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ABSTRACT: 
 
As on-board data compression is an option for future operational hyperspectral satellite systems, its impact on the data products need 
to be investigated. Accordingly, the study presented in this paper investigated the impact of lossy Hierarchical Self-organizing 
Cluster Vector Quantification (HSOCVQ) data compression on the identification and mapping of minerals in environments with 
sparse vegetation cover. For this purpose, an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance cube acquired over 
the Cuprite mining district area in Nevada on June 12, 1996 was compressed by factors of 10, 20, and 40. The original data and the 
de-compressed data were processed separately, applying atmospheric correction using MODTRAN4.2 and spectra post-processing 
prior to automatic Iterative Error Analysis (IEA) endmember selection, and subsequent constrained spectral linear unmixing to 
produce mineral (endmember) abundance maps. The results indicate that the errors between original radiance data and de-
compressed data increase with increasing compression ratio. This trend is also true for the derived mineral abundance maps. In 
general, for most of the endmembers, the 10:1 and 20:1 compression ratios produced abundance maps which are spatially similar to 
those extracted from the original data, when only fractions larger than 0.5 are mapped. Only these higher fractions are of interest for 
exploration purposes. One endmember out of 15 was lost using the 40:1 compression ratio and, consequently, this particular 
endmember could not be mapped. 
 
  

1.0 INTRODUCTION 
 
With the launch of spaceborne hyperspectral sensors, data 
transmission becomes an issue due to the high data rate 
required to cope with the large volumes of hyperspectral data. 
This is especially true when mo ving towards operational 
systems, as compared to technology demonstrators such as 
NASA�s Hyperion. In order to overcome this problem, lossy 
data compression can be used to reduce the data volume while 
preserving enough information for the generation of application 
products in various areas, such as forestry, agriculture, 
environment, coastal/inland waters, and geoscience. Suitable 
data compression techniques are those which use Vector 
Quantization (VQ) (Qian et al., 1997 and 2000).  These 
techniques are characterised by their near lossless property with 
high compression ratio and relatively simple structure. 
 
The goal of this study is to apply a VQ compression technique, 
called the �Hierarchical Self-organizing Cluster Vector 
Quantification� (HSOCVQ: Qian et al., 2002), to calibrated 
(radiance) hyperspectral airborne data to investigate the impact 
of this technique on mineral mapping products. For this 
purpose, an Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS: Green et al., 1998) data set acquired on June 12, 
1996 over a test site near Cuprite, Nevada, U.S.A., was used.  
 
The products retrieved from data compressed with HSOCVQ 
were compared quantitatively and qualitatively with the 

products extracted from the original (uncompressed) data. The 
ratios used in the compression are 10:1, 20:1, and 40:1. The 
subsequently de-compressed data sets were processed in the 
same way as the original data. Major processing steps include 
the removal of atmospheric effects, automatic extraction of 
endmembers, and application of a constrained linear spectral 
unmixing technique to map the minerals. These processing 
steps were carried out using the Imaging Spectrometer Data 
Analysis System (ISDAS: Staenz et al., 1998) developed at the 
Canada Centre for Remote Sensing. The paper describes in 
detail the aforementioned processing steps together with the 
extracted results.  Special emphasis is given to the analysis of 
the end products (fractions of minerals), but also to the 
comparison of intermediate outputs such as the endmembers. 
 

2.0 DATA USED 
 
A Cuprite standard Jet Propulsion Laboratory (JPL) AVIRIS 
data set, collected on June 12, 1996, has been used for this 
study. This sensor acquires imagery at approximately 20-m 
ground resolution from an ER-2 aircraft in 224 spectral bands, 
each about 10 nm wide, in the 400-nm to 2500-nm wavelength 
range. Additional information for identification of endmembers 
includes the USGS (2002) spectral data base.  
 
The site selected for this study lies within the Cuprite mining 
district of Nevada (37.60 N and 117.20 W). This site has been 
used as a test area for mineral mapping in hyperspectral remote 
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sensing for many years (Goetz and Srivastava, 1985; Hook and 
Rast, 1990; Swayze et al., 1992; Neville et al., 2003). 
Accordingly, this site is very well characterized in terms of 
mineralogy. This and the excellent exposure of alteration 
minerals such as alunite, kaolinite, buddingtonite, and others 
together with limited soil development and sparse vegetation 
make this area an ideal test site for evaluation of the impact of 
data compression on mineral abundance maps.  
 

3.0 DATA PROCESSING 
 
An outline of the data processing is given in Figure 1. The 
different steps include data compression and de-compression, 
atmospheric correction and post-processing of spectra, 
endmember selection and spectral unmixing, and fidelity 
assessment. The original data and de-compressed data cubes are 
processed separately using the same data processing techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Data processing scheme 
 
3.1 Data Compression 
 
The AVIRIS radiance data cube was compressed by factors of 
10, 20, and 40 with the HSOCVQ, which is a VQ based data 

compression technique with a characteristic of self-organising 
clusters. This technique clusters spectra in the data cube while 
it compresses them. It applies VQ to each of the clusters and 
ensures each of the vector-quantized clusters to have a fidelity 
better than the given threshold. If the fidelity of the cluster is 
not better than the threshold, the spectra in the cluster are 
adaptively re-clustered. As a result of the unique way of 
clustering, the code vectors trained in this process are very fast 
and efficient. High reconstruction fidelity can be attained with a 
relatively small codebook. One of the unique features of this 
technique is the guarantee that the reconstruction fidelity of 
each spectrum in the compressed data cube is better than the 
threshold. This feature allows HSOCVQ to preserve spectral 
signatures of small targets in the scene of a hyperspectral data 
cube. Subsequently, the compressed data were de-compressed 
in order to reconstruct the cubes using the codebooks generated 
for each cluster. 
 
3.2 Surface Reflectance Retrieval 
 
Prior to the correction of the atmospheric effects, the 
wavelengths co vering the strong atmospheric water absorption 
regions at 1380 nm and 1870 nm were eliminated from further 
processing due to the dominance of noise in these areas. For the 
same reason, the first six bands and the last five bands were 
also excluded resulting in a reduced wavelength coverage of 
428 nm to 2458 nm. 
 
Surface reflectances were then computed from at-sensor 
radiance (original) data and de-compressed data cubes, 
compensating for atmospheric absorption and scattering effects.  
The procedure is based on a look-up table (LUT) approach with 
tunable breakpoints as described in Staenz and Williams 
(1997), to reduce significantly the number of radiative transfer 
(RT) code runs.  MODTRAN4.2 was used in forward mode to 
generate the radiance LUTs, one each for a 5% and 60% 
reflectance.  These LUTs were produced for five pixel locations 
equally spaced across the swath, including nadir and swath 
edges, for a range of water vapour contents, and for single 
values of aerosol optical depth (horizontal visibility) and terrain 
elevation.  The specification of these parameters and others 
required for input into the MODTRAN4.2 RT code are listed in 
Table 1.   
 

Atmospheric model US standard 76 
Aerosol model Desert 

Date of overflight June 12, 1996 
Solar zenith angle 15.8° 

Solar azimuth angle 153.7° 
Sensor zenith angle Variable 

Sensor azimuth angle Variable 
Terrain elevation (above sea level) 1.524 km 
Sensor altitude (abo ve sea level) 20.100 km 

Water vapour content variable 
Ozone column as per model 

CO2 mixing ratio 300 ppm 

Horizontal visibility 50 km 
Wavelength grid interval 1 cm-1 

 
Table 1.  Input parameters for MODTRAN4 code runs 
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For the retrieval of the surface reflectance, the LUTs were 
adjusted only for the pixel location in the swath and water 
vapo ur content using a bi-linear interpolation routine (Press et 
al., 1992) since single values for the other LUT parameters 
were used for the entire cube. For this purpose, the water 
vapo ur content was estimated for each pixel in the scene with 
an iterative curve fitting technique (Staenz et al., 1997). The 
surface reflectance was then computed for each pixel as 
described in Staenz and Williams (1997). 
 
The next processing step performs an empirical correction for 
irregularities in the reflectance data (band-to-band errors) that 
may have originated in the sensor, or that may have resulted 
from the approximation made in atmospheric modelling and the 
selection of RT code input parameters. These band-to-band 
errors were removed by calculating correction gains and offsets 
using spectrally flat targets (Staenz et al., 1999). The removal 
of these errors is referred to as post-processing. 
 
3.3 Endmember Selection and Spectral Unmixing 
 
Endmembers, required for the spectral unmixing, were selected 
from the data cubes themselves using an automated method, the 
Iterative Error Analysis (IEA: Szeredi et al., 2002).  In a first 
step, the average spectrum of the scene is used to unmix the 
data set.  When a data set is unmixed, a residual error image is 
produced.  These errors, which are also a measure of the 
distance in n-dimensional space (n = number of bands) between 
the average spectrum and all the spectra of the data set, are 
calculated using a least-square estimate between the average 
spectrum and the spectrum of each pixel.  The next step is to 
find the pixel or pixels that encompass the largest errors, i.e., 
that are furthest away from the average spectrum.  The user 
selects the number of pixels forming these endmembers.  This 
first endmember is then used to unmix the image cube, and the 
average spectrum is discarded.  The errors will again be used to 
find the furthest pixels from the first endmember and will create 
the second endmember.  This process is repeated until the 
number of endmembers predetermined by the user is reached. 
In this case, 15 endmembers have been selected. 
 
Once all the endmembers were found, the image cube was 
unmixed using a constrained linear technique (Shimabukuru 
and Smith, 1991; Boardman, 1995). Spectral unmixing uses a 
linear combination of a set of endmember spectra to unmix the 
composite spectrum into endmember fractions (between 0 and 
1) for each pixel of the scene. The reduced (428 nm � 2458 nm) 
AVIRIS wavelength range was utilised for the endmember 
selection and spectral unmixing. 
 
4.0 FIDELITY ASSESSMENT 
 
The assessment of the fidelity between original and de-
compressed data was carried out at different data processing 
levels. The Root Mean Square Error (RMSE) was calculated 
between original and de-compressed 16-bit digital numbers 
(scaled radiance) data cubes as follows: 
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where DND is the digital number of the de-compressed cube, 
DNO is the digital number of the original cube, nx is total 
number of pixels in the cube, ny is the number of lines in the 
cube, nb is total number of bands in the cube, x and y are the 
pixel and line position, respectively and b is the band number. 

In addition, the percent relative absolute difference (PRAD) 
was used as a fidelity measure for spectral variations on a pixel 
basis between original and de-compressed data. PRAD is 
defined as follows: 
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where Lo is the radiance of the original spectrum and LD is the 
radiance in the de-compressed spectrum. Similarly, PRAD was 
also calculated for selected bands for all pixels in the scene to 
show the spatial variability of the data compression of the 
radiance data.    
 
The assessment of the endmember spectra was carried out using 
the Average PRAD (APRAD) and Spectral Angle Mapper 
(SAM; Kruse et al., 1993) as a fidelity measure.  These 
measures can be written as: 
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where emO(b) is the endmember reflectance in band b of the 
original cube and emD(b) is the endmember reflectance in band 
b of the de-compressed cube. SAM varies between 0 and 1 
where 0 indicates a perfect match between original and de-
compressed endmember spectra. While APRAD provides a 
measure of the overall difference between original and de-
compressed endmember spectra, SAM, which is insensitive to 
gain factors, gives a good indication about the preservation of 
absorption features in the de-compressed data. 
 
The fraction maps for each of the 15 endmembers were 
compared using the RMSE.   
 

5.0 RESULTS 
 
5.1 Radiance Data 
 
The RMSE, calculated with equation (1) between original and 
de-compressed radiance cubes, increases with increasing data 
compression ratio (Table 2). A similar trend can be observed 
for the spatial within-band differences between original and de-
compressed data expressed via PRAD. As an example, Figure 2 
shows the frequency distribution of PRAD, calculated for each 
pixel of bands 69 (1011 nm) and 205 (2319 nm), for data 
compression ratios of 10:1, 20:1, and 40:1. Both graphs show 
the same trend, although larger errors occur in band 205 for all 
compression ratios.  Most pixels, 99.8 % at compression ratios 
of 10:1 and 99.3 % at 20:1, lie within 2.5 % error for band 69 
compared  to  69.1 %  and  65.3 %,  respectively,  for band 205.  
 

Compression Ratio 10:1 20:1 40:1 
RMSE 33.64 50.57 60.75 

 
Table 2. RMSE of the original (average DNO = 4960) and de-
compressed data cubes for different compression ratios. DNO 

and RMSE are in DN (scaled radiance). 



 

For the same error margin, the number of pixels decreases to 
97.5 % (band 69) and 56.3 % (205) for a compression ratio of 
40:1. A 6.5-% error margin in band 205 includes 95.8 % (10:1), 
94.2% (20:1), and 89.7% (40:1) of the pixels. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Frequency (pixel) distribution of PRAD for band 69 
(1011 nm) and 205 (2319 nm) 

 
The spectral difference (PRAD) between original and de-
compressed data for individual pixels behaves similarly to these 
two fidelity assessment cases. An example derived for an 
�alunite� pixel for the compression ratios 10:1, 20:1, and 40:1 
is shown in Figure 3. It indicates that the relative differences for 
the 10:1 and 20:1 compression ratios are very similar with 
errors below 0.3 % in most bands. These errors increase up to 
1% abo ve 2398 nm.  As expected, errors of up to 6.3  % occur 
in the strong atmospheric water absorption regions at 1380 nm 
and 1870 nm. The results, retrieved from the comparison of the 
original spectrum and the spectrum compressed at 40:1, 
revealed larger errors, up to 10.2 %, with the strong water 
absorption regions excluded.  
 
5.2 Data Products 
 
The results of the endmember selection using the IEA approach 
are summarized  in Table 3  for the  original and de-compressed 
data cubes. The endmembers found were identified using the 
USGS spectral library and mineral map, which was derived 
from AVIRIS data (USGS, 2002). Compared to the original 
data, the same endmembers were retrieved from data at 
compression ratios 10:1 and 20:1, although the IEA procedure 
selected some of the endmembers in a different order,  resulting          
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Figure 3. PRAD calculated from original and de-compressed 

radiance spectra for an �alunite� pixel 
 

in a different endmember number for a given endmember. 
Accordingly, no endmembers were lost. This is not the case for 
the 40:1 compression ratio where the endmember 14, dickite 
(mixed with kaolinite), was not retrieved.  
 

Original 
EM # 

Endmember 10:1 
Em # 

20:1 
EM # 

40:1 
EM # 

1 Chalcedony 1 1 1 
2 Calcite (mixed with 

unknown) 
2 2 2 

3 Alunite 3 3 3 
4 Kaolinite 4 4 4 
5 Montmorillonite 

(mixed with 
unknown) 

5 5 5 

6 Dickite 6 6 6 
7 Kaolinite 7 7 7 
8 Musco vite (mixed  

with unknown) 
8 8 9 

9 Kaolinite (mixed 
with Alunite) 

9 9 8 

10 Alunite (mixed with 
Kaolinite) 

11 10 11 

11 Alunite (mixed with 
Kaolinite) 

10 11 10 

12 Buddingtonite 12 12 12 
13 Montmorillonite 13 14 13 
14 Dickite (mixed with 

Kaolinite) 
14 15 lost 

15 Montmorillonite 15 13 15 
 
Table 3. Endmembers extracted from the different cubes with 

the automatic IEA procedure 
 

Differences between endmember spectra, extracted from 
original data and decompressed data, generally increase with 
increasing compression ratio. This trend is reflected by the 
SAM fidelity measure with average values of 0.004  
(compression ration of 10:1), 0.008 (20:1) and 0.010 (40:1) for 
all  the endmembers. However, deviations from this trend occur 
for muscovite (endmember 8) and for calcite (2) where the 
SAM values for the 20:1 compression ratio are higher than 
those at the 40:1 ratio.  It should be noted in this context that 
endmember spectra, extracted from the original data and de-
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compressed data, are not necessarily derived from the same 
pixels, thereby enhancing the probability of spectral differences 
for a specific endmember.  The relatively low SAM values, of 
up to 0.03 indicate that the typical shapes of the mineral 
absorption features were preserved for all compression ratios.  
In order to further illustrate this statement, examples of 
endmember spectra of kaolinite (endmember 4) and 
buddingtonite (12) are shown in Figure 4 for the 2000-nm to 
2500-nm wavelength range. This is the key range for 
identification and mapping minerals using hyperspectral data. 
The fidelity measures SAM and APRAD are listed in Table 4 
for these examples. Despite larger errors for buddingtonite 
(compression ratio of 40:1), its typical absorption feature 
centred around 2120 nm has been preserved. 
 

Compression Ratio 10:1 20:1 40:1 
Kaolinite: SAM 
                 APRAD 

0.004 
0.5 

0.007 
1.1 

0.010 
2.0 

Buddingtonite:  SAM 
                         APRAD 

0.004 
0.7 

0.04 
0.4 

0.019 
5.9 

 
Table 4. Fidelity measures SAM  and APRAD (%) for kaolinite 

(endmember 4) and muscovite (8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Endmember spectra of kaolinite and 
buddingtonite for the original and de-compressed data cubes 

 
The RMSE between the fractions, extracted from the original 
data and de-compressed data, increases with increasing 
compression ratios as demonstrated in Figure 5.  The RMSE 
averaged over the endmembers amounts to 0.02 (compression 
ratio of 10:1), 0.03 (20:1), and 0.04 (40:1). The largest percent 
(relative) differences occur for the low fraction values, which 

are not an issue since only the high abundances of minerals are 
of interest for mineral exploration purposes. Therefore, only the 
fractions above 0.5 were mapped for the individual 
endmembers as shown in Figure 6 for endmember 5, 
montmorillonite. It can be seen for the compression ratios 10:1 
and 20:1 that the spatial pattern is similar to the one derived 
from the original data, although some of the pixels are not 
mapped at all or are incorrectly classified. Despite the increase 
of these classification errors for the 40:1 compression ratio, the 
spatial pattern is still recognizable. This is generally also the 
case for the other endmembers with the exception of 
endmember 8, muscovite where the abundance maps retrieved 
from data at the three compression ratio show significant spatial 
distribution differences compared to the one extracted from the 
original data.  

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Endmember

Fr
ac

tio
n 

M
ap

 R
M

SE
 

10:1

20:1

40:1

Figure 5. RMSE of the fractions extracted from the original and 
de-compressed data cubes for the different endmembers. The x-

axis refers to the endmember numbering of the original data. 
 

6.0 CONCLUSIONS 
 
The impact of lossy HSOQVQ data compression on mineral 
mapping was investigated in this paper. The compression ratios 
10:1, 20:1, and 40:1 were used to compress AVIRIS radiance 
data acquired over Cuprite, Nevada. In general, the errors 
between original and decompressed data, as well as derived 
products (endmembers, mineral abundances), increase with 
increasing compression ratio. All of the 15 endmembers, 
retrieved from the original data, could be extracted from the 
data compressed at ratios of 10:1 and 20:1. However, one 
endmember, calcite, was lost for the 40:1 data compression 
case. This implies that this particular endmember (mineral) 
could not be mapped. In addition, the spectral differences are 
larger for the 40:1 compression ratio than for the other two 
ratios. The same is true for the resulting mineral abundance 
(fraction) maps. A comparison of abundance maps with 
fractions larger than 0.5 revealed similar results. These maps 
show generally a similar spatial pattern for the compression 
ratios 10:1 and 20:1 as for those derived from the original data. 
This spatial pattern is still recognizable for most of the 
endmembers extracted from data at 40:1 data compression 
ratio, although the classification errors are considerably larger. 
The preliminary results presented in this paper are encouraging 
and indicate that data compression ratios of 10:1 and 20:1 are 
likely suitable for identification and mapping minerals in 
Cuprite-like environments. These two ratios form the limits 
within hyperspectral data need to be compressed onboard 
operational spaceborne systems in order to guarantee the 
transfer  of  data  in  a  timely  fashion  to the  ground  receiving 
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stations. The 40:1 ratio is not acceptable due mainly to the loss 
of one endmember. 
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