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ABSTRACT - Hyperspectral imagery has the potential to become a useful tool for monitoring and extracting 
biophysical properties of vegetated areas. Exploitation of this potential relies on the ability to relate at-canopy 
spectral reflectance to biophysical characteristics of vegetation and derive both sunlit and shaded component 
proportions and spectral profiles. Increased application of hyperspectral imagery to these areas is expected with 
the advent of space borne hyperspectral sensors (such as EO-1 Hyperion and CHRIS-PROBA). Such imagery of 
vegetated scenes is influenced however by the well known bidirectional reflectance distribution (BRDF) effect.  

<p>One method of determining the contribution of shaded overstorey vegetation and background to 
observed spectral reflectance is to determine, by model inversion, the proportion of shaded surfaces viewed by 
the sensor, and the relative intensity of the radiative flux incident on these surfaces. This can be achieved by 
modelling the overall reflectance as composed of mean sunlit and shaded reflectance components, combined 
with an analytical description of the shaded radiant flux. Assuming a land cover type with consistent mean 
foliage and background reflectance, inversion of a semi-empirical model can be used to determine BRDF 
coefficients, which can then be applied to normalize the imagery to a specific view/sun geometry. If the modelled 
spectral coefficients directly relate to canopy properties, then BRDF normalization can also provide information 
to help directly relate the canopy architectural and biophysical properties to the remotely sensed signal. One 
such model, FLAIR, has been successfully used to investigate canopy characteristics from airborne and satellite 
spectral imagery. 
 

 

1  INTRODUCTION  

With the addition of hyperspectral sensors to the 
variety of spaceborne remote sensing instruments 
presently orbiting the Earth, an extra dimension of 
detail has become more accessible to remote sensing 
scientists. While hyperspectral sensors have existed 
for many years, they have remained part of airborne 
and near-surface investigative efforts until recently, 
with the launch of EO-1 Hyperion and CHRIS-
PROBA missions. Future planned launches of ARIES 
and NEMO demonstrates the interest of the scientific 
and environmental communities in utilizing 
hyperspectral imagery of land surfaces on a more 
continual bases.   

One common application of spaceborne remote 
sensing imagery is to relate the remotely sensed 
broadband signals to biophysical properties of 
vegetative surfaces (for example see [Badhwar et al., 
1996; Abuelgasim et al., 1998; Bicheron and Leroy, 

1999; and Chen et al., 2002]). While this has been a 
successful approach for many applications, these 
studies have been faced with the challenge of 
accounting for the anisotropic characteristics of 
vegetative surface reflectance, the bidirectional 
reflectance distribution function or BRDF, where the 
observed reflectance is influenced by both the view 
angle of the sensor and the location of the sun (solar 
angle) [for example, see Goel, 1988, White et al., 
2001].  

Unlike broadband studies which relate 
biophysical properties to reflectance magnitude, 
hyperspectral data has the potential to relate high 
resolution spectral features to their associated canopy 
properties. Previous studies have already noted how 
increased spectral information can improve the ability 
to relate multi-angular data to canopy properties 
[Abuelgasim et al. 1996; Peddle et al, 1999; Broge and 
Leblanc, 2000; White et al, 2001]  Indeed, 
investigations relating spectral features directly to 
canopy biophysical and architectural properties have 
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already demonstrated significant potential [Zarco et 
al., 1999; Champagne et al., 2001]. But like broadband 
reflectance, these spectral features are also influenced 
by the canopy BRDF phenomena.   

The FLAIR Model (Four-Scale Linear Model 
for AnIsotropic Reflectance) was initially designed to 
model these angular influences on canopy reflectance 
(the bidirectional reflectance factor, or BRF) [White et 
al., 2001; 2002]. Based on a physical description of 
canopy structure (as detailed by the Four-Scale Model 
of Chen and Leblanc [1997]), the FLAIR model is also 
designed for inversion of multi-angular BRF to 
provide quantitative information about the observed 
canopy. Thus the influences of shade and multiple 
scattering on the observed reflectance is used in part to 
relate biophysical characteristics to canopy BRF. 
Indeed, the importance of determining the shaded 
spectral properties has been noted in several studies 
[for example, see Hall et al, 1995; Peddle et al., 1999; 
Beaudet et al., 2002; Sabol Jr. et al., 2002]      

The influences of foliage and background 
multiple scattering changes as a function of 
wavelength. For example, scattering is minimal in the 
red spectral region, but significant in much of the near 
infrared. Thus shaded contributions to the observed 
BRF are spectrally dependant, providing important 
information towards the determination of foliage 
density (i.e., effective LAI). By including wavelength 
dependant scattering properties to FLAIR inversion, 
an additional constraint is applied. Plus, by using the 
dynamic range of scattering regimes available with 
hyperspectral bidirectional reflectance (BRFλ),  
biophysical characteristics of a canopy have the 
potential of being determined without the need for 
significant multi-angular acquisitions. 

Multi-scattering influences on the BRFλ are here 
modelled by determining the downwelling irradiance 
on shaded components of a canopy using the two-
stream radiative transfer described by Sellers [1985; 
1987]. FLAIR inversion of several spectral bands 
simultaneously now has additional constraints on the 
magnitude of the contribution of shaded surfaces to the 
observed BRFλ. This FLAIR inversion procedure is 
presently being implemented with the Imaging 
Spectrometer Data Analysis System (ISDAS) 
processing software [Staenz et al., 1998] developed at 
the Canada Centre for Remote Sensing � Natural 
Resources Canada, and an agricultural test site is being 
used as a validation site for this procedure. 

2  FLAIR INVERSION  

2.1 The FLAIR Model � A Brief Review  

FLAIR expresses the canopy bidirectional spectral 
reflectance factor (BRFλ) as the weighted sum of four 
scene component mean spectral reflectance factors 

(shaded overstorey � Rztλ, shaded background � Rzgλ 
sunlit overstorey � Rtλ, sunlit background � Rgλ), 
expressed as:  

ggttzgzgztzt kRkRkRkRBRF λλλλ +++=λ  (1) 

Spectral reflectance factors are defined as the 
ratio of nadir reflected radiance from a scene 
component to the nadir reflected radiance from a 
100% Lambertian panel located at the top-of-canopy 
directly above the target. The four kernels (kx) define 
the viewed scene component proportions, functions of 
the effective leaf area index (eLAI) [Chen et al., 1991] 
and the view/sun geometry (kx≡kx(eLAI; θv,φv,θi,φi)). 
For more information on the FLAIR model see White 
et al. [2001; 2002]. 

  Shaded reflectance factors are now constrained 
using a two-stream radiative transfer algorithm to 
derive the downwelling irradiance intensity at the 
shaded surface relative to the top-of-canopy. Multi-
scattering ratios are defined for both the overstorey 
and background as Rzt/Rt and Rzg/Rg respectively.  

2.2 Modified Simplex Method for FLAIR Inversion  

When limited to one spectral band, variations in 
observed reflectance from multiple view/sun angle 
image acquisitions demonstrates the influence of 
architecture on canopy BRF. When multiple spectral 
bands are inverted concurrently, the spectral scattering 
characteristics of the canopy components also become 
relevant. This limits the range of potential canopy 
architectural influences which can result in the 
observed BRFλ.  

With hyperspectral imagery, consisting of over 
150 spectral bands, it becomes computationally 
expensive and redundant to invert all bands. Instead, 
inversion uses spectral bands (~10) which do not 
correlate within the spatial region of interest (ROI). 
When the purpose is to examine a specific spectral 
feature, inversion begins using uncorrelated bands 
over the whole hyperspectral range of the sensor, then 
is repeated for bands related to the spectral feature 
using the previous resulting reflectance factors and 
eLAI as additional constraints. 

Inversion of FLAIR is performed using a 
modified simplex method (for a full description of the 
simplex method, see Vetterling et al. [1990]), where 
spectral reflectance factor constraints are defined using 
the observed BRFλ, kernels determined for a given 
eLAI and view/sun geometry. The process continues 
iteratively over values of eLAI until a minimum 
constraint volume is reached. 

The modified simplex method is applied by 
defining a 4b dimensional space defined by the four 
reflectance factors coefficients for each spectral band, 
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b. Primary constraints are defined for each dimension 
based on the allowed range of each reflectance factor 
(0 ≤ Rx ≤ 1 to start, can be adjusted based on user input 
or model examination of data as will be outlined.).  

Secondary constraints are then defined for each 
band based on the view/sun angular orientation (per 
pixel) and observed BRFλ. For each spectral band 
(from N image acquisitions), four secondary 
constraints are determined. A discrepancy factor, f, is 
applied to the secondary constraints to provide upper 
and lower limits to the quality of the inversion, which 
doubles the number of secondary constraints (see 
figure 1). These secondary constraints define 
hyperplanes in the 4b dimensional component 
reflectance space. When f is large, the hyperplanes will 
not define a closed bound volume within the 
boundaries of the primary constraints. On the other 
hand, when f is small, then no individual volume will 
be bound by all hyperplanes.  

An inversion iteration is complete when a value 
of f is found (if it exists) where all hyperplanes act as 
boundaries to the minimum constraint volume. As the 
procedure iterates over values of eLAI the minimum 
constraint volume will decrease (f approaches unity) as 
the value of eLAI approaches values reasonable for the 
canopy. In this way, FLAIR inversion provides 
discrepancy factors, f, as a function of eLAI. The 
resulting values of eLAI and component reflectance 
factors for the minimum value of f are selected as the 
most probable values for the canopy. If BRFλ  values 
are chosen from a spatial region, then the inversion 
results will represent average values for that region. 

Additional information on the inversion process can be 
obtained from White et al. [2001; 2002]. 

2.3 Simplified Modified Simplex Method Example 

As an example to the inversion procedure, consider a 
hypothetical surface with two component constituents 
describable by two kernels (k1, k2) with two distinct 
reflectance factors (R1, R2) and no shadowing. Let 
there be N image acquisitions taken in one spectral 
band. In this case, the modified simplex inversion 
procedure would be defined in two reflectance 
dimensions, with four secondary constraints. For each 
eLAI iteration, the modified simplex method results in 
the smallest discrepancy factor, f, where the constraint 
volume remains bounded by all secondary constraints, 
as shown in figure 1.  

As eLAI approaches a value reasonable for this 
hypothetical canopy, f approaches a minimum value 
(and the minimal constraint volume approaches zero). 
Inversion is complete when a global minimum of f is 
determined, and the reflectance factors which fall 
within that volume are reported.  

3 MULTI-SCATTERING RATIO 

With a focus on improving the extraction of shaded 
contributions to the observed spectral reflectance 
while simultaneously determining the radiant flux 
levels in this shaded canopy proportion, FLAIR 
inversion was further constrained with a two-stream 
radiative transfer model. The multi-scattering ratio is 
defined by the relative intensity of downwelling 
irradiance within a canopy on surfaces where the 
direct solar beam is not incident (i.e., shaded surfaces). 
Diffuse and direct radiative flux incident at the top-of-
canopy will scatter throughout the canopy as multiple 
reflectance events from plant and background surfaces 
occur. To derive the relative magnitude of the 
downwelling diffuse irradiance incident on the shaded 
canopy components, the two-stream radiative transfer 
model detailed by Sellers [Sellers, 1985; 1987] is 
incorporated into the FLAIR inversion algorithm.  

FLAIR inversion is performed, and the resulting 
mean sunlit spectral reflectance factors and mean eLAI 
are used to determine the mean shaded spectral 
reflectance factors via the two-stream model. If 
FLAIR derived shaded reflectance factors are outside 
a pre-set range when compared to the two-stream 
model derived values, then the primary constraints 
assigned to the sunlit reflectance factors are modified 
and inversion is repeated. If FLAIR inversion results 
in an extremely bright sunlit surface and dark shaded 
surface (relative to the two-stream model) then the 
sunlit reflectance factors are constrained to lower 
values. Alternatively, if the derived sunlit reflectance 
factors are low, with bright shaded areas then the 

 R 1   

R 2   

1   

0   
1   0   

( ) ∑    
 

   
 

∑ = ∑ 
= = = − 2 

1 1 2 
1 2 1 

i 
N 

j ji j i N 
j j j k k R k BRF f   

( ) ∑    
 

   
 

∑ = ∑ 
= = = 
2 

1 1 2 
1 2 

i 
N 

j ji j i N 
j j j k k R k BRF f   

( ) ∑   
 
 

  
 
 

∑ = ∑ 
= = = 
2 

1 1 1 
1 1 

i 
N 

j ji j i N 
j j j k k R k BRF f   

( ) ∑    
 

   
 

∑ = ∑ 
= = = − 2 

1 1 1 
1 1 1 

i 
N 
j ji j i N 

j j j k k R k BRF f  

 

Figure 1 : Example modified simplex 
inversion of a two kernel, two reflectance 
system. Secondary constraints are indicated by 
their equations. As f decreases, so does the 
minimal constraint volume, represented by the 
grey area. The black dot indicates the 
reflectance values reported by the inversion 
procedure for this case. 
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lower constraint to the sunlit reflectance factors is 
raised. Thus a physical constraint is given to the 
contribution of shaded components to observed 
canopy BRFλ. 

The two-stream radiative transfer model presented 
by Sellers [1985; 1987] follows from the work of 
Dickinson [1983], where the upward and downward 
diffuse irradiance within a canopy is modelled for a 
random foliage distribution with isotropically 
reflecting leaf elements. Both diffuse sky and direct 
sun at the top-of-canopy are modelled as contributing 
to the incident radiative flux. Leaf elements 
reflectance and transmittance properties are assumed 
equal at this stage of development with FLAIR 
inversion. (Further research will examine separating 
the foliage reflectance and transmittance within the 
multi-scattering model, important in the highly 
reflective near infrared region.)  

For sunlit viewed canopy components, FLAIR 
inversion assumes that the direct beam intensity 

dominates the downwelling incident flux incident on 
the sunlit surface. For the shaded proportions however, 
the two-stream model is applied to determine the 
apparent shaded reflectance factor (as defined in 
Section 2.1). As the absolute canopy component 
reflectance property does not change as a function of 
the downwelling irradiance, the ratio of shaded-to-
sunlit apparent reflectance factors can be modelled 
using the relative intensity of the shaded irradiance 
determined via the two stream model.   

4 THE FLAIR INVERSION ALGORITHM 

FLAIR Inversion is presently being designed as 
a tool for the Imaging Spectrometer Data Analysis 
System (ISDAS) processing software [Staenz et al., 
1998]. This tool will allow the user to highlight spatial 
regions of interest (ROI) from hyperspectral imagery. 
It would then invert observed BRFλ for selected 
spectral bands to determine mean eLAI and mean 

BRFλ Coefficient
Extraction

BRFλ
Normalization

BRFλ Imagery
Post-processing

Biophysical
Properties

YES

BRFλ Imagery

Sun/view geometry
Initial eLAI

Initial Ri Constraints

FLAIRFLAIR
Inversion

Minimum
Constraint
Volume?

Increment eLAI

NO

Select spectral bands
for inversion

Derive multi-scattering ratio
using two-stream approach

with Rt, Rg, and eLAI.

Multi-scattering
ratio match FLAIR
Inversion results?

YES

NO

Further constrain
Reflectance factors

Figure 2: Processing sequence for FLAIR inversion of multi-angular hyperspectral imagery as
will be implemented as a procedure in ISDAS (Imaging Spectrometer Data Analysis System
developed at Natural Resources Canada � Canada Centre for Remote Sensing). 
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spectral reflectance factor coefficients for the 
overstorey and background (including the apparent 
shaded spectral reflectance factors).  

Inversion accuracy will depend in part on the 
homogeneity of the ROIs, the  accuracy of the 
reflectance determination (atmospheric correction and 
sensor radiometric accuracy), as well as the range of 
spectral and angular variation available from the 
imagery. A flow chart highlighting the inversion 
procedure is provided in figure 2.  

5 AGRICULTURAL TEST SCENE 

Initially, FLAIR inversion was designed for multi-
angle, single band applications. Testing of the single 
band inversion procedure were successfully performed 
using multi-angle acquisitions of forest scenes 
obtained during BOREAS 1994 campaigns [Sellers et 
al., 1995] using CASI, PARABOLA, and POLDER 
sensors [White et al., 2001; Leblanc et al., 2002; 
White et al., 2002].  

Re-analysis of this boreal forest broadband  
BRF data, using the above multi-band procedure 
resulted in biophysical parameter and component 
reflectance extraction which better reproduced the 
concurrently measured field data [White et al., 2002].  

  In practice, hyperspectral image acquisitions 
seldom provides several distinct view angle 
observations of a region. Often, a sensor is flown only 
once, or if funds and atmospheric conditions permit,  
twice per study period. With satellite imagery, the 
acquisition is limited to the capability and orbital 

constraints of the sensor, limiting the sun/view 
geometry The present multi-band FLAIR inversion 
was tested on limited sun/view geometry hyperspectral 
imagery of agricultural scenes. 

  BRFλ values were extracted from double pass 
airborne nadir imagery acquired over corn fields near 
Clinton, Ontario, using the Probe-1 sensor [Earth 
Search Sciences Inc., 2002] in July, 1999. The imagery 
consists of 128 spectral bands ranging from 430 to 
2500 nm, with a pixel resolution of 5 x 5 m2. 
Acquisitions were 45 minutes apart, resulting in a 
change of solar zenith angle from 43° to 35°. In-field 
measurements of corn leaf reflectance and eLAI were 
taken concurrently [Champagne et al., 2002]. 

To provide sufficient data for inversion, a ROI 
was defined outlining corn fields in the test image area 
known to be of similar age and subject to similar 
growing conditions. View/sun geometry for each pixel 
with the ROI was determined, and corn field BRFλ 
extracted. FLAIR inversion was performed as outlined 
above. Sample results of the inversion procedure are 
provided in figure 3.  

The inverse derived mean eLAI of the validation 
corn field is within the standard error of the mean eLAI 
measured in-field of 2.4±0.3 [Pacheco, 2001] using a 
LI-COR LAI-2000 [LI-COR, 1992]. GER3700 
Spectroradiometer [GER Corp., 2002] reflectance 
measurements of sunlit corn leaves measured at the 
Clinton sites are also reproduced by FLAIR inversion.  

Visual inspection of the results easily reveal 
however that the sunlit background spectral 

Figure 3: FLAIR inversion derived component spectral reflectance factor signatures of a 
Clinton test corn field. Field data spectral reflectance factors (GER3700) are provided for 
comparison. 
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reflectance factors do not match. While the 
magnitudes are similar, the inversion derived 
background reflectance maintains a vegetation-like 
signature not seen with the bare soil spectral nadir 
reflectance. This may be due in part to the existence of 
ground cover plants (weeds) and residue in the fields 
which were not present at the bare soil site used to 
obtain the sunlit soil spectral reflectance. Also of note, 
the selected sunlit bare soil site was not contaminated 
by contributions of foliage multi-scattering to the 
incident downwelling flux on not-shaded background 
locations, further research is required to determine the 
relative influence of this contribution to the observed 
reflectance. Shaded spectral reflectance derived by 
FLAIR inversion are also shown in figure 3.  

One example application of utilizing 
hyperspectral inversion is sub-pixel unmixing, using a 
spectral mixing analysis. A previous analysis of this 
data [Pacheco et al., 2001] performed a constrained 
linear spectral unmixing of the Clinton corn fields to 
determine the percentage of crop per pixel. The aim 
was to identify areas of high and low yield and to 
compare unmixing results to measured eLAI.  

Table 1: Endmember fractions using various 
analysis techniques of the Clinton test corn field 
from sample plot locations. 

 
From  

Vertical  
Photographs 

Using Image 
Endmember 
Extraction 

Using FLAIR 
Endmember 
Extraction 

Site ID Soil Corn Soil Corn Soil Corn 
377-38 0.19 0.81 0.03 0.97 0.18 0.82 
362-57 0.22 0.78 0.02 0.98 0.09 0.91 
343-80 0.14 0.86 0.01 0.99 0.11 0.89 
331-95 0.13 0.87 0.02 0.98 0.14 0.86 

315-101 0.21 0.79 0.06 0.94 0.23 0.77 
Scene 

Average 0.18 0.82 0.03 0.97 0.15 0.85 

 
In that study, endmember spectra were selected 

by identifying areas of clear soil and dense foliage and 
extracting their spectral reflectance from the 
hyperspectral imagery. Table 1 shows pixel specific 
results of unmixing a Clinton test corn field using 
endmembers selected using the original field observed 
endmember spectra, as well as by using FLAIR 
inversion results as endmembers. For comparison, 
digital camera imagery analysis of the identified pixels 
are also shown. FLAIR endmembers included both 
shaded and sunlit spectral reflectance factors for the 
overstorey and background, for comparison to 
previous studies, the shaded and sunlit fractional 
components are combined in table 1. 

4 DISCUSSION 

This preliminary investigation demonstrates the 
potential of using BRFλ inversion to determine average 
scene eLAI, component spectral reflectance factors, 
and shaded properties of agricultural corn crops. This 
analysis used the previously demonstrated (for forest 
canopies) FLAIR Model with the addition of a two-
stream radiative transfer model to constraint the 
contribution of shaded components to the observed 
reflectance.    

When the scene is sufficiently homogeneous in 
composition, such as an agricultural field, then the 
derived mean component spectral reflectance factors 
can be directly related to the foliage and background.  
This allows for the definition and separation of sunlit 
and shaded spectral signatures which can be used for 
such things as spectral unmixing and determining 
shaded light conditions at the understorey level.  

More detailed investigation of this technique 
with other agricultural crops and more heterogeneous 
canopies will be pursued. Of specific interest will be 
the examination of how canopy BRF is influenced 
with respect to spectral features (such as the water 
index which relies on determining the accurate depth 
of liquid water absorption features [Peñuelas et al., 
1986], the red-edge spectral features used for land 
cover mapping [Zarco-Tejada and Miller, 1999]) and 
the level of light intensity in shade within a vegetative 
canopy (significant for determining such properties as 
secondary growth success (weeds in agricultural crop) 
and successional processes (second generation tree 
growth in forests)).         
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