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Abstract 

 

 

In this study, the consistency of systematic retrievals of surface reflectance and 

leaf area index was assessed using overlap regions in adjacent Landsat ETM+ scenes.  

Adjacent scenes were acquired within 7 to 25 days apart to minimize variations in the 

land surface reflectance between acquisition dates.  Each Landsat ETM+ scene was 

independently geo-referenced and atmospherically corrected using a variety of standard 

approaches.  Leaf area index (LAI) models were then applied to the surface reflectance 

data and the difference in LAI between overlapping scenes was evaluated.  The results 

from this analysis show that systematic LAI retrieval from Landsat ETM+ imagery using 

a baseline atmospheric correction approach that assumes a constant aerosol optical depth 

equal to 0.06 is consistent to within ±0.61 LAI units.  The average absolute difference in 
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LAI retrieval over all ten image pairs was 26% for a mean LAI of 2.05 and the maximum 

absolute difference over any one pair was 61% for a mean LAI of 1.13.  When no 

atmospheric correction was performed on the data, the consistency in LAI retrieval was 

improved by 1%.  When a scene-based dense, dark vegetation atmospheric correction 

algorithm was used, the LAI retrieval differences became 3% worse than the baseline 

correction.  This implies that a scene-based atmospheric correction procedure may 

improve the absolute accuracy of LAI retrieval without having a major impact on 

retrieval consistency.  Such consistency trials provide insight into the current limits 

concerning surface reflectance and LAI retrieval from fine spatial resolution remote 

sensing imagery with respect to the variability in clear-sky atmospheric conditions. 

 

 

 
 
 

1.0 Introduction  

 

Leaf area index (LAI) is defined as half the all-sided green leaf area per unit ground 

surface area projected on the horizontal datum (United Nations FAO).  It is a quantitative 

indicator of foliage density and has been used for monitoring vegetation status (Cayrol et 

al., 2000; Waring and Running, 1998), modelling fluxes of water (Su, 2000; Nouvellon et 

al., 2000), energy (Bonan, 1995) and greenhouse gases (Liu et al., 1997; Coops et al., 

2001) between the biosphere and atmosphere.  LAI has been an important variable in the 

progression of national (Chen et al., 2002; Fernandes et al., in press) and international 

initiatives (Sellers et al., 1994; Myneni et al., 1997) for the monitoring of forest 

vegetation using space-borne satellite sensors.  Currently, there is a growing need for 

quality assured data products as inputs into continental and global data assimilation 

strategies (Cohen and Justice, 1999; Houser and Cosgrove, 2002).  With the increased 

availability of well-calibrated Landsat Enhanced Thematic Mapper-Plus (ETM+, or for 

simplicity in this paper TM) imagery, consistent processing methods are in demand for 

systematic and repeatable monitoring of vegetation productivity using such data (Wood 
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et al., 2002).  Moreover, the accuracy and precision errors of the derived products should 

be known since these data are often used as inputs into calibration and validation of 

coarser scale products (Fernandes et al., in press).  In this paper, we consider accuracy to 

represent how well the calculated LAI values match the actual values obtained from field 

measurement (Goodchild, 2000, pg. 7).  The measurement of accuracy is difficult in the 

practical sense, since methods for LAI measurement using field and remote sensing-

based approaches are not universal or standardized between researchers.  Furthermore, 

we were not able to obtain spatial and temporal field-based measurements of LAI 

coincident with the overlap regions analyzed in this study.  As a result, the accuracy of 

LAI retrieval from TM imagery will not be addressed in this research.  What we do focus 

on in this study is the statistical precision of LAI retrieval from TM imagery.  For the 

purposes of this research, we define the general term ‘precision’ as the fineness of the 

measurement increment, or a measure of how consistent estimates of a particular variable 

can be derived through a specified data processing chain.  This definition can be 

decomposed into two distinct parts to address the difference between numerical and 

statistical precision.  The former is usually found in the discipline of computer science to 

describe “the exactness, or degree of detail with which an individual observation is 

measured (e.g. ‘double precision floating point numbers)” (Mowrer and Congalton, 2000, 

pg. xvi).  Alternatively, Marriott (1990) describes the dispersion of repeated observations 

about their own mean as statistical precision.  Repeatedly estimating a parameter such as 

surface reflectance or LAI and deriving the variability in these collective estimates will 

approximate the statistical precision.  We use the term consistency as opposed to 

precision in this paper as it reflects a broadly defined precision estimate.  A true value of 

precision would be the standard deviation in a collection of values acquired in the same 

overlap region.  Since we only use two samples within a region of overlapping TM 

coverage, the consistency reflects the degree of reliability between these two 

measurements with which surface reflectance and LAI can be approximated from remote 

sensing data.  Since surface reflectance is the fundamental parameter for deriving LAI, 

we feel that a measure of consistency should be determined and be traceable throughout 

the entire data processing chain. 
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The processing chain to generate an LAI product from TM imagery is:   

(1) radiometric calibration of raw data ; 

(2)  atmospheric / BRDF correction to translate TOA reflectance to top-of-canopy bi-

directional reflectance; and, 

(3) application of algorithms to calculate LAI from reflectance (including screening 

for cloud, haze, land cover and land use patterns). 

 

Although these procedures are not difficult to conceptualize, processing errors made at 

any of these stages will propagate through to the final product.  Furthermore, when 

dealing with systematic LAI mapping over large extents of time and space, such as 

Canada-wide scenes throughout the growing season, site or overpass specific 

measurements of surface structure or reflectances and atmospheric properties are usually 

not available.  In this research, we use existing algorithms published in Fernandes et al. 

(in press) for all LAI retrievals since the focus of this paper is strictly to measure the 

consistency (precision) with which remote LAI can be measured and not on LAI 

algorithm improvement (accuracy). 

 

 

1.1 Atmospheric influence on LAI retrieval  

 

The starting point for a systematic approach of LAI retrieval using remote sensing 

data is in the ability to accurately convert the information received at the satellite sensor 

to surface reflectance.  The information received at the sensor not only includes 

measurements of reflected solar energy, but is inherently influenced by such factors as 

the sun-object-sensor angular relationship, the bi-directional reflectance distribution 

function (BRDF) of the surface being sensed, the spectral band response functions and 

the atmospheric properties at the time of sensor overpass.  Such factors can profoundly 

affect the spatial or temporal analysis of remote sensing data and their influence should 

be quantified or at least acknowledged in any remote sensing study.  Of special 

consideration in this research, is the influence of atmospheric correction on estimated 
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surface reflectance and the propagation of uncertainties in atmospheric correction to LAI 

retrieval.  

 

Atmospheric scattering and absorption contributes to at-sensor radiance across all 

visible and infrared spectral bands on the TM sensor.  Scattering of solar irradiance by 

atmospheric molecules and aerosols generates path radiance, which adds overall 

brightness to the scene under investigation.  Local scattering at the pixel level is also 

common in a scene where neighbouring pixels over a heterogeneous surface contribute a 

portion of the reflected brightness into the path of the observed pixel.  This effect (termed 

adjacency effect) tends to make the reflectance of dark pixels appear brighter, while 

bright pixels appear darker.  Aerosols and other molecules in the atmosphere also absorb 

radiation that is reflected from the Earth’s surface causing an overall loss of brightness to 

the scene as recorded by the satellite sensor.  Both atmospheric scatter and absorption are 

enhanced at shorter wavelengths as aerosol particle sizes approach the spectral 

wavelength being recorded by the instrument and are dependent on the surface features 

under examination.  Since many commercial satellite sensors offer unique spectral 

windows to minimize the influence of atmospheric molecular scattering and gas 

absorption on the recorded signal, the most common atmospheric correction procedures 

attempt to quantify the optical properties of the atmosphere at the time of the sensor 

overpass and apply radiative transfer algorithms to estimate surface bi-directional 

reflectance from at-sensor radiance.   

 

An ideal method for quantifying atmospheric optical properties would be to 

obtain in-situ measurements in tandem with the sensor overpass (Thome, 2001).  It is 

well documented that aerosol optical depth (AOD) is one of the most influential 

parameters in the atmospheric correction procedure for TM visible and infrared bands of 

land (Kaufman and Remer, 1994).  However, due to the large variability in aerosol 

distributions both temporally and spatially (Liang et al., 2001), surface measurements can 

be difficult to acquire or may not be economically feasible in a research budget.  

Although, permanent atmospheric measurement stations have been established by the 

AERONET network (Holben et al., 1998), the distribution of these data over Canadian 
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landscapes (provided by the AERONET affiliate, AEROCAN) is spatially sparse and 

inadequate to systematically correct for Landsat atmospheric conditions in a consistent 

manner.  Furthermore, AERONET data are also insufficient to quantify within scene 

aerosol variability.   

 

Given such limitations, many researchers have derived methods to calculate 

atmospheric optical properties solely from the remotely sensed scene under investigation 

(Kaufman and Sendra, 1988).  Current image processing methods to estimate aerosol 

concentrations use either: Invariant-Object Methods (Moran et al., 1992), Histogram 

Matching (PCI Inc., 2000), Dark Target Methods including dense, dark vegetation  

(Kaufman and Sendra, 1988; Teillet and Fedosejevs, 1995) or Contrast Reduction 

Methods (Tanre and Legrand, 1991).  All are summarized in (Liang et al., 2001) and 

well-documented elsewhere for a variety of moderate (Santer et al., 1999; Lin et al., 

2002) and high spatial resolution satellite sensors (Kaufman et al., 1997; Liu and 

Vermote, 2000).  The dense, dark vegetation (DDV) approach was utilized in this study 

for its relative acceptance in the remote sensing community, for its usefulness in TM 

retrievals of aerosols over land (King et al, 1999;Liang et al., 1997), for its computational 

efficiency (Richter, 1996; Fallah-Adl et al., 1997) and lastly, for the successful validation 

that such an approach provides with accurate ancillary data from in-situ monitoring 

stations (Kaufman et al., 1993; Kaufman et al., 1997). 

 

 

Given the importance of atmospheric conditions during satellite sensor overpass, the 

propagation of this uncertainty into LAI retrievals can be decomposed into bias and 

random errors due to both the algorithm applied and the vegetation index (VI) used as 

input to the algorithm.  The LAI algorithms used here are empirical regressions between 

LAI and spectral vegetation indices derived from Landsat surface reflectances co-located 

over a number of calibration sites across Canada (Fernandes et al.).  Our study focuses on 

differences in LAI due to uncertainties in calibration and atmospheric correction of the 
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vegetation indices required as input to the selected retrieval algorithms.  This is of 

importance for two reasons: 

(i) simulation studies suggest typical reflectance estimation errors of over 20% 

in retrieval of visible band reflectances for cloud free conditions due to 

uncertainties in current image based atmospheric correction algorithms 

(Knapp et al., 1999). 

(ii) a model based sensitivity analysis of vegetation index retrieval uncertainty as 

a function of modest absolute uncertainties in aerosol optical depth at 550nm 

(AOD550) of +/- 0.10 suggests VI precision errors range from 15% to over 

50% depending on surface conditions and VI used (Fernandes et al.). 

 

A quantitative assessment of the actual uncertainty in LAI due to uncertainties in 

atmospheric correction is essential before a representative error budget can be derived for 

image based LAI products. Again, we limit our treatment to existing LAI algorithms 

developed at Canada Centre for Remote Sensing (Fernandes et al., 2003). By using 

overlapping TM data, we assume negligible change in surface reflectance, LAI and 

sensor radiometry. Thus differences between the two coincident regions are assumed to 

be predominantly due to changes in: 

 

(a) Atmospheric condition 

(b) Bi-directional reflectance function (BRF) 

(c) Co-registration 

To assess (a), we test four atmospheric correction techniques, comparing the 

consistency in LAI retrieval of each method. In general, (b) should be considered when 

comparing images acquired under different illumination and observation angles. 

However, no BRF adjustments were performed in this study, as the solar zenith angles 

were quite similar (maximum difference between overlap pairs was 3j) and the relative 

azimuth angles do not vary substantially from one Landsat overpass to another. The 

largest BRF effect would be the sensor viewing geometries, as they varied in the extreme 

cases by <F4.5j away from nadir. However, testing of this influence on coniferous forest 

canopies using two different models, the Walthall (Walthall, Norman, Welles, Campbell, 
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& Blad, 1985) and NTAM (Latifovic, Cihlar, & Chen, in press) resulted in maximum 

absolute surface reflectance differences of F0.005 for ETM+ band 3 (TM3) and 

<F0.002 for bands 4 (TM4) and 5 (TM5). For simplicity, any reference to a specific 

spectral band will be numerically noted after the TM acronym. To minimize the influence 

of (c) on LAI retrieval, one scene from each pair was co-registered to the companion 

scene and each overlap scene was spatially aggregated to a 90-m footprint. In summary, 

the research questions examined in this study were: 

(1) What is the consistency in surface reflectance using a baseline atmospheric 

correction approach from Landsat ETM+ imagery?  

(2) (2) What is the consistency in LAI retrieval when propagated from (1) for each 

atmospheric correction method? 

 

 

2. Data and materials 
 
2.1. Landsat scene selection 
 

The 20 full Landsat ETM+ scenes used in this study are listed in Table 1 and their 

locations within Canada are displayed graphically in Figure 1 superimposed over a colour 

composite acquired from SPOT4-VEGETATION (VGT). The inset in the top right 

corner of Figure 1 illustrates a typical pair of LAI maps and the overlap region common 

to both (highlighted in white). The Landsat images were chosen based on (1) mid-

summer overlap coverage over vegetated areas (particularly over forests and agriculture) 

during the summer growing season, (2) coverage with minimal cloud/ haze contribution, 

and (3) coverage south of the treeline where the existing LAI algorithms have been 

validated. We assume changes in surface conditions were negligible between scenes as 

the sensor imaged the overlap regions from 7 to 25 days apart. Available meteorological 

data was used to confirm an absence of precipitation for a 24-h period before each 

satellite image acquisition. 
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Table 1 – Landsat ETM+ scene selection.  All overlap regions were imaged from 7 to 25 
days apart. 

 

  WEST     EAST   ECOZONE 
Path Row Date Path Row Date   

14 28 June 8,2001 13 28 June 1,2001 Mixedwood Plains 
22 24 July 15,2000 21 24 August 9,2000 Hudson Plains 
22 26 July 5,2002 21 26 June 28,2002 Boreal Shield 
24 22 July 29,2000 23 22 July 22,2000 Hudson Plains 
28 24 August 26,2000 27 24 September 4,2000 Boreal Shield 
32 22 July 21,2000 31 22 July 14,2000 Boreal Shield 
34 20 July 3,2000 33 20 June 10,2000 Taiga Shield 
39 24 July 20,1999 38 24 July 29,1999 Prairies 
41 23 August 3,1999 40 23 July 27,1999 Boreal Plains 
41 24 August 3,1999 40 24 July 27,1999 Prairies 

 

 

The Landsat ETM+ data corresponded to Level 1G at-sensor-radiance 

systematically corrected and processed using the PGS processor by Radarsat International 

(RSI, Richmond, Canada). Sensor radiometric calibration was performed using the 

calibration gain and offset information provided in Landsat ETM+ header files. 

The western image of each scene pair was geo-referenced to Lambert Conformal Conic 

projection (LCC, 49jN and 77jN as standard parallels, 95jWas the reference meridian) 

using nearest-neighbor, first-order transformations from the geographic coordinates 

provided in the header files together with vector coverages from the Canadian National 

Topographic Database (NTDB, Geomatics Canada, 1996). These scenes provided the 

base images to which all adjacent eastern scenes were co-registered using image-to image 

registration. In all cases, a minimum of eight ground control points were selected in each 

overlap region yielding an average root-mean-square error (RMSE) of less than 0.5 pixels 

(15 m). 
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Figure 1 – Canada-wide colour composite from SPOT4-VEGETATION (VGT) with 
Landsat ETM+ scene locations in white.  Inset shows LAI maps for 33/20 and 34/20 and 

the overlap region common to both. 
 

 

 

2.2. Atmospheric correction: four correction methods 

This section describes the four atmospheric correction procedures applied in this 

study. All methods incorporated scene-specific input parameters such as centre location 

coordinates, acquisition date and time along with the generic mid-latitude summer 

atmosphere and continental aerosol model inputs into the 6S radiative transfer code 

(Vermote, Tanre, Deuze´, Herman, & Morcrette, 1997). Elevation data for each scene 

was obtained from the NTDB at a scale of 1:100,000. The first two atmospheric 

correction methods incorporated a fixed aerosol concentration value whereas methods 

three and four evaluated scene-dependent aerosols. To test the influence of AOD550 on 

surface reflectance and LAI retrieval, method #1 applied a constant AOD550 with scene 

specific geographic information to each scene in the conversion from at-sensor radiance 

to surface reflectance. This method (herein referred to as the baseline method) was used 
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to test the assumption that there was no change in atmospheric conditions between the 

two overlap dates taking into account that there was a certain level of aerosols present in 

each of the two overlap scenes. Such an approach is often used as a standard approach for 

correction of Advanced Very High Resolution Radiometer (AVHRR) data and hence 

could serve as a starting point for Landsat ETM+ atmospheric correction (Cihlar et al., 

2002). For this method, an AOD550 value of 0.06 was chosen to be representative of the 

typical aerosol contribution to remotely sensed data over the Canadian landmass as 

suggested by Ahern et al. (1991) and Fedosejevs et al. (2000). 

 

The second atmospheric correction procedure was based on a no-correction 

scenario (referred herein as no-correction method). In this case, it was assumed that the 

atmosphere did not influence the satellite measurements. Surface reflectance was 

calculated from top-of-atmosphere directional reflectance in all overlap regions using a 

fixed aerosol optical depth at 550 nm (AOD550) equal to 0. The reflectance data from 

each scene were subsequently used in LAI retrieval. 

The third atmospheric correction method incorporated the dense, dark vegetation 

approach to approximate a scene-dependent AOD550 with scene-specific geographic 

information. This method (referred to as the DDV correction) tested the assumption that 

the dense, dark vegetation approach would systematically identify and correct for 

changes in atmospheric conditions between acquisition dates. The DDV approach used in 

our atmospheric correction of satellite data used information extracted from selected 

DDV pixels across all spectral wavelengths in a scene to determine the contribution of 

path radiance influencing the pixel radiances recorded at the satellite sensor. The 

approach described here is similar to the methodology applied by Liang et al. (2001) with 

several modifications that were found to be more appropriate for Canadian landscapes. 

Dense, dark vegetation targets were defined from Landsat ETM+ band 7 (TM7) and a 

Normalized Difference Vegetation Index (NDVI) map as suggested by Kaufman and 

Tanre (1998) and Liang et al. (2001). A top-of-atmosphere TM7 threshold of 0.01–0.05 

was used as a legitimate value of DDV reflectance since aerosols modestly affect this 

spectral region (2090–2350 nm). The TM7 range has been used in other DDV studies 

involving Landsat TM data (Quaidrari & Vermote, 1999; Song, Woodcock, Seto, 
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Lenney, & Macomber, 2001) and was assumed to be valid for all of the ETM+ data 

processed in this project. To demarcate dark vegetation targets, an NDVI>90th percentile 

was used as a threshold value. 

 

Finally, the last atmospheric correction procedure used in this study, was based on 

AOD550 measurements obtained from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard the Terra (EOS AM) satellite. The method 

(herewith in referred to as the MODIS correction) was applied to test an alternative 

variable AOD550 correction methodology with our DDV approach described in the 

preceding section. MOD04_L2 granules representing geographic locations coincident 

with four ETM+ scene overpasses were obtained from NASA’s Goodard Space Flight 

Center (GSFC) in the standard Hierarchical Data Format (HDF) (online: 

http://daac.gsfc.nasa.gov/data/dataset/ 

MODIS/02_Atmosphere/01_Level_2/01_Aerosol_Prod/ 2000/index.html). 

 

Only the corrected optical depth parameter at 550 nm was utilized from each HDF 

file. To obtain this parameter, the ETM+ latitude and longitude scene centre position was 

located on each MOD04_L2 grid and the data from a 20_20 pixel square area (where it 

was assumed 1 pixel = 10 km at nadir) was extracted from the HDF file. Negative data 

values were dropped from further analysis (as these represent either no data pixels, or 

pixels processed using the ocean DDV algorithm) and the remaining data was averaged 

and calibrated using the appropriate slope and intercept coefficients (Chu, Personal 

communication). Due to data availability constraints for MODIS AOD550 measurements 

prior to the year 2001, only scenes for 2001 and 2002 could be processed using this 

methodology. This operation was performed for all four Landsat scenes during these 2 

years, and the resultant AOD550 was applied with scene-specific geometry to the 6S 

radiative transfer code to obtain the atmospheric correction coefficients to convert top-of-

atmosphere directional reflectance into surface reflectance. 

 

3. Methods 
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The following section presents the methods used to assess the consistency 

inherent in the surface reflectance and LAI retrievals. This section has been organized 

into two subsections. The first subsection describes each of the consistency trials while 

the second subsection presents the methods used to retrieve LAI from the ETM+ scene. 

 

3.1. Consistency trials 

This analysis has been organized into two trials based on the research questions 

presented in Section 1.1. The first trial (trial #1) examines the situation where the 

atmosphere is assumed to remain unchanged in each overlap region between the two 

acquisition dates. For this trial, surface reflectance was obtained using the baseline 

atmospheric correction procedure. The results from this trial quantify the surface 

reflectance consistency to answer the first research question. The second trial (trial #2) 

compared the LAI retrieval differences for the baseline correction procedure in trial #1 

and three different atmospheric correction scenarios. For this trial, surface reflectance 

was determined using a no correction scenario; the DDV atmospheric correction 

procedure and an atmospheric correction method using MODIS-derived AOD550 input 

estimates. These reflectance values were then used to generate LAI fields in order to 

assess the consistency of LAI retrieval. The results from this trial answer the second 

research question. 

 

3.2. LAI retrieval 

To model LAI from ETM+ surface reflectance measurements, each Landsat scene 

was initially processed using the Infrared Simple Ratio (ISR = TM4/TM5) LAI algorithm 

introduced by Fernandes et al. (2003) stratified using a 1- km spatial resolution land 

cover layer (Cihlar, Beaubien, & Latifovic, 2001) and a land use layer (Kerr & Cihlar, 

2003) derived from SPOT4-VEGETATION (VGT). The LAI for pixels classified as 

needle-leaf forest was modeled using regression Eq. (1) while those pixels classified as 

broadleaf forest used Eq. (2). 

LAI =(0.9000 + 0.6900 In ISR)4       (1) 

LAI = (-0.3500 + 1.1200 ISR0.5)4       (2) 
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The regions defined as agriculture in the land cover map were modeled based on 

crop type from the land use map using either the Simple Ratio (SR) vegetation index or 

the NDVI due to the lack of field data to calibrate ISR-based regressions (for agriculture 

prediction equations refer to Table 2 in Fernandes et al., 2003). The scenes were co-

registered into similar spatial domains, and the region of overlap was cropped into a new 

database. To minimize co-registration errors, a 3_3 moving average filter was used to 

degrade each of the overlap regions to a 90-m footprint. To assess the LAI consistency 

using the ISR algorithm within the overlap regions, the root mean square difference 

(RMSD) and relative absolute difference (RAD) were calculated on a per-pixel basis 

between the western and eastern overlap images, using the former as the reference. 

 

4. Results 

The results have been organized based on the structure of the research questions 

defined in Section 1.1. For simplicity, only the western scene from each overlap pair is 

listed in all tables. 

 

4.1. Consistency analysis of surface reflectance retrieval using a baseline atmospheric 

correction 

As shown in Table 2, the average surface reflectance retrieval differences for the 

10 overlap regions range from 9% to 73% based on spectral reflectance factors between 

0.055 and 0.251. TM1 produced the largest mean relative absolute difference of 73%, or 

an absolute reflectance difference of F0.055 between overlap regions. The mean 

reflectance in TM1 was slightly higher than found in Wang et al. (2001); however, the 

mean relative error fell within the bounds described by Vermote (2000). A maximum 

mean reflectance factor of 0.12 and a RAD of 126% were determined for TM1 in the 

overlap region between scenes 31/22 and 32/22. TM2 showed an average RAD of 47% 

for a mean absolute reflectance of 0.066. In this case, the overlap region between scenes 

27/24 and 28/24 revealed the maximum RAD of 94% for a mean reflectance factor of 

0.033. This difference seems unusually large especially over forest pixels as Vermote 

suggests < 12% uncertainty for this spectral band. TM3 produced an average RMSD of 

F0.18, or 32% RAD for a mean absolute reflectance of 0.055. In this spectral band, the 
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scenes dominated by agriculture produced the largest absolute reflectance factors (0.078–

0.103) and subsequently the lowest relative errors (13–20%). The smallest reflectance 

retrieval differences were derived for TM4, where the absolute reflectance could be 

F0.025 for a mean reflectance factor of 0.25. This result is consistent with Wang et al. 

(2001); however, the needleleaf- dominated scenes (33/20, 34/20 and 27/24, 28/24) 

usually underestimated the vegetation reflectance in this band. TM5 produced slightly 

larger differences than TM4. An average RAD of 12% was calculated for 10 samples, 

where the highest difference of 15% was noticed in the overlap region between scenes 

38/24 and 39/24 and also between scenes 33/20 and 34/20. TM7 showed an average RAD 

equal to 18% for a mean absolute reflectance of 0.083. The overlap region between 

scenes 13/28 and 14/ 28 was responsible for the maximum RAD in this spectral band. 
Table 2 
Surface reflectance consistency for Landsat TM overlap regions derived from the baseline atmospheric 
correction 
Band Spectral range (nm) 
 

Band Spectral 

range (nm) 

Mean REF Mean 

RMSD 

Max 

RMSD 

Range 

RMSD 

Mean RAD Max RAD Range 

RAD 

1 450– 515 0.063 0.055 0.091 0.083 73 126 107 

2 525– 605 0.066 0.033 0.056 0.047 47 94 86 

3 630– 690 0.055 0.018 0.03 0.023 32 67 54 

4 750– 900 0.251 0.025 0.043 0.029 9 16 10 

5 1550– 1750 0.153 0.019 0.039 0.03 12 15 8 

7 2090– 2350 0.083 0.019 0.04 0.035 18 28 16 

 
‘‘Mean REF’’ refers to the mean surface reflectance factor, RMSD refers to the root-mean-square-
difference and RAD refers to the relative absolute difference 
as a percentage of the mean reflectance factor. 
 
 
4.2. Consistency in LAI retrieval when propagated from baseline corrected surface 
reflectance 
 

Table 3 presents the LAI retrieval differences under the baseline atmospheric 

correction procedure. The mean LAI value for all land cover types in each overlap pair is 

shown along with the derived RMSD in LAI units and RAD as a percentage of the mean. 

Overall, mean LAI values < 2 units tend to occur in overlap regions located in the Prairie, 

Taiga shield or Hudson plains ecozones. In these regions, grasslands or agriculture are 
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the dominant land cover type. Larger LAI values (>2 units) occur in forest-dominated 

cover types. 

 As shown in Table 3, the baseline atmospheric correction procedure produced an 

average LAI root mean square difference of 0.61, or 26% of a mean LAI of 2.05 units. 

The overlap region between scenes 33/20 and 34/20 presented the largest relative 

difference of 61% for a mean LAI of 1.13 units. The smallest relative difference was 

calculated for the overlap region between scenes 21/24 and 22/24. The RAD for this 

overlap region was 14% for a mean LAI of 1.98 units. Seven of the ten overlap sets 

processed fell below the mean relative difference of 26% revealing a skewed distribution 

characterized by a standard deviation in RAD of 14%. Two overlap sets having resultant 

RAD values above the mean were dominated by agricultural land cover and produced 

mean LAI values c0.8 units. Since the overlap region between 40/23 and 41/23 is located 

one World Reference System (WRS) row north of the former two scenes, it contains 

more forested land cover types, is less likely to change between overlap acquisition dates, 

and produced a substantially smaller RAD of 17% for a mean LAI of 2.29 units. 

 
Table 3 
LAI retrieval consistency, root mean square difference (RMSD) and relative absolute difference (RAD) 
derived from the overlap analysis of baseline atmospherically corrected reflectance data 
 

Path Row Mean LAI RMSD (LAI) RAD (%LAI) Sample size 

(pixels) 

39 24 0.81 0.40 39 238386 

41 23 2.29 0.57 17 229200 

41 24 0.79 0.57 29 353615 

34 20 1.13 0.61 61 424600 

32 22 2.21 0.59 19 371185 

22 24 1.98 0.49 14 451032 

24 22 1.38 0.35 16 309968 

28 24 3.12 0.95 23 454848 

14 28 3.14 0.87 24 430278 

22 26 3.62 0.70 19 294600 

 Mean 2.05 0.61 26  

 S.D. 1.02 0.19 14  

 
 

Figure 2 presents histograms of the LAI residual differences obtained for the 

baseline atmospheric correction scenario. The histograms have been divided into Figure 
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2a and b for display purposes. The largest residual differences were observed between 

scenes 27/24 and 28/24 (shown as the circle symbol in Figure 2b) with a mean difference 

of _0.4 LAI units and scenes 21/26 and 22/26 (shown as the pointed star in Figure 2b) 

with a mean difference of + 0.5 LAI units. A negative LAI residual in the overlap region 

reveals that a larger LAI occurred in the western overlap scene whereas a positive 

residual shows the opposite. Thus, the overlap regions for scenes 28/24 and 21/26 

showed larger mean LAI values than their overlap counterparts. The majority of scenes (7 

of 10) had residual differences ranging from F0.25 LAI units. While this may indicate 

that the baseline correction scenario will provide consistent results over a given region, 

the relatively large scatter in residuals shown in Figure 2b (e.g. one standard deviation 

confidence interval ranging from 0.35 LAI to 0.90 LAI in the dramatic cases) suggests 

that there is an additional random error component occurring between overpasses. It is 

unlikely that this is due to changes in measured LAI (or reflectance) caused by surface 

moisture differences given that the imagery was acquired at least 24 h away from a 

precipitation event and that a large area of drying or wetting should show up as a second 

mode in the residual histogram. 

Although 24 h may not be sufficient to rule out any moisture differences present 

in the overlap areas as soil moisture does not vary much from one day to the next in this 

region, another explanation could be the presence of phenological changes in the overlap 

area between acquisition dates. While this could be true for scenes 33/20 and 34/ 20 (23 

days apart) having the largest RAD (61%), it is certainly not true for scenes 21/24 and 

22/24 (25 days apart), which yielded the lowest RAD (14%). Furthermore, to address the 

assumption of no phenological differences between the two acquisition dates, an analysis 

segmenting forest from agriculture RMSD and RAD values was performed. Only 4 of 10 

overlap pairs contained both agriculture and forest pixels and three of these characterized 

lower RMSD and RAD values for agriculture LAI. The overlap pair 38/24–39/24 had the 

largest difference in RMSD values for forest and agriculture of 0.85 and 0.38, 

respectively. In this region, forest pixels were limited to woodland, low-density 

deciduous or treed barren land cover types where LAI differences may be largely 

dependent on the combination of understory and overstory vegetation phenology 

changes. This situation may also exist in the overlap regions for scenes 40/23–41/23 and 
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40/24–41/24 where similar results were obtained. The overlap region for scenes 13/28–

14/28 presented a forest RMSD of 0.82 units while the agriculture RMSD was 0.97. In 

this case, the number of forest and agriculture pixels was evenly distributed, leading to 

relatively high overall mean LAI of 3.14 units. It is unclear at this point why the 

agriculture RMSD for this overlap pair is double the value obtained for the other scenes 

having agriculture pixels; however, this presents something that warrants further 

investigation. 

          A third explanation is that the baseline atmospheric correction procedure failed to 

quantify atmospheric differences between overlapping pairs or the within-scene spatial 

variability in atmospheric conditions. The influence of this spatial variability in AOD550 

was not addressed in this study for lack of validation data; however, the influence of 

between-scene AOD550 variability was tested in the second trial of this study. 

4.3. LAI retrieval consistency comparison for two other atmospheric correction methods 

and a no correction scenario 
 

The results from trial #2 are illustrated in Tables 4 and 5. Table 4 shows the LAI 

differences derived for the no correction method, whereas Table 5 presents the LAI 

differences calculated for the DDV atmospheric correction. 

 18



 
 

 

 

 
 Figure 2 - Histograms illustrating the residual placement of differences for each 
set of overlap scenes for the baseline atmospheric correction procedure.  The figure was 
divided into parts a. and b. for display purposes. 
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4.3.1. No atmospheric correction 

Table 4 presents the results of the second trial using the no correction approach to 

derive LAI consistency in the overlap regions. In this analysis, a mean RMSD of 0.59 

LAI units and mean RAD of 25% was calculated over 10 samples. The RAD was 

improved by 1% on average from the baseline method, which indicates that a bias exists 

when converting from top-of-atmosphere reflectance to surface reflectance using 

constant, though different AOD550 values. This bias is minimized as AOD550 

concentrations are lower which is characterized in the comparison of results between the 

no correction and baseline correction methods. The mean LAI for all scenes was 1.97 

units. 

 
Table 4 – LAI retrieval consistency, root mean square difference (RMSD) and relative absolute difference 
(RAD) derived from the overlap analysis of LAI derived using top-of-atmosphere surface reflectance data.  
Values in braces ({}) represent the percent change from the baseline atmospheric correction method. 
 

Path Row Mean LAI RMSD (LAI) RAD (% LAI) 
        {% change from baseline} 

39 24 0.65 0.36 37{-2} 
41 23 1.74 0.49 15{-2} 
41 24 0.76 0.55 29{0} 
34 20 1.17 0.60 57{-4} 
32 22 2.23 0.60 19{0} 
22 24 2.01 0.51 15{+1} 
24 22 1.41 0.37 16{0} 
28 24 3.22 0.96 22{-1} 
14 28 2.93 0.77 22{-2} 
22 26 3.61 0.70 18{-1} 

  Mean 1.97 0.59 25{-1} 
  St. Dev. 1.02 0.18 13{-1} 

 
 

Three of the ten overlap regions tested showed a 2% decrease in LAI retrieval 

difference over the baseline atmospheric correction method, while another three showed a 

modest 1% decrease. The scenes shown in bold font in Table 4 showed zero change from 

the baseline scenario meaning that the atmospheric contribution to these differences was 
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undetectable in this analysis. The overlap region between scenes 28/24 and 27/24, located 

in the boreal forest of northern Ontario, characterized the largest RMSD of 0.96 LAI 

units; however, due to the higher LAI values here, the RAD was 3% below the mean 

value for this trial and 1% below the baseline atmospheric correction approach. Such a 

difference may be influenced by end-of-season changes in LAI between the two 

acquisition dates of August 26 and September 3. The overlap region between scenes 

34/20 and 33/20 produced the highest relative difference for this trial of 57% for a mean 

LAI of 1.17 units; however, this was improved by 4% over the RAD derived under the 

baseline method. 

 

4.3.2. DDV atmospheric correction 

Table 5 presents the range of differences calculated for the DDV atmospheric 

correction scenario, which differ substantially from those derived from the baseline 

correction method.  

            The largest change (+ 6%) was noticed in scenes 38/24 and 39/24 over the baseline 

correction scenario. For this pair, the RMSD more than doubled from 0.40 LAI units to 

0.89 LAI units. Such a large difference in this case may be caused by the highly variable 

reflectance values for dense, dark vegetation in agricultural areas thus producing large 

values of AOD550. In this scene, many of the DDV targets fell on crop fields consisting 

of very high NDVI values (mean >0.9), relatively high TM3 reflectance factors (mean = 

7.5%) and low TM7 reflectance (mean = 4.5%). Furthermore, the AOD550 values 

derived for the east and west scenes were very high, measured at 0.79 and 0.89, 

respectively. This was not the case in other scenes containing lesser agricultural land and 

more forest or grassland cover (e.g. 41/23 and 41/24). The DDV algorithm derived quite 

similar and lower AODs for these scenes except for the 40/24 and 41/24 image pair. The 

overlap region for this pair derived an LAI retrieval difference of 30%, representing a 1% 

increase from the baseline correction method even though the calculated values for 

AOD550 were very different between scenes (0.74 and 0.39, respectively). The three 

scenes highlighted in bold in Table 5 show either 0 or _1% change in derived LAI 

consistency from the baseline correction procedure. When processing these scenes, the 

systematic LAI retrieval differences are the same (or improved by 1%) when the DDV 
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atmospheric correction is applied over the baseline correction method. For all 10 scenes, 

the consistency differences derived for the DDV atmospheric correction procedure were 

approximately 29% for a mean LAI of 2.32, which is 2% larger than those calculated for 

the baseline correction scenario. 

 

4.3.3. MODIS atmospheric correction 

 

The LAI differences derived from the overlap analysis of MODIS atmospherically 

corrected reflectance data were very similar to the results derived from the DDV 

correction trial. Due to limitations on data availability, only four scenes, representing two 

overlap regions were processed in this analysis. Although this is a preliminary assessment 

of the integration of MODIS-derived aerosol products into a Landsat ETM+ data 

processing chain, future work should include such data integration. In both cases, the 

RAD increased by 1% over the baseline correction method. 

 
Path Row Mean LAI RMSD (LAI) RAD (% LAI) 
        {% change from baseline} 

39 24 1.91 0.89 45{+6} 
41 23 3.51 0.79 18{+1} 
41 24 0.88 0.66 30{+1} 
34 20 1.19 0.65 65{+4} 
32 22 2.33 0.65 21{+2} 
22 24 1.99 0.59 19{+5} 
24 22 1.39 0.35 16{0} 
28 24 3.16 1.14 27{+4} 
14 28 3.20 0.90 23{-1} 
22 26 3.62 0.68 18{-1} 

  Mean 2.32 0.73 28{+2} 
  St. Dev. 1.00 0.21 16{+2} 

 
Table 5 – LAI retrieval consistency, root mean square difference (RMSD) and relative absolute difference 

(RAD) derived from the overlap analysis of DDV atmospherically corrected reflectance data.  Values in 
braces ({}) represent the RAD change from the baseline atmospheric correction method. 
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Although the RMSD values decreased slightly from the DDV correction results for 

scenes 13/28 and 14/28, when compared to Table 5 there is no difference in RAD for 

these two processing methods. 

 

5. Discussion 

The consistency in surface reflectance using a baseline atmospheric correction 

was tested in the first trial of this study. Across 10 overlap samples, TM1 and TM2 

showed the largest relative differences of 73% and 47%, respectively. This was expected 

since both spectral bands are very dependent on the atmospheric conditions at the time of 

sensor overpass. TM4 characterized the smallest average relative difference of 9%, 

whereas TM3 had an average RAD of 32%. TM5 showed a slightly larger RAD than 

TM4, while the average RAD obtained for TM7 was twice as large as that recorded for 

TM4. At longer spectral wavelengths, the increase in relative absolute difference may 

have been due to water vapour absorption differences between scenes. Testing of this 

parameter across all scenes resulted in an average difference in absolute surface 

reflectance factor of 0.05 in TM7 using water vapour values of 2.93 and 5.0 g/cm2. 

This consistency was then propagated to LAI retrieval in order to answer the 

second research question addressed in this study. LAI differences obtained for 10 

samples was calculated on average to be F0.61 LAI units or 26% relative absolute 

difference. Seven out of ten samples had residual differences ranging from _0.25 to + 

0.25 LAI units. The other samples produced a larger residual scatter, which may have 

been caused by local atmospheric contamination due to haze or the generic atmospheric 

correction procedure incorporated into this specific trial. In this trial, the maximum RAD 

of 61% that occurred between scenes 33/20 and 34/20 was likely caused by (1) different 

atmosphere components or (2) changing land surface between acquisition dates. In this 

case, the difference in acquisition dates was 23 days in June and July during the peak 

time for seasonal leaf growth (Chen, 1995). Thus, either (or both) of these issues could be 

causing the high retrieval differences.  

To examine the second research question, the influence of various atmospheric 

correction procedures on LAI retrieval was evaluated. In this case, LAI retrieval 

differences were compared for two other atmospheric correction methods and a no 
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correction scenario to the baseline correction. The DDV correction assumed the 

atmosphere to be variable between acquisition dates and attempted to quantify this 

change using dark targets collected at the ETM+ scale (30 m).  

       In this analysis, the no correction approach performed better in terms of consistency 

(_1%, RAD), than both the DDV correction scenario (+ 2%, RAD) and the baseline 

correction procedure. The MODIS correction, similar to the DDV correction, assumed 

variable atmospheric contributions to surface reflectance estimates and quantified these 

changes based on dark targets collected at the MODIS (500 m) spatial resolution. 

Although the analysis incorporated only two samples, this correction performed equally 

well when compared to the DDV correction procedure used at the ETM+ 30 m scale. 

Even though this result is promising, future work should address the advantages of 

integrating MODIS-derived atmospheric products in the correction of Landsat imagery. 

Although the DDV correction approaches resulted in less consistent estimates of LAI, 

future testing will assess the absolute accuracy of LAI retrieval, as it is expected to 

improve over the baseline or no correction scenarios. This is important in order to link 

satellite-based reflectance and LAI retrieval models to actual measurements made in situ. 

In applications where absolute quantities are required for example, the DDV atmospheric 

correction method should provide more reliable estimates over the no correction scenario, 

a method that carries an unrealistic assumption of no atmospheric contamination in 

satellite based remote sensing applications. The lower consistency obtained using the 

DDV approaches may have also been caused by limitations in the methodology used to 

derived DDV targets. For instance, gas absorption affects the retrieval of AOD from the 

DDV approach. Take for example the water absorption in TM7, which determines the 

surface reflectance in the TM3 channel. Without a water vapour correction, the TM7 will 

be underestimated, and the resultant AOD will be overestimated. This issue will be the 

focus of future work since we used fixed values of water vapour and ozone in all of the 

atmospheric correction procedures and obtained average reflectance factor differences of 

18%.  Furthermore, the DDV aerosol concentrations used in this study were only 

measured in the troposphere and did not account for the vertical AOD distribution in the 

stratosphere. Lastly, future work should also consider the spatial variability of aerosols 
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within a Landsat scene and how these influence retrieval consistency of LAI and other 

biophysical parameters measured from satellite imagery. 

 

6. Conclusions 

In this study, a consistency analysis of systematic surface reflectance and leaf area 

index retrieval was performed using overlap regions in adjacent Landsat scenes. For all 

20 Landsat scenes analyzed, it was assumed the land surface reflectance and land use 

remained constant between acquisition dates. Each Landsat ETM+ scene was 

independently co-registered and corrected for atmospheric effects in a number of 

different sensitivity trials. Empirical LAI models were then applied to the surface 

reflectance data and the LAI difference in the overlap region of each image pair was 

evaluated. The results from this analysis show that systematic LAI retrieval from Landsat 

ETM+ imagery using a baseline atmospheric correction approach is consistent to within 

F0.61 LAI units. The average relative difference in LAI retrieval for 10 image pairs was 

26% for a mean LAI of 2.05 and the maximum relative difference was determined to be 

61% for a mean LAI of 1.13. For all 10 overlapping samples, different atmospheric 

correction methods produced variable results. When no atmospheric correction was 

performed on the data, the LAI retrieval consistency was improved by 1%. When a 

Landsat-based dense, dark vegetation atmospheric correction algorithm was used, the 

LAI retrieval differences became 2% worse. Using a subset of only 2 overlapping 

samples, a MODIS derived DDV atmospheric correction produced similar results to the 

Landsat based DDV correction. Although the DDV correction methods produce lower 

consistency than the baseline approach when applied to clear-sky imagery, they still 

represent a realistic approach for capturing and quantifying atmospheric conditions in a 

systematic and repeatable procedure for obtaining biophysical quantities. This is an 

important point since it is known that the atmosphere changes the reflected energy 

recorded at the satellite sensor; however, the magnitude of change (absolute) is always 

scene-dependent and is usually not accounted for in quantitative terms. Conversely, for 

use in relative change detection applications or simple qualitative studies, the no 

correction or baseline atmospheric correction procedures may be more beneficial to 

implement. 
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The ultimate test of performance for systematic LAI maps are comparison to ground 

truth. However, this is challenging when dealing with data sets spanning large spatial and 

temporal extents. Our study tested an important aspect of surface reflectance and LAI 

retrieval from Landsat imagery by quantifying differences due to atmospheric correction 

uncertainties related to AOD specification. Such differences are considered to be over 

and above any differences due to BRDF effects induced by substantial topography found 

in mountainous regions. Again, we identified two levels of testing: 

 

(1) Sensitivity analysis of image-based atmospheric correction algorithms. 

(2) Consistency analysis of image-based LAI retrieval. 

 

      The first approach is commonly used but the idea of consistency analysis has not often 

been applied outside categorical map comparison (e.g. Guindon & Edmonds, 2001). An 

added benefit of consistency analysis is that it can provide a good estimate of background 

noise levels for studies that rely on relative changes in LAI rather than absolute LAI 

estimates (Hall et al., 2003). The results formulated in this study will progress future 

work aimed towards LAI retrieval from fine and moderate spatial resolution sensors 

especially over disturbances, changing phenology, areas of substantial relief, and very 

wet or dry regions. 
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