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Abstract 

Hyperspectral models developed to estimate plant water content have had limited application 
under field conditions and have not been rigorously validated. A physical model using a spectrum 
matching technique was applied to hyperspectral data to directly calculate the canopy equivalent 
water thickness (EWT) using a look-up table approach. The objective of this study was to test the 
validity of this algorithm using plant water content information collected under field conditions, and 
to relate this to the needs of precision agriculture. Image data were acquired over two experimental 
test sites in Canada, near Clinton, Ontario and Indian Head, Saskatchewan, using the Probe-1 
airborne hyperspectral sensor. Plant biomass samples were collected simultaneously from plots 
spanning fourteen fields of various crop types (wheat, canola, corn, beans and peas). The model was 
validated against EWT estimated from biomass samples. The model predicts EWT in the range found 
with all crop types pooled together, a root mean squared error (RMSE) of 26.8 % of the average. The 
model was sensitive to within-crop variability for broad leaf crops such as peas, corn, and beans 
(RMSE = 24.4%, 12.0, 21.8%, respectively).The RMSE for canola was relatively high (39.9%) as a 
result of a poor prediction at low water contents.  The model proved a poor predictor of EWT in 
wheat (RMSE = 69.9%). EWT is related to plant biomass and leaf area index (LAI). 
 
 

1 INTRODUCTION 

The analysis of plant spectra measured from 
hyperspectral sensors using advanced models holds 
the potential to estimate plant physiological properties 
over relatively large areas. Reflectance in the near and 
short-wave infrared (NIR and SWIR, respectively) is 
influenced by the amount of liquid water in the target,  
expressed as a series of absorption features at 970, 
1180, 1450, 1940 and 2500 nm.  At the canopy scale, 
NIR bands have proven more sensitive to variation in 
plant water content due to the stronger reflectance 
signal. 

The water index (WI), based on the relative 
depth of the 970 nm absorption feature, has been 
correlated with ground measures of plant water 
content at both leaf and canopy scales (Peñuelas et al., 
1993; Gamon et al., 1999).  The index has been found 
to be a good indicator of plant water stress (measured 
as relative water content) under extreme drought 
conditions where leaf area is not highly variable 
(Peñuelas et al., 1997).  The WI is more strongly 

related to plant water content, which is a function of 
canopy biomass, than water stress, which is related to 
the physiological state of water in the plant (Gamon et 
al., 1999).   

An increased understanding of the interaction of 
light within a plant canopy has led to more complex 
models to estimate plant water content.  Reflectance in 
the NIR and SWIR are related to the overlapping 
absorption of atmospheric water vapour at 940 and 
1130 nm and vegetation liquid water at 970 and 1180 
nm. The absorption peak of liquid water is offset to 
longer wavelengths, corresponding to the larger 
intermolecular forces of water in this phase (Green et 
al., 1991). The transmission of radiation in these 
overlapping absorption bands is directly related to the 
total amount of water in each phase in a given pixel.  
Using a radiative transfer model, a curve fitting 
procedure was developed to estimate column 
atmospheric water vapour, and separate this amount 
from the liquid water (measured as equivalent water 
thickness, EWT) in the target vegetation, based on the 
offset in the absorption minima (Gao and Goetz, 
1990).   

The EWT is defined as the hypothetical 
thickness of a sheet of liquid water in the target (Allen 
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et al., 1969) and is related to the path length of light 
radiation in the canopy.  Curve-fitting models have 
been applied using AVIRIS data over vegetated 
landscapes (Gao and Goetz, 1994; Roberts et al., 
1998; Ustin et al., 1998) but have had limited 
application and validation over agricultural 
landscapes. The objective of this study is to validate 
this model using a version modified by Staenz et al.  
(1997) over an agricultural landscape and determine 
the sensitivity of this measure to within-field variation 
in plant water content. 

2 MATERIALS AND METHODS 

 Airborne hyperspectral data and ground 
validation measures were collected over two 
agricultural sites in Canada representing a range of 
crop types and site characteristics. Field campaigns 
were conducted during the growing seasons near 
Clinton, Ontario (43°N, 81°W) in 1999 and Indian 
Head, Saskatchewan (50°N, 104°W) in 2000.   

At the Clinton site, six test fields were chosen 
for ground validation measures, ranging in size from 
19 to 36 hectares. Three were seeded with corn (Zea 
mais L.) and three with white beans (Phaseolus 
vulgaris L.). No nitrogen or seeding treatments were 
delineated within the fields.  

For the Indian Head site, fields were located on 
a precision test farm of the Indian Head Agricultural 
Research Foundation. Eight 12-hectare fields were 
chosen for ground measurements, four seeded with 
wheat (Triticum aestivum L.), two seeded with canola 
(Brassica napus L.), and two with peas (Lathyrus 
aphaca L.). Each field was divided into four sections 
of approximately 3 hectares each to delimit treatments. 
Variable rate fertilizer applications were made in 
canola and wheat fields; variable rate seeding 
treatments were made in pea fields.  Patches of bare 
soil, double seeded and crop residue were established 
in an adjacent field (approximately 20 m by 20 m in 
dimension).  

2.1 Image Acquisition and Processing 

Image data were acquired using the airborne 
Probe-1 hyperspectral sensor (Earth Search Sciences 
Inc., 2001). The Probe-1 is a "whiskbroom style" 
instrument that collects data in the cross-track 
direction by mechanical scanning and in the along-
track direction by movement of the airborne platform. 
This sensor collects upwelling radiance in 128 spectral 
bands in the visible, NIR and SWIR between 440 nm 
and 2500 nm. The bandwidth is between 11 and 18 nm 
at full width half maximum (FWHM). Probe-1 is 
mounted on a three-axis gyrostabilizer to minimize 
geometric distortion from the aircraft movement. The 
flying altitude was 2500 m (above ground level) for a 

swath width of 3 km and a spatial resolution of 5 m at 
nadir.  

Image processing was carried out using the 
Imaging Spectrometer Data Analysis System 
(ISDAS), a software package, developed at the Canada 
Centre for Remote Sensing, for processing and 
analysing hyperspectral data (Staenz et al., 1998). A 
vicarious calibration of the sensor was required to 
correct for errors in the calibration coefficients 
supplied with the data (Secker et al., 2001). A 
radiometric re-calibration of the sensor radiance was 
made using ground spectra obtained simultaneous to 
aircraft data acquisition over a pseudo-invariant site 
(bare soil in Clinton and a section of pavement in 
Indian Head), using a portable spectroradiometer 
(GER Corporation, 1990).  

2.2 Calculation of Image EWT 

Image data were used to calculate canopy 
equivalent water thickness using a spectral curve 
fitting procedure described by Staenz et al. (1997) and 
implemented in the ISDAS atmospheric correction 
module. The model calculates canopy EWT by 
modelling reflectance as a linear function adjusted for 
water absorption in the near infrared.  An initial set of 
modelled surface reflectances was selected over the 
940 nm atmospheric water absorption region and 
adjusted for liquid water transmittance. The adjusted 
surface reflectance was converted to at-sensor radiance 
using look-up table parameters derived using the 
MODTRAN 4 radiative transfer code (Berk et al., 
1999). The predicted at-sensor radiance was compared 
to the measured radiance using a non-linear least-
squares fitting technique (Press, 1992). The model 
retrieves both the atmospheric water vapour content 
and the canopy liquid water on a pixel-by pixel-basis. 

2.3 Ground Data Collection 

Measurements of plant biomass used to 
calculate plant water content were made on the day of 
image acquisition for each study site. Approximately 
eight to thirteen sampling sites were selected per field. 
Sampling sites were selected to reflect within-field 
variability, based on elevation and soil maps, for a 
total of 154 locations. Each sampling site was 
georeferenced. At each sampling site, three replicates 
were taken within 2-3 m of the center of the site 
location to reflect local variation in plant biomass.  At 
each replicate, all of the above-ground crop biomass 
was harvested within a 0.5 m by 0.5 m area.  Samples 
were weighed and dried to obtain fresh and dry mass.  

Plant EWT was calculated as (Jacquemoud and 
Baret, 1990): 



  
LA

DMFMEWTBiomass
)( −=  , (1) 

where LA is the leaf area and FM and DM are the 
fresh and dry masses, respectively. The LA for this 
study was not measured directly, but was estimated 
from plant dry matter as: 

   SLADMLA ×= ,   (2) 

where SLA is the specific leaf area. The SLA is 
defined as the area of leaf per unit of dry leaf matter 
and is a crop-specific parameter that quantifies the 
internal structure of plant leaves, and is more or less 
constant for non-senescent leaves. For this experiment, 
indicative values were used from a table established 
by Keulen (1986).  

The mass of water calculated was made on 
pooled samples of aboveground biomass, with no 
distinction made between stem and leaf water content. 
In general, leaves dominate the scattering of radiation 
within agricultural canopies (Knipling, 1970). The 
stem water content, however, is a significant portion 
of the total canopy biomass, particularly in the early 
stages of growth. For this reason, the values of 
biomass EWT were corrected for the stem-to-leaf 
ratio, to compensate for the effect of stem water 
content on these measures. The dry matter partitioning 
for agricultural crops is more strongly related to crop 
type than to individual growing conditions (Heemst, 
1986). For this study, measured and modelled dry 
matter partition as a function of crop growth stage 
were estimated from studies on wheat (Schulze, 1982), 
corn (Heemst, 1986), soybean (Penning de Vries et al., 
1989), canola (Hocking et al., 1997) and pea (Baigorri 
et al., 1999). Values for white bean were taken from 
soybean data due to the morphological similarities 
between these crops. Leaf proportions were estimated 
based on growth stage (days after sowing) and a 
correction factor (based on the mass) was applied to 
the total value of EWT. 

2.4 Image Registration 

Ground sampling sites were located in the 
Probe-1 image using an image-to-image registration 

with high-resolution georeferenced images (1 m 
IKONOS panchromatic for Indian Head sites and 1 m 
orthophotos for Clinton sites). The georeferenced 
image was warped to fit the Probe data using a 2nd 
order polynomial. Due to the high root mean squared 
error (average RMSE = 2.6 pixels) of the image 
registration, image data were averaged from 3 by 3-
pixel window surrounding the georeferenced location.  

2.5 Model Validation 

To validate the model, the coefficient of determination 
and the root mean squared error (RMSE) were 
calculated. The RMSE and the standard deviation are 
given as a percentage of the average values. For this 
research, the observed values were those from the 
plant sampling (EWTBiomass) and the predicted values 
were from the image (EWTImage).  

3 RESULTS  

3.1 Model Validation 

Model fit statistics were calculated for 
EWTBiomass values calculated both with and without 
stem water content for all crops combined (Table 1).  
The intercept for both cases is positive, indicating that 
the model is overestimating the amount of water in the 
canopy.  This overestimation is reduced by 0.01 cm 
when the proportion of water attributable to stems is 
removed from the calculation of EWTBiomass. The 
RMSE was much lower when biomass measures 
included the leaf water content only (26.8% versus 
58.4%). This suggests that the model is more sensitive 
to leaf water content than the water content of the 
whole plant. This is advantageous for agricultural 
applications, where leaf water content responds more 
distinctly to drought conditions than the water content 
of the stem and leaves combined (Champagne et al., 
2001).  

There is a larger scatter in the data at values of 
EWT less than 0.15 cm. This is largely a result of the 
large scatter in the data for wheat fields, which will be 
discussed in section 3.3. 



3.2 Background and geometric effects on 
modelled EWT  

Image-derived measures such as EWT may be 
sensitive to variability that is related to differences in 
soil brightness or other background elements like crop 
residues. The early development phase of the crops 
and the minimum tillage used at both study sites 
resulted in a significant presence of crop residues and 
soil in the sensor field-of-view. Average EWTImage 
values for patches of pure soil, and residue were 
examined. The bare soil patch had an EWTImage value 
of 0.050 cm and the residue patch had a value of 0.007 
cm.  These values fall within the error bounds of the 
model, suggesting that soil and residue moisture did 
not contribute significantly to extracted EWTImage.  

The effects of view angle and illumination 
geometry on image-derived vegetation indices are 
significant (White et al., 2001). For this study, image 
data were not normalized for directional effects, with 
most images acquired at approximately the same local 
sun time. Variations in view angle within a single 
image were not found to significantly influence the 
results.  Future work will focus on the correction of 
errors due to variation in view/illumination geometry, 
since they have been found to cause some variation in 
estimated plant water content (White et al., 2002). 

3.3 Modelling crop and field variability 

The dynamics of EWT as a measure of plant 
water content are further illustrated by examining the 
relationship between modelled and measured EWT on 
a species by species basis. Overall, the corn crop 
showed the highest EWT, with a decreasing EWT for 
peas, canola, wheat and beans (average EWTImage = 
0.240, 0.154, 0.131, 0.111, 0.010 cm, respectively). 
This follows the pattern of dry matter and water 
content distribution among the crop types (Fig. 1), 
confirming other studies that have found canopy 

Table 2. Fit statistics for observed EWT and image-derived EWT (where EWTBiomass and EWTImage are 
the equivalent water thicknesses calculated from biomass samples and image data models; EImage and 
EBiomass are the standard deviations as a percentage of the mean values; a and b are the slope and 
intercept of the least squares regression line; RMSE is the root mean squared error given as a 
percentage of the average value; D is the index of agreement; and R2 the coefficient of determination, 
indicated in bold at significance level p< 0.001), given for the linear best fit line and a linear model fit 
through the bare soil point.  
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Bean 0.098 0.101 7.5 19.9 -0.1 0.13 21.8 0.01 0.11 

Corn 0.241 0.240 11.4 6.4 0.2 0.22 12.0 0.00 0.66 

Canola 0.101 0.131 57.0 38.2 0.9 0.06 39.6 0.76 0.76 

Pea 0.127 0.154 25.1 21.1 0.9 0.04 24.4 0.74 0.81 
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Wheat 0.073 0.111 28.5 27.2 0.1 0.10 69.9 0.01 0.01 

 

Fig. 1. Dry matter and water content values for each 
crop type. 



estimates of plant water content largely driven by 
biomass distribution (Gamon et al, 1999). 

 A strong linear relationship was found for peas 
and canola, with R2 values of 0.74 (significance level, 
p = 0.001) and 0.76 (p = 0.001), respectively (Table 
1). The scatter plot of predicted and observed EWT 
shows that corn and bean crops were (with one 
exception) clumped within a limited range of EWT 
(Fig. 2), whereas the range of EWT for canola and 
peas was comparatively wider (57.0 % and 25. 1% 
variability, respectively). As a result of this limited 
dynamic range in corn and beans, R2 values for these 
crops are low and not statistically significant. When R2 
values are recalculated using a bare soil point (with 
and EWTImage value of 0.05cm and a EWTBiomass value 
of 0.0 cm, the relationship becomes stronger for corn 
(R2 = 0.66). The relationship does not improve for 
beans substantially due to the very small range in 
EWTBiomass (7.5 %) compared to EWTImage (19.9 %) 
for that crop. The linear fitting results for wheat were 
low despite a comparatively wider dynamic range of 
EWT in the data (R2 = 0.01; R2 = 0.05 including the 
bare soil point).  

The RMSE for corn, bean, canola and pea crops 
was 12.0, 21.8, 39.6, and 24.4 % of the measured 

value, respectively. The higher RMSE for canola is 
largely a result of a poorer model fit. The predicted 
values are consistently higher than the measured 
values in this range of water values. This suggests that 
the ratio of stems to leaves for crops at this growth 
stage was not estimated correctly, or that the water 
content measured by the sensor includes a 
combination of both leaves and stems. Overall, the 
model is providing a good estimation of EWT for 
these crops. 

The relationship between measured and 
modelled EWT for wheat showed the highest RMSE 
and the largest scatter in the data (Table 1, Fig. 1).  
The wheat crop showed significant variability within 
the four fields studied, with percentage variability of 
28.5 % for EWTBiomass and 27.2 % for EWTImage. The 
overall average water content was the lowest for the 
five crop types, with EWTBiomass of 0.073 cm.  The 
RMSE was the highest for the five crops at 69.9%. 
The large scatter in the data suggests that the different 
radiation scattering regimes within the canopy for 
broadleaf and grass species influences the depth of 
water absorption features. It is possible that the 
erectophile nature of wheat leaves measured at a 
canopy scale produces an optical path length that 

Wheat 

Corn 

Bean 

Fig. 2. Relationship between EWTImage and EWTBiomass. Circled values represent clusters of data discussed in 
section 3.3.  



includes a highly variable proportion of leaves and 
stems, and that the EWTImage values are not 
consistently representative of leaf or stem water 
content. Future work will establish the proportion of 
leaves and stems in the field-of-view of the sensor and 
will establish a mixing ratio to improve the 
understanding of plant parameters measured from 
airborne and satellite platforms. 

3.4 Application of EWT to vegetation studies 

The biological meaning of EWT must be 
understood in order for it to be an effective tool in 
vegetation studies. The canopy value of EWT used is 
related exponentially to the gravimetric water content 
of the plant (GWCF), given as a percentage of the 
fresh mass (Fig.3). The relationship is slightly variable 
for each plant type, resulting from variability in 
specific leaf area and variation in the relationship 
between fresh and dry mass. The relationship is weak 
for EWTImage (R2 = 0.24) due to the large scatter in the 
EWTImage values for beans. When beans are excluded 
from the model, the relationship improves (R2 = 0.64).   

EWT is primarily driven by changes in actual 
water content, which is, in turn, driven by changes in 
biomass. The EWT is related to NDVI (R2 = 0.77), 
which is largely a measure of canopy structure and 
related to the total biomass through the leaf area index 
(LAI). This indicates that most of the variability in 
EWT is related to variation in canopy structure; 
primarily, increases in canopy height and LAI. The 
relationship between LAI and EWT is inherent: the 
EWT is a measure of the optical thickness of water in 
a stack of leaves; therefore increases in the quantity of 
leaves increases both the LAI and the EWT. Water 
thickness has been suggested to be a stronger indicator 
of canopy structure and LAI than indices, such as 
NDVI, which tend to saturate at LAI values greater 

than 3.0 (Roberts et al, 1998). The intercorrelation 
between physiological manifestations of water stress 
(such as stomatal closure) and variation in structural 
manifestations of water stress (such as variations in 
leaf water content) cannot be totally isolated from one 
another (Hsaio and Bradford, 1983). Optical measures 
of plant water content, in an agricultural context, can 
instead form part of an integrated approach to crop 
management (Strachan et al., 2001). 

4 CONCLUSIONS 

A spectrum-matching technique for the 
prediction of canopy water was validated over an 
agricultural landscape. Overall, the model provides a 
significant relationship with canopy equivalent water 
thickness (EWT) when all crop types are pooled 
together, with an RMSE of 26.8%. The model is more 
sensitive to leaf water content than plant water 
content, and future validation work should isolate 
these values in the biomass measurements. 

A breakdown of the estimation of EWT for 
individual crops revealed that the sensitivity of the 
model to variations in EWT. The model was sensitive 
to the high variability pea crops (24.4%) and provided 
a good prediction of EWT in canola at higher water 
conent (RMSE = 39.9%). The low level of variability 
in corn and bean crops prevented a statistically 
significant result from being found, but the low RMSE 
suggests that the model accurately estimated EWT for 
these crops (RMSE = 12.0 and 21.8% for corn and 
beans, respectively).  The application of this model to 
agricultural field management would require a greater 
understanding of the causes of variation in EWT and 
the link to crop production. The poor results for wheat 
(RMSE = 69.9%) suggest that the source of scattering 
of radiation from these canopies is a variable 
combination of leaves and stems. The influence of 
stems in grass species reflectance should be examined 
further. 

The relationship of EWT to LAI (R2 = 0.67) 
makes it a useful tool to use in conjunction with other 
remote sensing measures for an integrated system of 
crop management.  

Future work will be done to examine measures 
of EWT in relation to precision agriculture. A follow-
up study was made in 2002 at Indian Head to examine 
seasonal variation in optical remote sensing products 
such as EWT. Two wheat fields were studied during 
three field campaigns over the growing season. Leaf-
level spectral measurements were made at each 
sampling site, coincident with biomass sampling. 
Hyperion hyperspectral satellite imagery was acquired 
over the site to examine potential to scale-up the 
estimation of water content to space-borne platforms. 

Fig. 3. Relationship between gravimetric water 
content (GWCF) and EWT calculated from 
biomass and image data. Lines indicate a best-fit 
exponential model for EWTBiomass (R2 = 0.85) and 
EWTImage (R2 = 0.24). 
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