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Abstract 

 

A procedure for continental-scale mapping of burned boreal forest at 10-day intervals was 

developed for application to coarse resolution satellite imagery.  The basis of the technique is a 

multiple logistic regression model parameterized using 1998 SPOT-4 VEGETATION clear-sky 

composites and training sites selected across Canada.  Predictor features consisted of multi-

temporal change metrics based on reflectance and two vegetation indices, which were 

normalized to the trajectory of background vegetation to account for phenological variation.  

Spatial-contextual tests applied to the logistic model output were developed to remove noise and 

increase the sensitivity of detection.  The procedure was applied over Canada for the 1998-2000 

fire seasons and validated using fire surveys and burned area statistics from forest fire 

management agencies.  The area of falsely mapped burns was found to be small (3.5% 

commission error over Canada), and most burns larger than 10 km2 were accurately detected and 

mapped (R2 = 0.90, P<0.005, n = 91 for burns in two provinces).  Canada-wide satellite burned 

area was similar, but consistently smaller by comparison to statistics compiled by the Canadian 

Interagency Forest Fire Centre (by 17% in 1998, 16% in 1999, and 3% in 2000).   
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INTRODUCTION 

 

 Biomass burning causes a wide range of global environmental impacts.  The destruction 

of vegetation by fire modifies the land/atmosphere carbon balance, changes the Earth’s albedo, 

and releases aerosols that affect climate and radiation budget (Crutzen and Andreae, 1990).  Fires 

also have direct effects on human populations due to episodic smoke pollution and the loss of 

valuable forest resources (Siegert and Hoffmann, 2000; FAO, 2001).  To help quantify the 

magnitude of these impacts, the most comprehensive, recent estimates of worldwide biomass 

burning were compiled by the Food and Agriculture Organisation and reported in the Global 

Forest Fire Assessment 1990-2000 (FAO, 2001).  This report includes forest burned area 

statistics, but which are spatially lumped and available for only a minority of countries covered 

in the report.    

To improve the level of available information on the distribution of biomass burning, the 

Joint Research Centre (JRC) of the European Commission is leading an international initiative 

aimed at producing spatially explicit, global burned area maps from satellite remote sensing.   

The Global Burned Area 2000 (GBA 2000) project involves a collaboration of seven research 

institutes that have developed regional algorithms to map monthly burned areas in 2000 using 

SPOT VEGETATION (VGT) imagery.  It is anticipated that the 1 km resolution burned area 

products will help serve the needs of the scientific community for modelling fire emissions, 

terrestrial carbon budget, and land cover.  This paper describes the development and validation 

of a GBA 2000 algorithm that was designed to map burned boreal forest in Canada. 

 In Canada, an average 3.4 million ha of forest burned annually during the 10-year period 

1989-1998 [Canadian Interagency Forest Fire Centre (CIFFC); www.ciffc.ca].  The vast majority 

of this burning is attributable to lightning fires that lead to near-complete destruction of trees 

over large tracts of coniferous forests (Stocks, 2001).  Coarse resolution imagery from NOAA’s 

Advanced Very High Resolution Radiometer (AVHRR) has been employed in several studies to 

map burned area at annual intervals in the boreal zone.  Cahoon et al. (1994) applied 

unsupervised classification to three composited AVHRR channels, supplemented with daily fire 

imagery, to map widespread burning in Asian forest in 1987.  Kasischke and French (1995) used 

differencing and thresholding of pre- and post-burn AVHRR Normalized Difference Vegetation 

Index (NDVI) composites to map burns in Alaska.  Fraser et al. (2000) developed an algorithm 
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that builds on this approach by using active fire locations from NOAA/AVHRR as training 

samples to derive change thresholds and reduce the occurrence of false burns.   

The mapping technique presented here exploits imagery from the more recent SPOT 

VGT sensor.  It was also designed to map burned areas at 10-day intervals, rather than annual 

intervals addressed in the previous boreal mapping work.  A 10-day burned area product is 

suitable for meeting the GBA 2000 requirement to produce monthly burned area maps and 

statistics.  It could allow burning events to be related to prevailing fire weather conditions, which 

are important in determining levels of fuel consumption and fire emissions.  

 

SATELLITE DATA 

 

 Burned area mapping conducted under the GBA 2000 initiative uses global, daily (S1) 

input data from the SPOT VGT sensor.  VGT provides reflectance measurements at 1 km 

resolution in four spectral bands (centred on 0.45 µm blue, 0.66 µm red, 0.83 µm NIR, and 1.65 

µm SWIR), the last two of which in combination are highly effective for discriminating burned 

vegetation (Pereira, 1999).  Ten-day (S10) composite imagery from the VGT sensor was used in 

this study to develop and test an algorithm designed for mapping burns at 10-day intervals.  The 

Canada-wide composites cover consecutive 10-day periods from April 21 – October 10, 1998-

2000, and were nominally corrected by SPOT for atmospheric effects using the Simplified 

Method of Atmospheric Correction SMAC (Rahman and Dedieu, 1994).  The imagery was 

reprojected in-house to a Lambert Conformal Conic projection then normalized to a common 

viewing geometry to account for bi-directional reflectance distribution function effects (Latifovic 

et al., 2002).  For final GBA 2000 processing at JRC, 10-day composites will be created by 

compositing S1 products based on a maximum NDVI criterion.      

 

MODEL DEVELOPMENT 

 
The major steps for developing the burned area mapping procedure are described below 

and consisted of (1) selecting training data, (2) computing satellite change metrics, (3) 

parameterizing a per-pixel logistic regression model, (4) deriving a threshold to convert the 
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logistic probability output to a binary burn product, and (5) developing contextual tests to refine 

the binary product. 

 

Training data  

The procedure was developed and trained using VGT data from 1998, a year in which 4.7 

million ha of forest burned in Canada, or 38% more than the 10-year average.  Training samples 

for algorithm development were selected across Canada to represent forest burned during that 

year (163 polygons comprising 2,466 pixels) and various forest cover types not subjected to 

burning (222 polygons comprising 2,637 pixels).  Burned forest sites were manually identified 

with the aid of active fire locations derived from a boreal fire detection algorithm applied to daily 

1998 AVHRR fire locations (Li et al., 2000), which were superimposed on a post-fire season 

VGT image from September 1998 where recent burns are readily visible.  A wide range of 

forested pixels not subject to burning in 1998 was selected, including coniferous, deciduous, 

mixed coniferous-deciduous, northern transitional, and previously burned forest.  This selection 

would ensure that the algorithm would perform well when applied to all forested pixels across 

Canada and to other years. 

 

Change metrics and logistic regression modelling 

 Logistic regression analysis was used as the basis for the multi-temporal burned area 

algorithm.  This statistical approach is well suited for classifying the state of a dichotomous 

environmental variable based on multiple explanatory variables derived from satellite imagery or 

other spatial data (Pereira and Itami, 1991; Luther et al., 1997; Mitchener and Houhoulis, 1997; 

Narumalani et al., 1997).  In a fire application, Koutsias and Karteris (1998) used a logistic 

model for classifying burned vegetation in Greece based on reflectance measured from a pair of 

pre- and post-burn Landsat TM scenes, as well as a single post-burn scene (2000).  Logistic 

models have also been developed for Canada to predict the occurrence of human caused fires 

using weather-based indices from the Canadian Forest Fire Danger Rating System (Martell et al., 

1987; Vega Garcia et al., 1995).       

 In this application, a multiple logistic regression model was derived to classify the 

training samples described above by assigning burned pixels a value of 1 and unburned pixels a 
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value of 0.  Predictor features consisted of multi-temporal change metrics and single-date 

reflectance values derived from the VGT composites for the period April 21-October 10, 1998.  

The change metrics were defined by 10- and 30-day changes in reflectance (red, NIR, and SWIR 

channels) and in two vegetation indices (VI): NDVI and an analogous SWIR based VI (SWVI) 

that is sensitive to boreal burns (Fraser et al., 2000b).  The 10-day changes were computed by 

differencing pixel reflectance or VI values from two consecutive 10-day periods.  30-day metrics 

were based on the cumulative 30-day change surrounding each corresponding 10-day change.  

For example, NIR change metrics to predict the probability of pixel being burned at time (t) were 

computed as: 

 

∆NIR10= NIRt – NIRt-1         [1] 

∆NIR30= NIRt+1 – NIRt-2         [2] 
where:  ∆NIR10 = pixel’s 10-day change in NIR reflectance  

∆NIR30 = pixel’s 30-day change in NIR reflectance surrounding the 10-day change 

t = the 10-day period during which burning potentially occurred 

 

 

Figure 1.  The curves show 10-day and 30-day changes in NIR reflectance changes for an
unburned pixel (triangle symbols) and its background vegetation (square symbols) based on a
hypothetical time series of 10-day composites over a growing season.  The 30-day changes can
be useful to identify spurious 10-day drops in reflectance, while normalization to the
background trajectory will control for reflectance decreases during the fall senescence period
(right portion of curve).    
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The triangle symbols in figure 1 illustrate 10- and 30-day NIR changes for a single pixel 

based on a hypothetical time series of 10-day composites over a growing season.  In this case the 

pixel has not burned, yet is subject to a large single-date drop in reflectance that could cause a 

change detection algorithm to misclassify it as burned.  Such ephemeral decreases are commonly 

observed in coarse resolution imagery and may be caused by a number of factors such as cloud 

shadow, shifts in viewing geometry, sub-pixel cloud contamination in the previous composite, or 

small shifts in image registration against an adjacent dark object like water.  The addition of a 

surrounding 30-day change metric may aid in identifying such a false burn signal flagged by a 

10-day change, as the pixel will be less likely to also have a large corresponding 30-day 

reflectance drop.  By contrast, the reflectance of burned forest in the boreal zone recovers over a 

period of several weeks to months (Fraser et al., 2000) and should be flagged by both a 10-day 

and surrounding 30-day metric. 

 Two special features of 

the change metrics were 

considered for their 

calculation.  First, each pixel’s 

10- and 30-day change was 

normalized to the reflectance 

trajectory of similar 

background vegetation, which 

is illustrated by the square 

symbols in figure 1.  This 

normalization, referred to as 

modified delta space 

thresholding by Zhan et al. 

(2000), accounts for 

reflectance changes 

attributable to seasonal vegetation phenology.  In the case of boreal forest, decreasing NIR 

reflectance of understory vegetation during the fall senescence period (right portion of curve) 

will make multi-temporal algorithms especially susceptible to producing false alarms.  In this 

application, the background vegetation groupings were based on nine forest-related cover types 

Figure 2.  Canada-wide distribution of forested pixels to which the burned 
area mapping algorithm was applied.  The various colours represent 117 
background vegetation clusters that were produced by grouping nine forest-
related cover types within 13 Canadian terrestrial ecozones.  The vegetation 
clusters are used to normalize each pixel’s 10- and 30-day change metric to 
account for phenological variation. 
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derived from a VGT classification (Latifovic et al., 2002) stratified over 13 Canadian terrestrial 

ecozones, which are defined by having similar climate, geology, and flora (figure 2; Ecological 

Stratification Working Group, 1996).  The ecozone stratification was included mainly to adjust 

for north-south differences in the timing of the growing season.  This cover type-ecozone 

intersection produced a total of 117 background vegetation groupings across Canada (figure 2).  

The normalization may be expressed for the NIR channel as: 

 

δNIR10 = ∆NIR10 - ∆NIR10b          [3] 

where:  δNIR10 = normalized 10-day change in reflectance 

∆NIR10b = 10-day NIR reflectance change in background vegetation 

 

A second feature applied to the change metrics is that any pixels in the nominally clear 

10-day composites contaminated by snow or atmosphere (e.g. cloud, smoke) were skipped.  In 

our algorithm development and application using 1998-2000 VGT data, pixels were flagged as 

contaminated if red reflectance was greater than three standard deviations from the mean 

growing season (July-August) reflectance of their respective vegetation groupings defined above.  

A maximum 7% red reflectance was enforced for all pixels to control for the high variation 

observed in mountainous areas of Canada.  Note that these thresholds were designed to be 

conservative (mean 6%, range 1.5-7%) to limit the large fluctuation in reflectance and potential 

false burn signal that may occur from sub-pixel cloud contamination or in mountainous areas.   

In addition to the metrics describing relative changes between composites, we examined 

independent variables representing absolute reflectance and VI values.  These were extracted for 

each current and previous 10-day period (e.g. NIRt and NIRt-1).  A total of 20 independent 

variables was thus computed from three reflectance channels and two VIs for each pixel.  

 To develop a regression model from the training sample, the change metrics and 

reflectance features were identified for each pixel corresponding to the 1998 composite period 

that demonstrated the largest normalized drop in NIR reflectance (Equation 2).  Given the 

significant immediate decrease in NIR reflectance observed in burned boreal forest (Fraser et al., 

2000b), it was assumed that this criterion would effectively select the actual date of burning for 

the burned training pixels.  Furthermore, in the unburned training sites it would select the 
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composite date that most closely resembles a true burn signal, thereby presenting the most 

challenging case for the logistic model. 

Before combining the features into 

a multiple logistic regression model, each 

candidate change metric was evaluated 

independently by deriving a single 

variable logistic model.  The regression 

models were compared using McFadden’s 

Rho-squared statistic (Steinberg and Colla, 

2000), a transformation of the likelihood-

ratio statistic.  Rho-squared ranges 

between 0 and 1 and mimics the R2 

coefficient of determination, although it 

tends to produce smaller values.  A 

measure of overall prediction success also 

was computed that summarized the 

classificatory power of the regressions.  Prediction success was represented by the output logistic 

regression probabilities (ranging from 0-1) averaged over all training samples.  Table 1 

summarizes the results from the single feature comparison based on the logistic model Rho-

squared and prediction success.  The change in NIR reflectance (δNIR10, δNIR30) provided the 

best VGT channel separation of burned areas, measured both at 10- and 30-day intervals.  The 

NIR region typically demonstrates the strongest response after burning due to the destruction of 

highly scattering, leafy vegetation (Pereira et al., 1999).  The best single feature for 

discriminating burned forest based on both Rho-squared (0.59) and prediction success (0.84) was 

the 30-day change in the SWVI, which combines the NIR and SWIR channels.  Figure 3 shows 

the distribution of maximum 30-day SWVI changes for the burned and unburned training 

samples.  The superiority of the NIR-SWIR spectral space for burned area detection agrees with 

recent studies examining a range of vegetation types (Pereira, 1999, Fraser et al., 2000b). 
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Figure 3.  Histograms showing the distribution of 
maximum 30-day changes of burned and unburned training 
samples for the single best change metric (SWVI 
vegetation index). 

A multiple logistic regression model to combine the 20 candidate features was developed 

based on a backward stepwise procedure.  Beginning with all variables, the feature with highest 

probability value was manually removed at each step until only one remained.  The criteria used 
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to select the “best” overall model from the set of models containing between 1-20 variables were 

the explanatory power of the models measured from Rho-squared, balanced by the 

computational demand required by a model having additional parameters.  Based on this trade-

off, the stepwise model containing four features—two 10-day and two 30-day metrics—was 

chosen (Rho-squared=0.77; p< 0.005; equation 5).  By comparison, a multiple regression model 

with three variables produced a 0.03 decrease in Rho-squared, while models containing more 

than four variables provided only modest improvements.  For example, the ten parameter model 

increased Rho-squared by only 0.03 to 0.80.   

  

 

( )30301010 Re072.0217.0033.0216.07.41
1)( dNDVISWIRSWVIe

burnedp δδδδ ×+×+×+×+−+
=     [4] 

Where:  

p(burned) = probability of a pixel being burned during a 10-day interval 

δSWVI10 = normalized 10-day change in a short-wave based vegetation index (SWVI) 

computed as 100×+
−

SWIRNIR
SWIRNIR   

δSWIR10 = normalized 10-day change in SWIR reflectance (scaled from 0-2000) 

δNDVI30 = normalized 30-day change in NDVI surrounding the current 10-day interval (i.e. 

δNDVI10t-1 + δNDVI10t + δNDVI10t+1) 

δRed30 = normalized 30-day change in Red reflectance (scaled from 0-2000) 

 

Selecting an optimal probability threshold 

 Equation [4] was applied across Canada to the time series of VGT composites from the 

1998 training year.  The maximum per-pixel probability obtained from the model among all 10-

day periods is presented as an annual probability-of-burning map shown in figure 4.  A separate 

output channel was used to record the 10-day time period during which the highest probability 
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occurred.  This probabilistic or “soft” output provided by logistic regression is more flexible 

compared to traditional “hard” change detection approaches in that it provides a confidence level 

for the change product (Morisette et al., 1999).  A suitable probability level can then be tailored 

to specific applications where the consequences of omission and commission error vary 

(Morisette and Khorram, 2000).  For example, if the burned area model were designed as a first-

pass filter to target all areas potentially subject to burning for further examination, a smaller, 

more liberal threshold could be selected.   

 

 

 

Figure 4.  Maximum probability (scaled from 0-100) of burning from the multiple logistic 
regression model applied to all 10-day periods in 1998.   

To derive a binary burned area mask from the maximum logistic regression output, a cut-

off probability threshold must be specified.  In logistic modelling applications, a 0.5 threshold is 

often adopted under the assumption that it will provide a balance between omission (missed 

burns) and commission (false burns) error.  For this application, the decision threshold was 

optimized by applying the model to the 1998 training samples and then quantifying error rates 

over a range of output probabilities.  Figure 5a shows plots of commission, omission, and overall 

error in the training data for probabilities ranging from 0.05-0.97.  A probability of 0.4 was 
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found to balance the two types of error and provide the smallest overall error of 6.4%.  The 

resulting burned area mask (sample area shown in figure 5a) captured the burned areas 

effectively by comparison to 1998 fire surveys, but obviously produced an unacceptable number 

of falsely classified burned pixels.  The Canada-wide mask contained a burned area of 35.5 

million ha in year when there were only 4.7 million ha reported burned by Canadian fire 

management agencies.   

The result obtained from the initial 0.4 threshold underscores a general challenge for 

continental scale, satellite-based burned area mapping.  Since in many ecosystems burning 

affects a disproportionately small area of vegetation in a single year (e.g. about 0.5% of 

Canadian forest), a given susceptibility to commission error will produce a much larger area of 

misclassified pixels than the same rate of omission error.  For example, to achieve less than 20% 

commission error over Canada in an average year, a 10-day burned area algorithm must 

incorrectly label fewer than about 1 in 14,000 pixels at each time step (i.e. 380,422,000 ha of 

forest × 0.00007356 error rate × 24 composite dates = 671,600 ha).  This bias is not accounted 

for by balancing the commission and omission errors in the training data that have a similar 

number of burned and unburned samples. 

One means of controlling for the bias is to derive an area-adjusted error that estimates the 

likely area of commission and omission errors produced at a continental scale over a range of 

thresholds.  Area-based errors were approximated by multiplying at each probability level, the 

percent omission error by a typical annual burned area for Canada (we use the 10-year average of 

3,358,000 ha) and multiplying the percent commission error by the area of forested pixels over 

which the algorithm is applied (380,422,000 ha).  Based on these area-adjusted errors (figure 5b), 

a threshold of 0.97 was predicted to balance the total area of missed burned pixels and false 

burned pixels mapped at a national scale.  The resulting burned area mask from this second, 

conservative threshold was found to have much smaller levels of noise than that produced by the 

0.4 threshold, but at the expense of missing a portion of the true burned areas (figure 5b right). 

 

 

 

 

 12

straby
Pencil



 
 
 
 
 
 

            
 
 
 
 
 
 
 
 
 

             

Figure 5a.  Accuracy assessment curves showing rates of commission error, omission error, and overall error in 
the training data set over a range of output probabilities from the logistic model.  The image on the right shows a 
typical burned area mask (grey pixels) based on the probability level (0.4) that produces the lowest overall rate of 
error. 

 
 

Figure 5b.  Accuracy curves showing the predicted national-level area of the various errors in the training data set 
over a range of probabilities.  The image shows resulting burned area (grey pixels) based on the probability level 
(0.97) that is predicted to produce the smallest area of misclassified pixels.  Provincial forest fire surveys are outlined 
in black 

 
 
 
 
 
 



Post-regression contextual tests 

 The 0.97 probability threshold derived above should produce a burn mask with the lowest 

overall Canada-wide error from the per-pixel logistic regression model and satellite change 

metrics.  When examining this mask against 1998 fire surveys covering the provinces of Alberta 

and Saskatchewan, we noted two limitations.  First, although most burns were reliably identified, 

the conservative 0.97 threshold caused underestimation of their areas (e.g., figure 5b right).  

According the error curves in figure 5a, this threshold led to 34% of the burned pixels in the 

training set being mapped as unburned.  A second deficiency was the presence of salt-and-pepper 

noise from burned clusters composed of just one or a few pixels.  Although these were small 

relative to the correctly mapped burned areas, they were far more numerous and their combined 

area at a national scale was significant.  For example, pixel clusters smaller than 5 pixels (500 

ha) accounted for 1,208,500 ha or 39% of the burned area in this 1998 logistic product.  By 

contrast, 1998 fire statistics for Canada indicate that fires smaller than 1,000 ha (10 pixels) 

accounted for only 2.4 percent of the burned area (Canadian Forest Service National Forestry 

Database Program; http://nfdp.ccfm.org/). 

 To remedy these limitations in the pixel-based regression model that exploits reflectance 

information only, a series of spatial-contextual tests was developed.  These were designed to 

decrease noise and increase the sensitivity of detection by means of a spatial contraction then 

expansion of the logistic burned area mask.  Figure 6 illustrates the general steps required by the 

burn mapping procedure, including contextual tests (steps 5-6).   

1. The first test requires eliminating any contiguous burned area cluster composed of fewer 

than six pixels (figure 6, step 5).  Considering that, over the 10-year period between 

1989-1998, fires smaller than 1,000 ha (10 pixels) accounted for only 3% of the national 

burned area, this filter eliminated most of the of commission error, while removing only a 

fraction of the correctly mapped burned area.   

2. The second test uses the remaining filtered high-probability pixels as “seeds” from which 

the burns were iteratively grown to lower probability pixels (figure 6, step 6).  Based on 

the 1998 Alberta and Saskatchewan fire survey data, the best result was obtained when 

region growing is permitted to adjacent pixels with a burned area probability ≥ 0.35.  

Note that any burned pixels adjacent to water bodies were filtered before this step to 

account for false burns that may arise due to sub-pixel, multi-temporal misregistration.  
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 Figure 6.  Steps required for 10-day burned area mapping using the procedure described in this paper.  

Step 2 shows pre- and post-burn false colour VGT composites (R,G,B=SWIR, NIR, Red).  Probability 
levels in step 3 are displayed using the same colour palette shown in figure 4.  In steps 4-6, algorithm 
results are shown in red with the provincial burned area survey outlined in black.  Steps 2-6 are 
automated using an ARC/INFO GIS macro. 

 
 



3. The third contextual test requires that each of the grown burn patches be composed of at 

least 15% high probability pixels (not shown in figure 6).  This test was effective in 

removing false burns in a few cases where a small cluster of non-burned pixels with high 

probability grew over a large area of medium probability pixels.  This test removed very 

few real burns, as these typically contained a much larger proportion of high probability 

pixels. 

 

ALGORITHM VALIDATION  

 

 The procedure described above was applied to produce Canada-wide burned area masks 

for the 1998-2000 forest fire seasons using a GIS script that (1) calculates a logistic probability 

for each 10-day time period; (2) selects the highest annual probability for each pixel; and (3) 

applies the spatial/contextual tests (figure 6).  Resulting burned area masks for the three years are 

presented in Figure 7, where 1998 burns area shown in red, 1999 in green, and 2000 in blue.  The 

VGT product consistently contained smaller national level burned areas by comparison to 

official statistics compiled by CIFFC.  The estimated burned area for 1998-2000 was 3,900,100 

ha, 1,425,800 ha, and 631,100 ha, which is respectively 17.2%, 16.4%, and 2.5% smaller than 

CIFFC estimates of 4,710,775 ha, 1,705,645 ha, and 647,071 ha.        

 A regional-level comparison of burned area by province/territory is presented in Figure 8.  

The three provinces not shown (NS, NB, and PEI) all had CIFFC burned areas smaller than 2000 

ha and no VGT-mapped burns.  Over the three years, most of the province-level VGT burned 

areas compared reasonably well to the official estimates from fire management agencies, with 

burned area being typically underestimated to the same extent as in the national-level statistics.  

The weakest performance of the satellite algorithm was observed for a few provinces in 2000, 

when a relatively small area burned in Canada.  In Quebec, Yukon, and B.C., burned area 

overestimation was due to a small number of large, false burn patches that appeared to be caused 

by cloud shadow and topographic effects.  In Canada, periods with high fire activity in Canada 

are typically preceded by long sequences of clear, dry days (Flannigan and Wotton, 2001).  In 

2000, burned area was significantly below average and the 10-day VGT images had relatively 

high levels of cloud contamination and cloud shadowing, which can respectively produce burn 

omissions and commissions.   
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Figure 7.  National-level burned area masks for 1998 (red), 1999 (green), and 2000 (blue) produced using the satellite-
based 10-day burned area algorithm.   

 

Falsely mapped burns were identified at a national scale for the three years by verifying 

the 431 VGT-mapped burns in figure 7 with changes visible in September VGT composite 

images before and after each fire season, and the presence of active fires identified using daily 

NOAA-AVHRR imagery.  There was no evidence of fire activity for 60 of the satellite-mapped 

burns, which represented commission errors of 0.28% for 1998 (4 clusters covering 10,800 ha), 

5.5% for 1999 (22 clusters and 78,100 ha), and 19.2% for 2000 (34 clusters and 121,300 ha).  

Total commission error was largest in 2000, with percent commission error being magnified 

further due to the small level of burning (note the smaller x-axis scale in figure 8c). 

A more detailed assessment of the satellite burned area mask was performed using 

burned area surveys produced by fire management agencies in Alberta and Saskatchewan from 
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Figure 8. 
 
(a) 
 

 
(b) 
 

 
 
 



 
(c) 
 

 
 
 
 
 
 
 
 Figure 8.  Bar graphs comparing burned area by province based on official fire 

management agency statistics and the VGT-based mapping algorithm for (a) 1998, (b), 
1999, and (c) 2000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



GPS and photo-interpretation.  The available 1998-2000 Alberta and 1998-1999 Saskatchewan 

burned area surveys cover 1.74 million ha, or 25% of the 1998-2000 national burned area.  By 

comparison, the VGT product mapped 1.65 million ha burned in these provinces during the same 

periods, of which 31,300 ha was not associated with real fires, representing a commission error 

of 2%.  In terms of omission error, VGT did not map 496 of the 587 fires in the two provinces; 

however, these fires were mostly small and together comprise only 198,912, or 11.4%, of the 

1.74 million ha of burned 

forest.   

The relationship 

between the corresponding 

areas of individual burns 

from the fire agency surveys 

and satellite algorithm is 

shown in figure 9.  The 

overall relationship was 

strong (full sample, R2 = 

0.84, p < 0.005, n=587; 

VGT-mapped burns, R2 = 

0.90, P<0.005, n = 91) with 

better mapping accuracy for 

fires larger than about 1,000 

ha, which is similar to results from 

previous boreal burn mapping 

applications using NOAA/AVHRR 

(Kasischke and French, 1995; Fraser et al., 2000).  Figure 10 illustrates the above statistical 

results by comparing the VGT mask and fire surveys for a region in Alberta subjected to a range 

of fires sizes.  Note that some of the missed areas within larger burns were likely attributable to 

VGT not being able to detect surface burning where they was little or no damage to the tree 

crowns above. 
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Figure 9.  The relationship between the individual burned areas 
mapped by the fire agencies in Alberta (1998-2000) and 
Saskatchewan (1998-1999) and the satellite mapping algorithm.  
The line indicates a 1:1 relationship, and a log-log scale is used to 
improve visualization of the distribution. 

The technique presented here provides generally similar performance to the HANDS 

algorithm developed for annual mapping of burned boreal forest (Fraser et al., 2000a).  Both 
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techniques (a) consistently 

produce national-level burned 

areas within ~ 15% of 

Canadian fire agency 

statistics; (b) are best suited 

for mapping burns larger than 

10 km2; and (c) produce 

commission errors, in terms of 

the area of falsely mapped 

burns, on the order of 5%.  

The HANDS technique relies 

only on anniversary-date 

clear-sky composites for the 

end of each fire season, yet also 

requires an annual active fire 

detection (hotspot) mask that 

reliably identifies all the burns to be mapped.  However, the availability of multiple satellite 

sensors and systems providing fire detection products (e.g. AVHRR, MODIS, ATSR, GOES) 

now makes compiling such masks more feasible.  HANDS has produced more reliable results for 

years when there is significant cloud cover (and image contamination) and relatively little fire 

activity (e.g. 2000), while its use of active fire locations for local training makes it more 

adaptable to different vegetation types (Li et al., 2002).  The logistic regression-based technique 

requires only a series of corrected, cloud-screened VGT composites covering the fire season.  

The main advantages of this technique are that it provides 10-day temporal resolution and does 

not need the input of an active fire detection mask.   

Figure 10.   VGT burned area mask (1998 = red, 1999=blue,
2000=green) for a region in Alberta (location shown in figure 7) subject
to a range of fire sizes.  Burn surveys produced by the provincial fire
management agencies are shown outlined in black. 

  

SUMMARY AND CONCLUSIONS 

 
This paper presented a technique for mapping burned areas in the boreal forest zone at 10-day 

intervals using coarse resolution satellite imagery.  The major findings and conclusions from the 

work are as follows. 
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1. Logistic regression is a flexible statistical approach for burned area mapping, since it can 

be used to compare satellite-based change metrics and select the most effective 

combination of metrics.  It also produces an output that represents probability of burning, 

to which an optimal cut-off probability level can be applied to achieve the desired 

balance between omission and commission error. 

2. 10-day burned area mapping using VGT and the procedure described in this paper can 

produce burned area masks that accurately detect most burns > 10 km2, while producing 

relatively few false fires (3.5% of 1998-2000 burned area).  A large number of small 

burns (< 10 km2) that were not mapped contribute little to the total burned area in boreal 

environments. 

3. The performance of the burn mapping algorithm was reduced when applied to the 2000 

fire season in Canada, a year with relatively little fire activity.  This was attributable to 

increased cloud cover and cloud shadow, a smaller frequency of very large burns, and a 

greater ratio between the area of commission error and actual area burned. 
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Table 1. Assessment of individual change metrics based on the Rho-squared statistic and overall 

prediction success.  The variables denoted by δx10 refer to a 10-day normalized change 

measured on the date corresponding to the largest drop in NIR reflectance.  The 

surrounding 30-day normalized change is δx30, xt is the value measured on the date of 

maximum NIR drop, and xt-1 is the value measured in the previous composite.  The best 

four predictors according to each statistic are shown in bold.    

 
 

Independent 
variable 

Rho-squared 
statistic 

Overall 
prediction 

success 
δRed10 0.01 0.51 
δNIR10 0.51 0.80 
δSWIR10  0.01 0.51 
δNDVI10  0.38 0.73 
δSWVI10 0.53 0.80 
δRed30 0.05 0.54 
δNIR30  0.53 0.82 
δSWIR30  <0.00 0.50 
δNDVI30 0.46 0.77 
δSWVI30 0.59 0.84 
Redt 0.01 0.53 
NIRt  0.44 0.76 
SWIRt  0.05 0.53 
NDVIt 0.29 0.68 
SWVIt  0.29 0.68 
Redt-1 0.01 0.50 
NIRt-1  0.03 0.52 
SWIRt-1 0.02 0.50 
NDVIt-1 NS NS 
SWVIt-1 NS NS 
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