Geometric operation 
 
The geometric operation requires the two equations of the geometric model with the 
previously-computed unknowns, and sometimes elevation information.  In fact, since 3D 
parametric models take into account the elevation distortion, a DEM is needed to create 
more precise ortho-images. The rectification should then be called an ortho-rectification.  
But if no DEM is available, different altitude levels can be input for different parts of the 
image (a kind of �rough� DEM) to minimize this elevation distortion.  It is then 
important to have a quantitative evaluation of the DEM impact on the ortho-rectification 
process, both in term of elevation accuracy for the positioning accuracy and grid spacing 
for the level of details.  This last aspect is more important with high-resolution images 
because a poor grid spacing when compared to the image spacing could generate 
artefacts for linear features (wiggly roads or edges). Figures 6-9 and 6-10 give the 
relationship between the DEM accuracy (including interpolation), the viewing/look 
angles and the resulting positioning error on VIR and SAR ortho-images, respectively.  
These curves were mathematically computed with the elevation distortion parameters of 
a 3D parametric model (Toutin, 1995b).  However, they could be also used as 
approximation for other 3D parametric models and the 3D non-parametric models.  One 
of the advantages of these curves is that they can be used to find any third parameter 
when the two others are known.  It can be useful not only for quantitative evaluation of 
the ortho-rectification, but to forecast the appropriate input data, DEM or the 
viewing/look angles, depending of the objectives of the project. 
 
For example (Figure 6-9), with a SPOT image acquired with a viewing angle of 10° and 
with a 45-m DEM accuracy, the error generated on the ortho-image is 9 m.  Inversely, if 
a 4-m final positioning accuracy for the ortho-image is required with a 10-m DEM 
accuracy, the VIR image should be acquired with a viewing angle less than 20°.  The 
same error evaluation can be applied to SAR data using the curves of Figure 6-10.  As 
other example, if positioning errors of 60 m and 20 m on standard-1 (S1) and fine-5 (F5) 



ortho-images, respectively are required 20-m elevation error, which includes the DEM 
accuracy and the interpolation into the DEM, is thus sufficient.  For high-resolution 
images (spaceborne or airborne), the surface heights (buildings, forest, hedges) should 
be eihter included in the DTM to generate a digital surface model (DSM) or taken into 
account in the overall elevation error.   
 

 
 

Figure 6-9: Relationship between the DEM accuracy (in metres) the viewing angle 
(in degrees) of the VIR image, and the resulting positioning error (in metres) generated 

on the ortho-image (Toutin, 1995b). 
 
 
Finally, for any map coordinates (X, Y) with the Z-elevation extracted from a DEM 
when 3D models are used, the original image coordinates (column and line) is computed 
from the two-resolved equations of the model.    However, the computed image 
coordinates of the map image coordinates will not directly overlay in the original image; 
in other word, the column and line computed values will be rarely, if never, integer 
values.   

 
3.4.2 Radiometric operation 
 
Since the computed coordinate values in the original image are not integer, one must 
compute the DN to be assigned to the map image cell.   In order to compute the DN to 
be assigned to the map image cell, the radiometric operation uses a resampling kernel 
applied to original image cells: either the DN of the closest cell (called nearest 
neighbour resampling) or a specific interpolation or deconvolution algorithm using the 
DNs of surrounding cells.   In the first case, the radiometry of the original image and the 
image spectral signatures are not altered, but the visual quality of the image is degraded.  
In addition to the radiometric degradation, a geometric error of up to half pixel is also 
introduced.  This can caused a disjointed appearance in the map image.   If these visual 



and geometric degradations are acceptable for the end user, it can be an advantageous 
solution. 
 

 
 

Figure 6-10: Relationship between the DEM accuracy (in metres), the look angle (in 
degrees) of the SAR image, and the resulting positioning error (in metres) generated on 

the SAR ortho-image.  The different boxes at the bottom represent the range of look 
angles for each RADARSAT beam mode. (Toutin, 1998). 

 
 
In the second case, different interpolation or deconvolution algorithms (bilinear 
interpolation or sinusoidal function) can be applied.  The bilinear interpolation takes into 
account the four cells surrounding the cell. The final DN is then either computed from 
two successive linear interpolations in line and column using DNs of the two 
surrounding cells in each direction or in one linear interpolation using DNs of the four 
surrounding cells.  The DNs are weighted as a function of the cell distance from the 
computed coordinate values. Due to the weighting function this interpolation creates a 
smoothing in the final map image. 
 
The theoretically ideal deconvolution function is the sin(x)/x function. As this sin(x)/x 
function has in infinite domain it cannot be exactly computed.  Instead, it can be 



represented by piecewise cubic function, such as the well-known cubic convolution.  
The cubic convolution then computes 3rd-order polynomial functions using a 4x4-cell 
window.  DNs are first computed successively in the four-column and -line direction, 
and the final DN is an arithmetical mean of these DNs.  This cubic convolution does not 
smooth, but enhances and generates some contrast in the map image (Kalman, 1985).   
 
Due to computer improvement these last years, the sin(x)/x function can now be directly 
applied as deconvolution function with different window sizes (generally 8 by 8 or 16 
by 16). The computation time with 16 by 16 cell window can be 40 to 80 times more 
than the computation time for nearest neighbor resampling. The finale image is sharper 
with more details on features. 
 
All these interpolation or deconvolution functions can be applied to VIR or SAR 
images.  However, they are geometric resampling kernels, not very well adapted to SAR 
images.   Instead, it is better to use statistical functions based on the characteristics of 
the radar, such as existing adaptive filters using local statistics (Lee, 1980; Lopes et al., 
1993; Touzi, 1999).  Combining the filtering with the resampling also avoids multiple 
radiometric processing and transformation, which largely degrades the image content 
and its interpretation (Toutin, 1995b). 
 
Since interpolation or deconvolution functions transform the DNs and then alter the 
radiometry of the original image, problems may be encountered in subsequent spectral 
signature or pattern recognition analysis.  Consequently, any process based on the image 
radiometry should be performed before using interpolation or deconvolution algorithms.   
 
Figures 6-11 and 6-12 are examples of the application of different resampling kernels 
with Quickbird high-resolution VIR image and RADARSAT-SAR fine mode (F5) 
image, respectively.  Sub-images (200 by 200 pixels) were resampled with a factor of 
six to better illustrate the variations of the resampling kernels: the Quickbird and 
RADARSAT resampled image pixels are then 0.10 m and 1.10 m, respectively.  Letters 
A, B, C and D refer to different geometric resampling kernels (nearest neighbour, 
bilinear, cubic convolution, sin(x)/x with 16x16 window), respectively and Letters E and 
F refer to statistical SAR filters (Enhanced Lee and Gamma), respectively.   
 
For both VIR and SAR images, the nearest neighbour resampling kernel (A) generates 
�blocky� images with rectangular-edge features, while the bilinear resampling kernel 
(B) generates fuzzy images with the feeling of �out-of-focus� images.  The best results 
are obtained with the sinusoidal resampling kernels (C & D): even if there are few 
differences the true sinusoidal function generates sharper features.  As example on the 
Quickbird image (Figure 6-11), the two cars in the front of the houses are better defined 
in D: the windshield and rear window can be perceived on the car underneath while only 
the windshield is visible on the other car.  It helps to differentiate a car and a station 
wagon!  For the SAR image (Figure 6-12), the two filters (E & F) give even better 
image appearance than the sinusoidal resampling, due to the fact that the SAR speckle is 
filtered at the same time.   
 



 
 

Figure 6-11. Examples of applications of geometric resampling kernels used in the 
rectification process with a Quickbird image.  The sub-images are 350 by 350 pixels 
with 0.10-m spacing.  Letters A, B, C and D refer to different geometric resampling 

kernels (nearest neighbour, bilinear, cubic convolution, sin(x)/x with 16x16 window), 
respectively and Letters E and F refer to statistical SAR filters (Enhanced Lee and 

Gamma), respectively.  Quickbird Image © Digital Globe, 2001 
 



 
Figure 6-12. Examples of applications of geometric resampling kernels used in the 

rectification process with RADARSAT-SAR fine mode (F5) image.  The sub-images are 
600 by 600 pixels with 1.00-m spacing.  Letters A, B, C and D refer to different 

geometric resampling kernels (nearest neighbour, bilinear, cubic convolution, sin(x)/x 
with 16x16 window), respectively and Letters E and F refer to statistical SAR filters 
(Enhanced Lee and Gamma), respectively.  RADARSAT Images © Canadian Space 

Agency, 2001 



 
4. CONCLUDING REMARKS 
 
Since the launch of the first civilian remote sensing satellite 30 years ago, the 
requirements for the geometric processing of remote sensed images have changed 
drastically.  Furthermore, the integration of multi-format data in a digital world requires 
the highest accuracy possible so as to perform the ortho-rectification of multi-sensor 
images.  While different mathematical functions and solutions can be used, non-
parametric solutions are acceptable for low-resolution images while parametric solutions 
are more appropriate for medium and high-resolution images.  Even if 3D non-
parametric solutions (mainly with 3D rational functions) have some advantages and can 
perform well in research environments, 3D parametric solutions have been proven to be 
more precise and robust and to achieve more consistent results in operational 
environments than 3D rational solutions.  Consequently, they should be the primary 
choice whenever available. In fact, the mathematical parameterisation of physical models 
has always been a major issue in scientific research and achievements.  When it becomes 
theoretically and/or practically impossible, however, statistical methods such as 3D rational 
models can take over. 
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