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1. Overview of Clinton ’99 Project 
 
1.1 Participants in Clinton ‘99 
 
The Clinton 1999 project was a collaborative research and development initiative 
undertaken by the Canada Centre for Remote Sensing (CCRS) in collaboration with 
Cargill and Agri-food Laboratories (AFL). A list of project participants and contact 
information is provided in Table 1. Cargill is an international marketer, processor and 
distributor of agricultural, food, financial and industrial products and services. The 
company has 85,000 employees in 60 countries (see http://www.cargill.com/). The 
Cargill office situated in Clinton, Ontario was involved in this research project. Agri-
Food Laboratories is the largest independently owned agricultural facility in Ontario (see 
http://www.agtest.com/). They provide analytical services for feed, soil and water as well 
as quality control testing for agricultural manufacturing of feed and fertilizer. AFL has 
two offices – one in Guelph, and a second office dealing with GIS mapping in Embro, 
Ontario. 
 
The Geography Department of the University of Ottawa was also involved in the data 
collection and analysis during the Clinton ’99 project. These data are supporting the M.S. 
thesis work of two students at the University. 
 
 

Table 1. List Of Participants And Contact Information 
 
 Telephone Email 
CCRS (588 Booth St., Ottawa ON K1A 0Y7) 
Jean-Clause Deguise 613-947-1229 Jean-Claude.Deguise@geocan.nrcan.gc.ca 
Heather McNairn 613-947-1815 heather.mcnairn@ccrs.nrcan.gc.ca 
Anna Pacheco 613-947-1364 anna.pacheco@ccrs.nrcan.gc.ca 
Karl Staenz 613-947-1250 karl.staenz@ccrs.nrcan.gc.ca 
Cargill (R.R. #4 Clinton, ON N0M 1L0) 
Susan Bird   
Dennis O’Connor 519-233-3423 dennis.oconnor@odyssey.on.ca 
AFL Mapping Center (110 Huron St., P.O. Box 162, Embro, ON N0J 1J0) 
Dale and Karon Cowan 519-475-6878 karon@agtest.com 
University of Ottawa (60 University St., P.O. Box 450, Stn. A, Ottawa, ON K1N 5N5) 
Abdou Bannari 613-562-5800 ext.1042 abannari@uottawa.ca 
Catherine Champagne  catherine.champagne@ccrs.nrcan.gc.ca 
 
 
1.2 Hyperspectral  and Synthetic Aperture Radar Imagery for Use in Precision Farming 
 
Significant spatial and temporal variability is associated with both soil and crop 
characteristics. Measuring and monitoring these characteristics using traditional ground 
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surveys can often be prohibitive because of the time and cost of data acquisition and 
processing. Acquisition of data from remote sensors on aircraft or satellite platforms 
offers an alternative. These data are acquired over large areas and in the case of orbiting 
satellites, data are provided continuously throughout the growing season. However, 
extracting meaningful quantitative information from the data is a challenge and the 
application of remote sensing imagery to precision farming is still being investigated. 
 
Optical sensors record the reflectance of visible (400-700 nm) and infrared (700-2500 
nm) electromagnetic energy. Energy in these regions of the spectrum is sensitive to the 
plant pigmentations and internal leaf structure of vegetation. Multispectral sensors like 
SPOT and Landsat record reflectance in a few very broad spectral bands. In contrast, 
hyperspectral sensors record reflected energy in many narrow and contiguous spectral 
bands. With these characteristics, hyperspectral sensors are often able to detect very 
specific reflectance and absorption features associated with the imaged target. As a result, 
these sensors provide a unique opportunity to extract quantitative biophysical and 
biochemical information about the target.  
 
The application of remote sensing to crop monitoring requires frequent coverage and 
often requires data acquisitions during specific critical crop phenological stages. Cloud 
cover can be an impediment to the operational application of remote sensing to precision 
farming. Microwave instruments like Synthetic Aperture Radars (SARs) operate at much 
longer wavelengths (~ 0.01 m to 15 m) in comparison to optical sensors. These longer 
wavelengths are generally not affected by the atmosphere and as such, can acquire 
imagery regardless of cloud cover. In the microwave region of the electromagnetic 
spectrum, it is the large-scale structure and dielectric properties (water content) of the 
target that primarily influences the amount of energy scattered back towards the sensor. 
Microwaves also penetrate much further into the crop canopy and the soil relative to 
energy at optical wavelengths. Thus radar and optical sensors respond to very different 
crop and soil characteristics, and information from these two data sources is considered 
complementary.  
 
 
1.3 Objectives of Clinton ‘99 
 
Prior to the formulation of the data acquisition plan and the execution of the experiment, 
CCRS, Cargill and AFL agreed to a list of research objectives. These are listed below. 
 
Science Objectives: 
• Validation of pixel endmember fractions derived from spectral unmixing methods: 

− What exactly does a fraction represent in the field? 
− What is the relationship between vegetation fractions and indicators of crop            
    vigor (LAI, biomass, …)? 
− How many bands of imagery do we really need to extract spectral  

            unmixing information? 
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• Mapping location (and possibly) type of weeds to identify and mitigate against weed 
escapes: 

− Weed spectral library (from field spectroradiometer) of different weed types    
    will be compiled. 
 

• Validation of biophysical parameters measured with existing methods: 
− Canopy liquid water content (equivalent water thickness) 
− Leaf Area Index 

 
• Acquisition of field data for the development and validation of new semi-empirical 

models for deriving biophysical crop parameters: 
− Chlorophyll 
− Leaf nitrogen content 
− Soil nutrient levels 
− Soil moisture 
 

• Simulate multispectral products of future high-spatial resolution satellites and 
demonstrate their potential for precision agriculture:  

− Can biophysical parameters and unmixing results be derived using imagery 
    simulated to match the specifications of future satellites? 

•  Ikonos 2 
•  Resource 21 
•  Xstar 

 
• Evaluate the applicability of SAR data for precision agriculture: 

− Can RADARSAT-2 “Ultra-Fine” Mode 3m data provide site specific  
    information? 
 

• To further evaluate RADARSAT-2 configurations (HH, VV, HV) for crop condition 
assessment 

− How sensitive is multi-polarized data to indicators of crop vigor (LAI,  
   biomass)? 

 
• Address the synergy of SAR and high spatial optical data 

− Can SAR data fill the gaps when optical data are not available? 
 
• Acquire field and remote sensing data required in growth and yield modeling (TBD) 
 
 
Operational Objectives: 
 
• To develop field ready, saleable remote sensing products for the farm level. Remote 

sensing data products might be useful to the agricultural service industry by helping 
to direct crop scouting activities and by aiding in the planning of sampling and 
management strategies for clients. Producers might themselves be interested in weed 
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and nutrient maps that could be used with variable rate applicators to site specifically 
direct herbicide and fertilizer inputs. 

 
 
2. Description of the Data Acquisition 
 
2.1 Site and Field Descriptions 
 
The study site was approximately centred on the town of Clinton, in southern Ontario 
(Canada) (43o 40’ N; 81o 30’ W) (Figure 1). Crops in this agricultural region are 
composed mainly of beans, corn, forage crops and small grains (wheat and barley).  
 
 

Figure 1. Study Site Location: Clinton, Ontario (Canada) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
Within this general study site, six fields were chosen for intense sampling. These fields 
included three white bean fields as well as three corn fields. These fields belong to clients 
of Cargill and AFL, and these companies were providing sampling, mapping and 
scouting services over these fields. In addition to these six fields, two additional wheat 
fields were used in the analysis of the radar imagery. AFL identified these wheat fields 
after their review of the radar “quicklook” imagery. AFL observed patterns in the radar 
imagery similar to patterns in the yields maps. Details of these eight fields are given in 
Table 2. 
 
Four of the six bean and corn fields were considered primary sites and two fields were 
back-up fields. On the four primary fields, double seeded, weed, residue and bare patches 
were planned. These patches were located in different soil zones within the fields, where 
variability in soil and vegetation characteristics among the patches would be maximized. 
Each patch was approximately 20 m by 20 m in dimension (Figure 2). The perimeter of 

CANADA 

ONTARIO 

    Clinton 

Ottawa  

Toronto 
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each patch was walked with a Differential GPS unit. These patches were used in the 
processing of manually selecting endmembers for input into spectral unmixing. Details of 
these patches, for each field, are described below. 
 

 
 

Table 2. Description Of Clinton ’99 Fields 
 

Field Name Crop 
Type 

Location Rank Details 

Forbes Corn Lot 29 Con 6 
Hullett 

Primary • in hay for the last 5 years  
• will have a large perennial weed spectrum 
• has significant topography 
• approximately 75 acres 
 

Pig Barn Corn Lot 35 Con 5 
McKillop 

Primary • has had a perennial weed problem, 
primarily with nutsedge 

• partly manured in the spring  
• in soybeans in 1997 and wheat in 1998 
• approximately 73 acres 
 

Wright Corn Lot 2 Con 3 
Hullett 

Backup • approximately 90 acres 
 
 

Montgomery White 
Beans 

Lot 41 Con 7 
East 
Wawanosh 

Primary • has a potential for white mould (based 
upon manure application) or for insect 
damage  

• significant corn residue  
• approximately 75 acres 
 

Sigma White 
Beans 

Lot 38 Con 3 
East 
Wawanosh 

Primary • in wheat in 1996, soybeans in 1997 and 
corn in 1998 

• has a downward slope from south to north 
• significant corn residue (no-till) 
• approximately 65 acres 
 

Vanderyk White 
Beans 

 Backup • approximately 47 acres 
 
 

Carter Red 
Wheat 

  • used in radar analysis only 
 
 

Eckert White 
Wheat 

  • used in radar analysis only 
 
 



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 9

Forbes: 
• Two bare patches  
• Two weed patches 
• Two double seeded patches 

Pig Barn: 
• Three bare patches 
• One weed patch 

Montgomery 
• Three bare patches 
• One double seeded patch 
• One residue patch 

Sigma 
• Three bare patches 

 
 

Figure 2. Soil And Residue Patches On The Fields 
 
a) Soil Patch In Forbes                                    b) Residue Patch In Montgomery  
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to these eight quantitative fields, qualitative crop information was gathered on 
about 300 fields within the study site. Crop type, growth stage and row direction 
information was recorded for each field. Field locations were indicated on air photos 
acquired over the study site. 
 
2.2 Remote Sensing Acquisitions 
 
Hyperspectral image data were acquired over the Clinton area on July 7th 1999 using the 
airborne Probe-1 sensor (Earth Search Sciences Inc., 2001) (Figure 3). The Probe-1 is a 
“whiskbroom style” instrument that collects data in a cross-track direction by mechanical 
scanning and in an along-track direction by movement of the airborne platform. The data 
were collected over the wavelength range from 437.9 nm to 2506.7 nm in 128 bands. The 
bandwidths at full width of half maximum (FWHM) varies from 13.3 nm to 22.3 nm with 
a spectral sampling interval range of 10.7 nm to 19.8 nm (Table 3). The aircraft was 
flown at an altitude of 2500 m resulting in a swath width of 2.5 km (512 pixels) and a 
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spatial resolution  of  5 m.  The  Probe-1  sensor was  mounted on an active 3-axis 
gyrostabilized real time motion compensation system. A non-differential GPS was 
recording the location of the aircraft during the flight but no attitude measurements were 
made. 
 
 

Figure 3. Probe-1 Sensor Built By Integrated Spectronics For Earth Search  
Sciences Inc. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 3. Probe-1 Spectral Specifications 
 

Detector 
Modules 

Spectral 
Range 

Spectral 
Bandwidth 

Spectral Sampling 
Interval 

Visible 437.9-904.3 nm 13.7-20.7nm 10.7-18.3 nm 
N-IR 896.3-1355.3 nm 13.3-22.3 nm 12.5-19.8 nm 
SWIR 1 1394.7-1801.1 nm 14.6-17.8 nm 11.7-15.6 nm 
SWIR 2 1977.6-2506.7 nm 16.7-21.5 nm 13.9-18.9 nm 

 
 
The airborne C-Band (5.66 cm) polarimetric SAR data were acquired by Environment 
Canada’s CV-580, in narrow swath mode. Imagery was acquired on June 30th 1999 at 
incidence angles of 37o to 67o. The data were recorded in slant range and at a 4 m pixel 
spacing. For each radar pulse, 4096 samples of complex radar signal data are captured, 
providing 4096 pixels in the range direction. The system employs a real-time motion 
compensation system that relies on inputs from the inertial navigation system (INS) on 
board the aircraft (Hawkins et al., 1999). 
 
Black and white air photos (hard copy) covering the site were purchased. The photos 
were acquired in the first week of May 1999, at a scale of 1:15,000. As well, for each of 
the six fields, a digital orthophoto was purchased. In addition to the airborne data 
acquisitions, several satellite images were acquired. Six RADARSAT-1 Fine Mode 
acquisitions were planned (Table 4). As well, all available cloud free Landsat and SPOT 
imagery that covered the site during the growing season was ordered. 
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Table 4. Satellite Image Acquisitions 
 

Satellite Sensor / 
Modes 

No. of 
Bands 

Nominal Spatial 
Resolution (m) 

Acquisition 
Date (1999) 

Scene Centre Co-ordinate 

RADARSAT-1 Fine 4 Far 1 8  June 2 43o 38’ N; 81o 32’ W 
RADARSAT-1 Fine 4 Far 1 8 June 26 43o 39’ N; 81o 34’ W 
RADARSAT-1 Fine 2 Far 1 8 July 3 43o 40’ N; 81o 31’ W 
RADARSAT-1 Fine 4 Far 1 8 July 20 43o 39’ N; 81o 31’ W 
RADARSAT-1 Fine 2 Far 1 8 July 27 43o 38’ N; 81o 27’ W 
RADARSAT-1 Fine 4 Far 1 8 August 13 43o 41’ N; 81o 34’ W 
SPOT-4 HRV2 4 20 July 7 43o 40’ 28” N; 81o 25’ 36” W 
Landsat-7 TM 7 30 July 24 N/A 

 
 
2.3  Description of Ground Data Collection 
 
Ground measurements were collected from June 24 to July 7, 1999.  Approximately ten 
sampling sites were selected per field to reflect within-field variability, based on 
elevation and soil maps (Figure 4).  There were sixty sampling sites in total. All sites 
were marked with a flag and the location of the flag was recorded with a Differential GPS 
unit. Details of the numerous ground measurements collected during this field campaign 
are provided in the following sections.   
 
Soil Moisture 
 
On July 7th, soil moisture measurements were taken at each site, as well as within each 
bare soil patch, ± 2 hours of the SAR overpass. Moisture was determined by collecting 
soil samples using a 0-3 cm soil ring. Three replicate samples were taken within 1-2 
metres of the centre of the site. Soil samples were weighed wet and then oven dried for 
48-72 hours at 100oC, and then re-weighed. Volumetric 0-3 cm soil moisture was 
calculated using: 
 

cylindervolume of 
ight)t - dry we(wet weighureSoil moist =                 (1) 

 
Soil Fertility 
 
Both 2-inch and 6-inch soil samples were collected and analyzed for soil fertility. Only 
one fertility sample, at each depth, was collected at each site and in each bare patch. The 
2-inch samples were collected from June 24 to July 7, 1999, using a specially designed 
shovel (Figure 5). Six-inch samples were collected using a soil core, on the day of the 
Probe-1 flight. Soil samples were analyzed for the following properties: nitrate nitrogen 
(N03_N), pH, organic matter (%), phosphorous (ppm), potassium (ppm), magnesium 
(ppm),  calcium  (ppm),  zinc  (ppm),  manganese  (ppm),  texture  (as a class),  cation  
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exchange capacity (MEW/100G), potassium saturation (%), magnesium saturation (%) 
and calcium saturation (%). 

 
Figure 4. Location Of Sampling Sites And Patches Within Clinton ’99 Fields 

 

Forbes Montgomery

Pig Barn Sigma

Wright Vanderyk
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Figure 5. Custom Designed Shovel Used For 5 cm Soil Fertility Sample 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Percent Ground Cover 
 
Percent ground cover was calculated from vertical photographs taken with a 35 mm 
camera equipped with a 28 mm lens. The camera was mounted on an overhead mast at a 
height of 2 m above ground (Figure 6). In this configuration the camera viewed a ground 
area of 3.99 m2. Since the Probe-1 data has a pixel size of 5 m by 5 m, photographs were 
taken 3 to 4 m surrounding the centre of the sample site locations. Three photographs 
were taken at each sampling site and in each patch. Photos were taken in the period from 
June 24 to July 7, 1999. 

 
 

Figure 6. Ground Vertical Photograph Acquisition 
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SPAD Measurements  
 
Simultaneous with the Probe-1 hyperspectral data acquisition, crop “greenness” was 
measured using the Minolta SPAD-502 meter (Figure 7). The SPAD-502 measures 
transmittance of plant leaves in the red and near-infrared spectral regions. The ratio of 
these two transmittances is proportional to the total leaf chlorophyll content (Boggs et al., 
1998). At each sampling site, 30 SPAD-502 measurements were collected on different 
plants in a 2 m area surrounding the centre of each sampling site.  These measurements 
were taken on the plants upper most fully extended leaf.  An average of the SPAD-502 
measurements was then calculated for each sampling site.  Measurements were collected 
on the day of the Probe-1 acquisition. 
 
 

Figure 7. Minolta SPAD-502 Chlorophyll Meter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Leaf Area Index (LAI) Measurements 
 
Ground LAI measurements were acquired using the LI-COR LAI-2000 (Figure 8). 
Measurements were taken in the period from June 24 to July 7, 1999. The instrument’s 
algorithm measures effective LAI (eLAI) (LI-COR, 1990).  It does not take into 
consideration the clumping index of the crop canopy. The clumping effect assumes that 
canopy foliage is spatially distributed according to a non-random pattern (Chen and 
Cilhar, 1995). Using this same data set, previous research reveals that eLAI values 
acquired with the LAI-2000 have a very good correlation (r = 0.90) with percent ground 
cover (Pacheco et al., 2001a).   
 
Three eLAI measurements were taken at each sampling site in order to minimise errors 
and thus, provide a representative eLAI average of the sample site.  Measurements were 
acquired on 2 m transects along a diagonal between two plant rows within an area of 2 to 
3 m surrounding the centre of the sampling site. 
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Figure 8. LI-COR LAI-2000 Instrument 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The LAI-2000 measures the attenuation of diffuse sky radiation at five zenith angles (7o, 
23o, 38o, 53o and 68o) simultaneously (LI-COR, 1990). At each sampling site, one 
reference measurement was taken above the crop canopy and four measurements were 
taken below.  For each eLAI measurement, five canopy transmittance values are 
calculated from the five zenith angles of the optical sensor, which are utilized to calculate 
foliage amount and orientation. 
 
Biomass Samples and Plant Water Content Estimation 
 
To establish crop biomass and plant moisture levels, crop samples were gathered at all 
sites. At each site within the three bean fields, all above ground crop biomass within a 
standard 0.5 m x 0.5 m square was collected. Three replicate samples were collected at 
each site. These samples were immediately weighed to establish wet weight, and then as 
with the soil samples, oven dried and re-weighed. Gravimetric crop water content derived 
from these biomass samples was calculated by: 
 

wet weight

ight)t - dry we(wet weigh
 Content WaterPlant =  (2) 

 
 
At each site within the corn fields, two corn plants were cut in each of two adjacent rows. 
Three replicate biomass samples were collected.  For each replicate, the plants were 
weighed wet to establish total biomass. Because of the volume of plant biomass, each 
sample was subset. One corn plant per replicate was selected.  This plant was weighed 
wet and then oven dried and re-weighed. The plant water content was then established for 
the sub-sample. With knowledge of the ratio of the weight of the total sample to the 
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weight of the sub-sample, total plant water content could be calculated for the entire 
sample. Biomass sampling occurred on the same day as the Probe-1 acquisition. 
Plant Tissue Samples 
 
At each site within the corn fields, tissue samples were gathered for lab chemical 
analysis. Samples were collected on the day of the Probe-1 flight. Enough upper corn 
leaves were collected to fill a small paper bag. Three replicates were taken at each site. 
These samples were then analyzed for the following properties: nitrogen, phosphorous, 
potassium, magnesium, calcium, zinc (ppm), manganese (ppm), copper (ppm), iron 
(ppm), boron (ppm). 
 
Crop Height and Row Information 
 
At the same time as the biomass and tissue sampling, crop height was also measured. At 
each site, the height of three plants was recorded. Once during the growing season, row 
direction was noted for each field. As well, row and plant spacing was recorded (five 
measurements per field). 
 
GER-3700 Ground Spectra Measurements 
 
A number of ground target spectral measurements were acquired during the field 
campaign. A GER3700 field spectroradiometer (Geophysical & Environmental Research 
Corp.) was used for all the measurements (Figure 9). When used with a reference white 
reflectance panel, this instrument can measure reflectance spectra of various surfaces 
over a large spectral range from 300 nm to 2500 nm with a large number of narrow 
spectral bands varying from 1.5 nm to 9.5 nm in width. The white reference panel used 
was a calibrated 10” x 10” white reflectance Spectralon panel. This panel reflects 98% to 
99% of the sun’s radiation equally over the spectral range covered by the GER3700.  
 
 

Figure 9. GER3700 Field Spectroradiometer And White Reflectance  
Spectralon Panel 
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The purpose of these spectral measurements was to provide a spectral library of the main 
reflecting surfaces in the fields studied. Some of these reflecting surfaces were the two 
main crops (corn and white beans), the different soil types, the crop residue and the main 
types of weeds found in these fields. Another important use of the field spectroradiometer 
was to provide ground reference spectra of a large uniform surface to calibrate the Probe-
1 airborne hyperspectral sensor. Unfortunately, due to the frequent presence of clouds 
during the field campaign, the number of spectral measurements planned was never 
reached.  Table 5 summarizes the dates and number of spectra acquired in three of the 
fields. 
 
 

Table 5. Description Of Field Spectra Acquisitions 
 
Field Name Crop Type Date Number of Spectra 
Montgomery White Beans June 26 39 
  July 5 103 
Pig Barn Corn July 2 49 
Forbes Corn July 4 56 
 
 
Yield Maps 
 
Cargill and AFL provided 1999 yield maps (Figure 10) for two of the corn fields (Forbes 
and Wright), as well as for the three bean fields: Montgomery, Sigma and Vanderyk.  The 
two wheat fields were harvested on July 14th, and yield maps for these two fields were 
provided by AFL. Yield for Montgomery and Sigma were recorded as 'normalized yield'.  
Normalized values were provided since two combines were used during harvest and the 
two yield files were integrated together. Due to calibration differences on the combines, 
the yield was normalized.  The scale of the yield maps is in percent above and below the 
average of the field.  Average yield for Montgomery was 37.4 BPA. Therefore 100% in 
the normalized yield equates to the average of the field.  The remaining percentages are 
below and above the average yield for the field (i.e. 80% of the average is actually 20% 
lower than the average of the field, and 150% means 50% higher than the average).  
Average yield for Sigma was 30.7 BPA.   
  
List of Ancillary Data Collected  
 
In order to help the planning of the field campaign and the location of sampling sites and 
“pure” patches in these fields, topography and Electro-Magnetic Induction (EMI) survey 
data were provided by AFL. Before the beginning of the field campaign, Cargill provided 
a series of agricultural scout reports describing the health status of the crop and the 
presence of weeds in each of these fields. Cargill also provided reports from a special 
series of scout visits that were based on an image of each field acquired by the Probe-1 on 



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 18

July 7. These post-acquisition scout reports were used to interpret the fraction map 
products generated from the Probe-1 imagery. 
 

Figure 10. Yield Maps Of The Clinton ’99 Fields Provided By Cargill And AFL 
 

Carter 

Wright 

Montgomery Sigma 

Vanderyk 

Eckert 

Forbes 
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3. Data Processing Steps 
 
The flow chart presented in figure 11 identifies the data processing steps and data product 
outputs for the Clinton Probe-1.  
 
 Figure 11. Probe-1 Data Processing Steps And Product Outputs 
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3.1 Ground Spectral Reflectance Calibration 
 
The original reflectance measurements acquired with the GER3700 field 
spectroradiometer were first adjusted for the spectral and geometric response of the white 
Spectralon reference panel. These adjustments were based on panel calibration factors 
measured in a spectroradiometric laboratory and applied using a CCRS in-house 
program. 
 
 
3.2  Probe-1 Calibration and Atmospheric Correction 
 
Image pre-processing and information extraction was carried out using the Imaging 
Spectrometer Data Analysis System (ISDAS) (Staenz et al., 1998). The Probe-1 data 
were converted to at-sensor radiance using a vicarious calibration approach (Secker et al., 
2001). In order to use this method, reflectance spectra were acquired using a GER3700 
field spectroradiometer.  These reflectance spectra were measured within the central bare 
soil patch in Montgomery. This method was used to generate a new set of calibrated 
gains to convert the raw digital numbers (DN) from Probe-1 to radiance. The 
MODTRAN3 radiative transfer code, implemented within ISDAS using a look-up table 
(LUT) approach (Staenz and Willams, 1997), was then used to correct the Probe-1 
radiance spectra to surface reflectance.2 
 
3.3  SAR Processing and Calibration 
 
Corner reflectors and PARCs (Polarimetric Active Radar Calibrators) were deployed just 
north of Wingham (Ontario) during the airborne SAR acquisitions (Figure 12). Data from 
these instruments were used for radiometric calibration of the airborne data. Polarimetric 
processing and radiometric calibration of the airborne data was accomplished using the 
CCRS programs POLGASP and COMPLEXCAL. Within scene calibration accuracies 
were less than 1 dB. 
 
Image products were synthesized from the complex data using the CCRS software 
package POLSIG. Four linear transmit-receive polarizations (HH, VV, HV, VH), as well 
as the three circular polarizations (RR, RL, LL) were generated. In addition, co-
polarization plots and the co-polarized phase difference images were created.  
 
3.4  Registration of Site Locations to Probe-1 Imagery 
 
To preserve the spectral integrity of each pixel in the imagery, no geometric correction of 
the Probe-1 data was attempted. To locate the Probe-1 pixels where ground sampling was 
done in each field, a reversed image-to-image registration process was used. All sampling 
site locations were accurately measured with a differential GPS during the field 
campaign. The positions of these sites were marked on the digital aerial orthophotos. 
These marked orthophotos were then registered by a polynomial fit to the Probe-1 
imagery until the boundaries of each field used in this study fit the boundaries of the 
same field in the original Probe-1 imagery. The pixel-line locations of the sampling site 



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 21

markers in the Probe-1 imagery were located by this reverse process and used for the 
correlations between the hyperspectral data products and the ground measurements. 
 
 

Figure 12. Corner Reflectors Deployed During The Airborne SAR Acquisitions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.5 Description of Methods to Extract Information From the Probe-1 Imagery 

 
Several conference papers have been presented on the Clinton ’99 analysis and results 
(McNairn et al., 2001a; McNairn et al., 2001b; Pacheco et al., 2001a; Pacheco et al., 
2001b). The validations of both the LAI and EWT algorithms are the subject of two M.S. 
theses at the University of Ottawa. 

 
Spectral Unmixing 
 
Reflectance recorded for each pixel within an image is a combination of the reflectances 
from all “contributors” or “endmembers” in that pixel. In an agricultural context, these 
endmembers are likely to be crop and soil, along with other contributors such as weeds, 
crop residue and shadow. The purpose of spectral unmixing is to determine the relative 
contribution of each of these endmembers to the total reflectance recorded for each pixel. 
The output of spectral unmixing is a series of fraction maps which indicate the proportion 
(0 to 1) of each endmember  (crop, soil, weed, residue, shadow) present in each pixel. 
 
Using the Probe-1 data, constrained linear spectral unmixing was performed using an 
algorithm implemented in ISDAS (Staenz et al., 1998). Two different methods were 
explored for the extraction of endmember spectra. The first method used an algorithm 
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implemented in ISDAS called Automatic Endmember Extraction (AEE) and the second 
method was a manual endmember extraction (MEE) approach. Results from both 
methods will be discussed in this report.   
 
Endmember spectra were manually extracted from the image data (MEE approach) based 
on knowledge of the fields.  Since the availability of pure pixels under natural field 
conditions is problematic, patches of crop residue and bare soil were artificially created in 
the primary fields.  Endmember spectra were extracted from the canopy within these 20 
m by 20 m patches.  The patches did not exist in all investigated fields and some 
endmember spectra from one field were used on the other two fields of the same crop 
type.  Double crop density patches were not “pure” but did consist of about 80% crop and 
the residue patch did contain a small amount of green grass.  However, soil patches were 
100% soil. Spectral unmixing was done using the spectral range from 430 nm to 2500 
nm.  Spectral unmixing of the hyperspectral Probe-1 data using the MEE approach was 
conducted with three endmembers: vegetation (crop), soil and residue.  Fraction maps of 
these endmembers were then derived.  The spectral unmixing process described above 
was completed on both the radiance and the reflectance data sets. 
 
The fraction maps were validated with the vertical photographs taken during the field 
campaign. The vertical photographs were digitized in three channels (blue, green and 
red).  Unsupervised classification was carried out using ten classes: three classes for soil, 
three classes for leaf cover, two for residue, one for soil shadow, and one for leaf shadow.  
These classes were then aggregated to form three major components: leaf cover, residue, 
and soil.  Once the classification was completed, percentages of leaf, soil and residue 
cover were determined for each photograph.  For each of these classes, percent ground 
cover was then calculated from the average of the three replicate photographs. These 
percent cover classes were used to validate the crop, soil and residue fraction maps 
created by spectral unmixing. 
 
Canopy Liquid Water Content 

Canopy liquid water content can be estimated from the liquid water absorption features at 
970 nm and 1180 nm. Within ISDAS, this is computed as the Equivalent Water 
Thickness (EWT). EWT is the thickness of a hypothetical layer of water in the crop 
canopy that is required to produce the equivalent absorption feature observed in the 
hyperspectral data.  EWT is estimated from the Probe-1 imagery using an iterative curve 
fitting approach. This approach combines atmospheric correction and non-linear least 
squares regression modelling for parameter estimation (Staenz et al., 1997). 

The depth of the water absorption feature is related to the overlapping absorption of 
atmospheric water vapour and plant liquid water. The absorption peak of liquid water is 
offset to longer wavelengths by approximately 20 nm. Thus the minima of each 
absorption feature are offset and these two absorption effects can be separated. A non-
linear least squares curve-fitting technique (Gao and Goetz, 1990) and a radiative transfer 
code are used to estimate column atmospheric water vapour and to separate atmospheric 
water vapour from canopy liquid water. 
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The model retrieves both the atmospheric water vapour content and the canopy liquid 
water on a pixel-by pixel-basis. Maps of EWT were produced for each of the fields under 
study. 
 
Leaf Area Index 
 
Maps estimating effective Leaf Area Index (eLAI) were also generated from the Probe-1 
hyperspectral data. eLAI is estimated using the crop fraction maps derived from spectral 
unmixing.  Unlike other methods, this approach means that only the crop portion of 
vegetation (excluding weeds or volunteer crops) is taken into account when estimating 
LAI. eLAI values were extracted from the hyperspectral data using an algorithm 
implemented in ISDAS (Staenz et al., 2001).  The crop fraction for each of the fields was 
used as input to produce the eLAI map. 
 
eLAI can be calculated according to this formula (Ross, 1981): 
 

        
where P is the probability of a view line or a beam of radiation at an incidence angle α  
passing through a horizontally uniform plant canopy with random leaf angular and spatial 
distribution and G is the mean projection coefficient of unit foliage area on a plane 
perpendicular to α. 
 
To estimate eLAI from hyperspectral data, G (α) can be determined at 0.5 for plants 
which have randomly distributed leaf angles such as agricultural crops (Norman, 1979).  
The incidence angle α corresponds to the sensor viewing zenith angle.  Probe-1 is usually 
flown at a view angle of 0o (nadir looking).  Also, P represents the gap (non-vegetation) 
fraction, which is determined by spectral unmixing as follows: 
 
P = 1 - fc                                           (4) 
 
where fc is the fraction of the crop endmember. eLAI is then derived from hyperspectral 
data according to the following formula: 
 
                 eLAI (fc)  =  -2 ln (1 - fc)           (5) 
 
Chlorophyll Content 
 
Chlorophyll maps were generated for each field using Probe-1 reflectance data. Three 
methods were selected from the literature based on their potential for the calculation of 
chlorophyll maps from hyperspectral data. These three methods generate separate 
estimates for chlorophyll a, b and major carotenoid pigments. Since SPAD-502 field 
measurements are related to the total chlorophyll content of the plants and since 
chlorophyll a at this stage of plant growth is usually the major contributor to total 

( )    Pln -  
G

 cos          α=eLAI (3) 
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chlorophyll variability, only chlorophyll a and related indice (PSSRa, PSNDa) estimates 
will be reported.  
 
The first method is proposed by Chapelle et al. (1992) and called the Ratio Analysis of 
Reflectance Spectra (RARS). In this approach, absorptions in the reflectance spectra due 
to plant chlorophyll content are enhanced using a ratio analysis. A ratio image is 
calculated from the original reflectance spectra through two steps. First, the reflectance 
spectrum recorded for each pixel is divided by the reflectance spectrum of a chosen 
reference area. The reference spectra are taken directly from an area of the imagery 
assumed to have maximum chlorophyll content for this crop.  Then, the ratio image is 
calculated from the standardized image by dividing the reflectance at 675 nm by the 
reflectance at 700 nm, which Chappelle et al. (1992) demonstrate has a strong linear 
relationship to the chlorophyll concentration. The slope and intercept of the model are 
derived by regressing chlorophyll measured in the lab with the reflectance ratio. Since 
chlorophyll data were not collected, the coefficients used for this analysis were defaulted 
to those given in Chappelle et al. (1992). Based on this methodology, maps of crop 
chlorophyll were generated. 
 
The other methods are based on two chlorophyll indices called the Pigment Specific 
Simple Ratio (PSSRa) and the Pigment Specific Normalized Difference (PSNDa) 
(Blackburn, 1998). The PSSRa is a simple ratio of reflectance at two optimal 
wavelengths, in this case 810.4 nm and 676.0 nm for chlorophyll a. 
 
PSSRa = R810.4 / R676.0      (6) 
 
PSNDa is a type of normalized index using the same optimal wavelength as PSSRa for 
chlorophyll a. 
 
PSNDa = (R810.4 - R676.0) / (R810.4 + R 676.0)   (7) 
 
3.6 Statistical Analysis of the Hyperspectral Image Products 
 
Crop fractions were correlated with the percentage crop cover estimated from the 
classified photographs. The chlorophyll content maps were compared with SPAD-502 
measurements. Values of eLAI generated from the crop fraction maps were correlated 
with measurements taken with the LAI-2000.  To compensate for the uncertainty in the 
location of the ground sampling sites in the Probe-1 imagery fraction, chlorophyll and 
eLAI values were averaged on a 3 by 3 pixel window surrounding the location of the 
sample site in the imagery. Correlations were run on data pooled from all bean and corn 
sites. The number of sample sites within a field (8 to 11) was generally not sufficient to 
run regression analysis on a field-by-field basis. 
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3.7 SAR Data Analysis 
 
Linear polarization composites (HH, VV, HV) were created for each of the corn and 
white bean fields. The radar response over these fields was assessed qualitatively. Yield 
data were acquired over two wheat fields in the study site and the sensitivity of 
backscatter to areas of high and low productivity on these wheat fields was assessed 
quantitatively. Unfortunately, wheat and barley were not chosen for study during the 
experimental design and thus, no within-field sampling of any small grain crops occurred. 
As a result, analysis focused only on correlations between the yield data and the SAR 
backscatter. Backscatter values were extracted from areas of high and low yield (as 
indicated by the yield monitor data) within each field. The three linear polarizations were 
then used to classify each field into regions of low and high backscatter. Yield monitor 
data were segmented into two regions as well – higher and lower yielding areas. The 
percent agreement between these two regions was then calculated. 
 
 
4. Results and Discussion 

 
4.1 Spectral Unmixing 
 
Fraction Maps Derived From Automatic Endmember Extraction (AEE) 
 
A critical element for spectral unmixing methods to generate meaningful results is the 
identification and choice of representative “pure” endmembers. The more the spectras are 
representative of these endmembers, the more accurate the quantitative map of each of 
these reflectors in a scene will be. In other hyperspectral applications, these endmember 
spectra can be obtained from existing spectral libraries. Unfortunately for agricultural 
applications, the large spectral variability of vegetation due to growing conditions (i.e. 
water, nutrients, solar radiation, infestations), growth stages and crop varieties impend the 
use of such libraries at this time. 
 
A method to extract automatically “pure” endmembers from hyperspectral imagery has 
been developed at CCRS and implemented in ISDAS.  Although the AEE method has 
produced interesting results for other hyperspectral applications, interpretation of the 
results was difficult when used with the data acquired for this project.  
 
The AEE algorithm was run within ISDAS generating a set of endmember spectra. These 
spectra were then plotted and used in the spectral unmixing module of ISDAS to produce 
a fraction map for each of the selected endmembers. These maps showed the contribution 
of each endmember to the total reflectance of each pixel. Finally, with the help of the 
plotted endmember spectra, fraction maps were compared to the scouting reports that 
were completed after the hyperspectral overflight (Figure 13). 
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Figure 13. Fraction Maps Derived Using The AEE Approach 

Soil

a) Sigma

Drier Soil Areas

High Vigor Crop Low Vigor Crop

Soil Soil



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 27

 
 
 
 
 
 
 
 
 
 
 
 
 

Root Rot Areas Around Root Rot Areas

Around Root Rot Areas Weedy Areas

0 1

Color Bar:



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 28

 

Low Vigor Crop Soil

Drier Soil Areas Around Root Rot Areas

0 1

Color Bar:

High Vigor Crop Low Vigor Crop

b) Montgomery



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 29

 
 

High Vigor Crop Low Vigor Crop

c) Forbes

Soil Moist Soil Areas

Darker Soil Areas Darkest Soil Areas



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 30

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Weedy Areas

0 1

Color Bar:



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 31

 

Low Vigor Crop

d) Wright

Low Vigor Crop/Soil Influence

Highest Vigor Crop High Vigor Crop

Moderate Vigor Crop Moderate Vigor Crop



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 32

 
 
 
The AEE approach was first used on the entire scene of hyperspectral imagery including 
many of the surrounding farms, road and structures. The AEE algorithm selects the 
endmembers in the scene as a function of their level of spectral “purity” and not by the 
level of significance for the application. As a result the system selected many irrelevant 
reflecting surfaces as endmembers (roof barns, asphalt roads, etc.). To eliminate some 
insignificant endmembers, the automatic search for endmembers was then limited to a 
Region of Interest (ROI) just covering the fields used in this study. Targets known to be 
spectrally distinctive from their surroundings and uniform over many pixels (e.g. large 
blue plastic tarps), were easily identified as endmembers by this automatic method. Bare 
soil patches and field residue patches artificially prepared for this experiment were also 
recognized as endmembers. 
 
One parameter that can be adjusted in the AEE algorithm is the number of endmembers 
requested by the user. Too many endmembers confused the interpretation but without 
enough endmembers, significant endmembers can be missed. Thus it was difficult to 
determine the optimal number of endmembers. By trial and error, the choice of fifteen 
endmembers appeared to be a good compromise. Of these initial fifteen endmembers, 
some could be immediately eliminated based on their spectral signature. Some of these 
rejected endmembers showed peaks and troughs caused by errors in the atmospheric 
correction at these pixels. The remaining endmembers were then compared to known 
features of the fields such as those reported by the crop scouts.  
 
Except for Montgomery, the AEE method seemed to have difficulty distinguishing 
residue from stressed vegetation. With fraction maps obtained from constrained spectral 
unmixing, the algorithm forces the sum of all endmember fractions to equal 1. If some 
endmembers are not spectrally pure, the algorithm will try to calculate the best 
contribution of these endmembers. This “constraining” rule influences the quantitative 
estimate of all the endmembers. 
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0 1

Color Bar:



Remote Sensing Derived Products for Precision Farming      
Clinton ’99 Report 
 

 33

Based on a qualitative assessment, some of the fraction maps produced from the AEE 
corresponded well to areas of stressed vegetation delineated on the scouting reports 
(Figure 14). Certain fraction maps based on the AEE approach corresponded to weed 
areas. The automatic selection of endmembers seems able to distinguish subtle 
differences between vegetation types (i.e. trees, different crops, weeds) but this 
distinction is not consistent. 
 
The main disadvantage of the AEE method for agriculture is the difficulty in identifying 
or labeling the endmembers. The identification of these endmembers requires detailed 
knowledge of the fields at the time of the hyperspectral acquisition.  Further investigation 
is needed to establish decision rules regarding the selection of the number of endmembers 
and in the interpretation of these endmembers. 
 
Fraction Maps Derived From Manual Endmember Extraction (MEE) 
 
An alternative approach to AEE is to extract spectra of “assumed” pure endmembers 
directly from the hyperspectral imagery.  In this campaign, Cargill prepared special “pure 
pixel” patches prior to the hyperspectral acquisition (described in section 2.1). This 
approach is described as the Manual Endmember Extraction (MEE) method. Using this 
method, only three endmembers were selected – crop, soil and residue. These are the 
three dominant classes of reflectors found in these agricultural fields. 
 
The crop, soil and residue fractions of each pixel were derived using the endmembers 
extracted manually from the Probe-1 images and a constrained linear unmixing method 
(Figure 13). The crop fractions were correlated with the percent crop cover calculated 
from the vertical ground photographs. Data from all fields were pooled for this analysis 
(n = 48). A correlation coefficient (r-value) of 0.850 was achieved when the crop 
fractions derived from unmixing of the radiance data were regressed against percent crop 
cover derived from the photographs. In comparison, a coefficient of 0.883 was achieved 
when the reflectance data were used.  
 
These correlation results indicate that spectral unmixing is able to provide information on 
the extent of crop ground cover. Although correlations are significant, it is clear that 
some variability is still unexplained. Spectral reflectance from 3-dimensional targets like 
crop canopies is also dependent upon characteristics of the volume. Thus in future 
analysis several crop measurements should be combined into a more robust 
representation of the crop canopy. The unexplained variance could also be related to 
limitations in the endmember selection, and this requires further investigation. 
Endmembers were selected from patches of crop that were not “pure” endmembers since 
crop cover was not complete. In addition, endmembers were extracted from one field, but 
were used for unmixing on other fields. 
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Figure 14. Fraction Maps (Crop, Soil And Residue) Derived Using  
The MEE Approach 
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Correlation coefficients (0.850 compared to 0.883) were very similar regardless of 
whether the fraction maps were derived from reflectance data or from radiance data 
(Figures 15 and 16). This observation suggests that for this particular application, 
atmospheric correction of hyperspectral data may not be required. For operational near- 
real time crop monitoring, the elimination of this preprocessing step would be a very 
significant advantage.  
 
The main disadvantage of the MEE method for agriculture is the difficulty in identifying 
pure pixels in the imagery.   For the purpose of this experiment, pure endmember pixels 
were artificially created.  A solution to pure pixel selection will have to be investigated 
for operational application. 
 
 Figure 15. Correlation Between Crop Fractions Derived From Probe-1  

Radiance Data And Percent Crop Cover 

 
 

Figure 16. Correlation Between Crop Fractions Derived From Probe-1  
Reflectance Data And Percent Crop Cover 
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4.2 Chlorophyll Estimation  
 
Sample numbers were too small to run correlations between SPAD-502 measurements 
and chlorophyll estimates on a field-by-field basis. In some cases, as few as eight sample 
points per field were available.  Within one crop type (beans or corn), correlations were 
weak (r-values less than 0.6) or were non-significant. These poor results are a reflection 
of the low variability in chlorophyll among sites within one crop type. Although sampling 
sites were chosen to maximize variability and crop cover did vary among these sites, 
SPAD-502 values were very similar as reflected in the low standard deviations (Table 6). 
Thus with only one acquisition date, variability in chlorophyll within one crop class is 
very limited and is not detected by either the SPAD-502 or the hyperspectral imagery 
(Figure 17).   
 
 

Table 6. Comparison Between Chlorophyll Estimates Derived From Probe-1 And 
SPAD-502 Measurements 

 

 
 
Chlorophyll estimates from the Probe-1 imagery were then averaged for each crop type 
and compared to the average SPAD-502 measurements. These statistics are given in 
Table 6. On average, SPAD-502 values were higher for the corn crops, and this increase 
is also observed in the chlorophyll estimates from the Probe-1 imagery. The difference 
between the chlorophyll estimates for corn and beans was greatest for the PSSRa 
chlorophyll index. The greater sensitivity of this index supports the conclusions presented 
by Blackburn (1998) that this method seems the most appropriate to estimate plant 
chlorophyll a content per unit area at the canopy level. 
 
The sensitivity of the Probe-1 derived products to differences in chlorophyll between the 
corn and bean crops indicates that this approach will likely work if variability exists. 
However these approaches need to be tested on a multi-temporal data set, where greater 
variability is probable, or in a field campaign where chlorophyll variability is induced. To 
improve chlorophyll estimates from hyperspectral data, bands should be narrower and be 
centered on the chlorophyll absorption features. The sensitivity of these chlorophyll 
estimation methods to band characteristics should be investigated.  
 
 
4.3 eLAI Estimation 
 
Results from the correlations between ground eLAI measurements using the LAI-2000 
and eLAI values derived from the hyperspectral data cubes are presented in Table 7.  

White Beans Corn  
Mean Std. Dev. Mean Std. Dev. 

Difference between means 
(corn - white beans) 

SPAD 42.18 1.66 58.37 2.79 16.19 
RARS 9.85 0.78 11.86 0.54 2.01 
PSNDa 0.49 0.05 0.75 0.13 0.26 
PSSRa 3.04 0.46 10.23 1.11 7.19 
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Figure 17. Chlorophyll Maps Derived From Probe-1 Hyperspectral Data 
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Table 7. Correlations Between Ground eLAI Measurements And eLAI Values 
Derived From The Probe-1 Hyperspectral Data 

 

Crop Canopies Correlation 
Coefficient (r) 

White Bean Fields 0.16 
Corn Fields 0.69* 
All Canopies 0.91* 

* Correlation is significant at a probability level of less than 0.05. 
 
 
eLAI maps were also produced (Figure 18). Correlation coefficients were calculated for 
each crop type (white beans and corn) and on pooled data from all six fields. Correlations 
were not computed on a field-by-field basis since the number of sample points was too 
small and variability in eLAI values within a field was small.  Only ten sample points 
were chosen per field and thus, more sample points would be necessary and greater 
variability is required to generate a valid relationship between ground eLAI and 
hyperpsectral eLAI values on a field-by-field basis.   
 
The correlation coefficients generated for each crop type differ significantly.  Indeed, the 
correlation between the ground eLAI measurements and the hyperspectral eLAI values 
are much higher for the corn (r = 0.69) than for the white beans (r = 0.16) (Figures 19 and 
20).  The difference of growth stage between the two crops was important: the three corn 
fields were much more developed than the white beans.  Since the white bean crops were 
small in size, errors might have occurred when ground eLAI measurements were taken 
with the LAI-2000.  In fact, when the LAI-2000 instrument determines eLAI values, it 
also estimates simultaneously a standard error for the eLAI determination (SEL).  It was 
noted that SEL values were considerably higher for white beans.  Corn fields have an 
average SEL value of 0.04 in comparison to 0.47 for white beans.  The low correlation 
between ground eLAI and eLAI values derived from the hyperspectral data can also be 
justified by the limitations in the endmember selection.  Most of the fields were using the 
“purest” pixels of endmembers extracted from other fields of the same crop to perform 
spectral unmixing.  Although selecting endmembers directly from the reflectance cube 
itself was the best method available for endmember extraction, it could have generated 
some errors in the output of eLAI values from the hyperspectral data.           
 
Finally, when all corn and white beans canopies are considered, the correlation 
coefficient (r = 0.91) between ground eLAI and eLAI values derived from the 
hyperspectral data is significant (Figure 20).  Although the correlation between ground 
eLAI and eLAI derived from hyperspectral data is strong, errors in estimation still exist.  
The eLAI values derived from the remote sensing data overestimates eLAI in comparison 
with eLAI values measured from the LAI-2000 instrument.  The range of eLAI values is 
also greater for eLAI estimated from hyperspectral data than from the LAI-2000 
instrument.  These problems can be observed on all correlation figures (Figure 19, 20 and 
21).  Further investigation is necessary in order to better understand eLAI estimation.   
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Figure 18. eLAI Maps Derived From Probe-1 Hyperspectral Data 
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Figure 19. Correlation Between Ground eLAI Measurements And eLAI Values 
Derived From The Probe-1 Hyperspectral Data For White Bean Canopies 

 

 
 
 

Figure 20. Correlation Between Ground eLAI Measurements And eLAI Values 
Derived From The Probe-1 Hyperspectral Data For Corn Canopies 
 

 
 
 

Figure 21. Correlation Between Ground eLAI Measurements And eLAI Values 
Derived From The Probe-1 Hyperspectral Data 

For White Bean And Corn Canopies 
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Nevertheless, preliminary results are very encouraging for the estimation of eLAI from 
hyperspectral remote sensing data. 
 
4.4 Canopy Liquid Water Content 
 
EWT maps were derived from ISDAS and are presented in Figure 22.  Further 
analysis is ongoing at the University of Ottawa to validate these EWT maps against 
ground data collected on canopy water content.    
 
4.5 Soil Properties 
 
Soil properties are also being investigated within this data set and analysis is still 
ongoing.  Spectra from bare soil patches of all fields were extracted from the Probe-1 
hyperspectral data and are being analyzed.  Figure 23 illustrates the different spectra 
extracted and their corresponding spectral responses from 438 nm to 2506 nm.  These 
same spectra are graphed separately for the visible and near infrared region (Figure 24) 
and for the mid-infrared and short wave infrared region (Figure 25).  Furthermore, 
ground measurements such as soil moisture (%), organic matter (%) and nitrogen, 
extracted from these bare soil patches, are presented in Table 8.       
 
4.6 SAR Data Analysis 
 
Qualitative Observations on the Corn and White Bean Fields 
 
Prior to any quantitative analysis, radar image composites were created using the three 
linear polarizations (HH, VV and HV) (Figure 26). Radar backscatter varied from field to 
field  as  a  function  of crop type. However, the radar imagery did not provide significant
within-field   precision  farming  scale  information  on  the  corn  and  white  bean  fields
sampled during this campaign. These results can be explained by a number of factors. 

 
Radar backscatter can vary as a function of soil and crop condition on corn fields, as 
demonstrated by analysis conducted on data acquired over Ottawa, Ontario (McNairn et 
al., 2000). But radar backscatter acquired at shorter wavelengths, like C-Band, tends to 
saturate once large crops like corn and canola accumulate significant biomass. In the case 
of corn, this appears to occur at a crop height of about one metre. This suggests that for 
these crops, data acquired at linear polarizations (HH, VV, HV) can provide information, 
but only early in the growing season. In the case of the Clinton corn fields, crop height 
greatly surpassed one metre. As a result, in these Clinton fields corn growth across the 
fields appears relatively homogeneous. In the case of Pig Barn, even the Probe-1 imagery 
suggests relatively low variability in this field (Figure 14). For Forbes, some within field 
variability is evident in the radar imagery. However, the topography of this field makes it 
difficult to assess the influence of crop condition on radar backscatter relative to the 
effect of variations in local incidence angle that will also contribute to backscatter 
differences. 
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Figure 22. Liquid Water Content Maps Derived From Probe-1 Hyperspectral Data 
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Figure 23. Soil Spectral Responses (438 – 2506 nm) 
 

 
 
Research is continuing at CCRS to establish if other radar polarizations are less sensitive 
to this saturation effect and could thus provide crop condition information further into the 
growing season. As well, sensors that use longer wavelengths, like the L-Band PALSAR 
sensor scheduled for launch in 2003 on the Japanese ALOS satellite, could provide 
additional information. 
 
For the three white bean fields, the radar composite did not appear to detect significant 
within-field variability in soil or crop conditions. This observation is also contrary to 
previous results reported on the Ottawa data set (McNairn et al., 2000). Contrary to the 
corn crops, bean plants were very small and thus soil was the most dominant cover. The 
lack of information over the Clinton bean fields is most likely explained by the extremely 
dry soil conditions during the time of the SAR overflight and the low variability in soil 
moisture across the fields. Some moisture must be present in the target for backscatter to 
occur. The SAR imagery was acquired seven days prior to the Probe-1 flight. Conditions 
were extremely dry prior to the SAR acquisition. Rain events in the seven days between 
these two flights increased moisture conditions and resulted in significant crop growth. 
As well, bean plants were relatively small (post-emergent) during the SAR flight and thus 
the contribution to backscatter from these plants would also be small.  
 

%
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Figure 24. Soil Spectral Responses On The Visible And Near Infrared Regions Of 
The Spectrum 

 

 
 

Quantitative Analysis of Wheat Fields 
 
Although little information was found in the corn and bean fields, many small grain fields 
in the area did display interesting within-field crop patterns. Barley and wheat crops 
across the study site varied in their developmental stage. Most wheat crops had headed, 
but fields were in various stages of senescence. 
 
Quantitative analysis was performed on two wheat fields (one white wheat and one red 
wheat) for which yield monitor data were available. The linear (HH, VV, HV) and circular  
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 Figure 25. Soil Spectral Responses On The Mid Infrared And The Short Wave 
Infrared Regions Of The Spectrum  

 
 

Table 8. Ground Measurements (Soil Moisture, Organic Matter And Nitrogen)  
For Each Bare Soil Patch 
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Soils Spectras -   Mid IR and SWIR Spectrum

Soil Moisture  (%) Organic Matter (%) Nitrogen
Montgomery - North 15.89 3.9 12.34
Montgomery - Mid 15.09 4.2 13.76
Montgomery - South 14.6 4.1 42
Sigma - South West 14.5 3.2 29.2
Sigma - Mid 12.43 4.2 15.3
Sigma - North East 12.99 4.3 29.6
Forbes - North East 10.63 3.2 43.52
Forbes - North West 13.61 na na
Pig Barn - North 14.41 na na
Pig Barn - Mid 9.64 na na
Pig Barn - South 10.03 na na

Soil Moisture Organic Matter Nitrogen
Max - Min Max - Min Max - Min

Montgomery - North 15.89
Pig Barn - Mid 9.64
Sigma - North East 4.3
Sigma - South West 3.2
Forbes - North East 43.52
Montgomery - North 12.34

SOIL PROPERTIES
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Figure 26. Airborne CV-580 Radar Image Composites (R=VV, G=VH, B=HH) 
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(RR, RL) polarization results are presented in this report (Figure 27).  Other 
“polarimetric” parameters such as phase images and polarization plots were also created, 
but results will not be discussed. Although these parameters seem to provide some 
information, more research on larger data sets needs to be conducted in order to interpret 
this type of information and to understand the scattering mechanisms driving these 
parameters. As well, although RADARSAT-2 will have the capability to synthesize this 
type of data, operational application of these data to crop condition monitoring is unlikely 
in this first generation of polarimetric sensors. Most advances in SAR applications in 
agriculture will occur with the use of the simpler multiple linear polarization data 
available from RADARSAT-2. 
 
Average backscatter for low and high yielding areas in each wheat field are presented in 
Figure 26. The difference in backscatter between these two zones is dependent upon 
polarization. For all polarizations, higher producing areas had higher backscatter relative 
to lower producing areas. But the linear cross-polarization (HV) gave the greatest contrast 
between these two zones. With the HH polarization, virtually no difference in backscatter 
is observed between higher and lower producing zones. However, it is difficult to compare 
backscatter between these two fields, since developmental stage and crop varieties were 
different.  Thus regions of poor  red  wheat  growth  had a similar response to regions of 
better white wheat growth. Consequently, comparisons are limited to zones within each 
field. 
 

 
Figure 27. Average Backscatter For Low And High Yielding Areas Of Wheat Fields 
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For the linear cross-polarization (HV), a 7.4 dB difference is observed between “good” red 
wheat and “poor” white wheat. Thus very significant variability in backscatter is 
associated with HV, based on both variety and crop condition. This sensitivity, although 
of use in crop condition mapping, complicates the use of SAR for crop type mapping. 
Thus a combination of polarizations that excludes HV (i.e. HH, VV, LR) and is less 
sensitive to within crop variability, might be better suited for crop type mapping. 
 
Good agreement was found between the classes derived from the SAR data, and zones of 
productivity derived from the yield monitor data (Figure 28). Areas of high yield generally 
agreed with areas of high backscatter. Areas of error can be attributed to a number of 
factors. The SAR imagery was acquired approximately two weeks prior to harvest. Thus 
some changes in crop productivity may have occurred during this elapsed time. Errors also 
exist in the yield monitor data, primarily as a result of errors during data collection or 
during data processing. This is particularly evident in zones of data “misses” which exist 
in the yield monitor maps. Finally, crop productivity is complex and SAR data is not able 
to detect all of the crop and soil characteristics that determine this productivity. 
Nevertheless, the sensitivity of radar to wheat conditions, weeks prior to harvest, is 
encouraging. 
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Figure 28. SAR and Yield Monitor Data For The Wheat Fields 
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5. Conclusions 
 
Both the hyperspectral and radar imagery, acquired over the Clinton test fields, provided 
promising results. Two approaches were applied to the Probe-1 imagery for endmember 
extraction. Initially an Automatic Endmember Extraction (AEE) approach was used to 
derive 15 endmembers. Many of these fraction maps visually correlated with weed and 
disease areas delineated by the crop scouts. However, further research is required to better 
understand the decision regarding the optimal number of endmembers, and to interpret the 
endmember spectra. Manual Endmember Extraction (MEE) was the second endmember 
extraction approach used. With this approach, endmembers for crop, soil and residue (if 
present) were derived directly from the hyperspectral data. Fraction maps generated from 
the MEE method were correlated with percent crop cover derived from overhead ground 
photos. The correlation between crop fractions and percent crop cover were significant. 
Both endmember extraction approaches require the presence of significant patches of pure 
endmembers. In an operational context, these pure patches do not generally exist.  
 
Spectral unmixing results were similar regardless of whether reflectance or radiance data 
were used. This observation suggests that for this purpose, atmospheric correction may not 
be required. Thus pre-processing requirements for operational implementation could be 
reduced. 
 
Several chlorophyll extraction algorithms were tested on the Clinton data. Within a single 
crop type, chlorophyll variability (as estimated from SPAD-502 measurements) was low. 
Thus the accuracy of these techniques for within-field chlorophyll estimation could not be 
tested. When all data from all the fields were pooled, these algorithms could detect the 
differences in chlorophyll between the corn and white bean fields. However, future testing 
is required on data sets with greater variations in chlorophyll. Variability could be 
achieved by inducing differences over test sites, or by examining imagery acquired over 
time. These results suggest that under operational conditions it would be difficult to detect 
within field differences in chlorophyll from a single remote sensing acquisition. 
 
When all data were pooled, eLAI derived from the Probe-1 imagery correlated well with 
eLAI values derived from an LAI-2000. Within just the white bean class, correlation 
results were poor. At the time of the hyperspectral acquisition, bean crops were quite 
small and measurement of LAI with the LAI-2000 was difficult. As with the chlorophyll 
methods, further validation of the LAI algorithm is required. In addition, although the 
algorithm was able detect areas of high and low eLAI, the algorithm greatly overestimated 
the absolute eLAI values. Thus further refinement of this algorithm is required. 
 
Radar backscatter at C-Band saturates for large biomass crops like corn, once the crop 
reaches a height greater than one metre. Although the signature for corn is still unique 
relative to other crops, the radar is not able to detect within field variability related to crop 
condition. Very dry and uniform soil moisture conditions during the acquisition meant that 
the radar did not detect within field variability within the white bean fields. As well, the 
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bean crops were very small at the time of the SAR overflight and thus contributed little to 
the radar backscatter. 
 
Yield monitor data was available for two wheat fields that exhibited significant within 
field differences in backscatter. Further analysis indicated that some polarizations, 
particularly HV, were quite sensitive to differences in productivity across these fields. 
Correlations between the yield monitor data, and the radar backscatter, showed good 
agreement. Areas of good productivity had higher backscatter relative to zones of low 
productivity. However, differences in backscatter were also observed between the two 
wheat fields as a result of differences in wheat variety. Thus information provided by 
radar on crop productivity needs to be interpreted on a field-by-field basis. 
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