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Abstract- Leaf area index (LAI) is a quantitative measure of 
vegetation cover and of use in models of carbon, water and 
energy budgets.  The recent availability of well-calibrated 
coverages of Landsat ETM+ imagery over large areas offers 
an opportunity for production of LAI estimates at fine 
spatial resolution.  Empirical regressions between LAI and 
selected vegetation indices are applied to propagate 
uncertainties in calibration and atmospheric correction into 
LAI retrieval errors.  Furthermore, the sensitivity to land 
cover mixtures is assessed by comparing retrievals with 
Landsat scale land cover with a 1km land cover product.  A 
single Canada-wide composite of LAI derived from available 
Landsat ETM+ imagery is produced. 
 

I. INTRODUCTION 
 

Leaf area index (LAI) is defined as half of the total 
surface area of foliage per unit ground area projected on 
the horizontal datum [4].  There have been previous 
initiatives to map LAI at the national scale using various 
space-borne sensors [1]. However, due to the large spatial 
variability that each ecozone contributes to these models 
and the high sensitivity of ecosystem model outputs to 
LAI, validation of these mapped products is required to 
gain knowledge of the random and systematic 
uncertainties.  The research described in this document 
presents a robust methodology for LAI retrieval from 
Landsat data by assessing the uncertainties surrounding 
these estimates as they impact similar retrievals at coarser 
spatial resolutions. 
 

II. OBJECTIVES 
 

The objectives of this study are to: 
1) Present an error budget for LAI retrievals using 

Landsat TM/ETM+ imagery. 
2) Compare LAI uncertainties using two different 

vegetation indices (SR= TM4 / TM3 and IR= TM4 / 
TM5). 

3) Produce a single Canada-wide composite of LAI 
derived from SPOT-VEGETATION (VGT) sensors 
based on cross-calibrated Landsat data. 

 
 
III. DATA AND METHODOLOGY 

A. Scene Selection & Processing 
 

Twenty-two Landsat TM/ETM+ (hereafter referred to 
as TM or Landsat unless specification is warranted) 
scenes selected according to a stratified sampling of 
ecozones and land cover distributions were used in the 
error analysis.  Ten of these scenes were coincident 
with surface measurements of LAI and were used as 
calibration data to derive the leaf area index algorithms 
[4].  All Landsat scenes were processed to at-sensor 
radiance values prior to the atmospheric correction 
procedure using header-file specific gains and biases.  
Landsat TM5 data were forward calibrated based on 
coefficients provided in [6].  Landsat ETM+ scenes 
were received from the data provider in the Level 1-G 
(systematically corrected) Hierarchical Data Format 
(HDF).  The TM validation scenes were geometrically 
corrected to scene-specific coordinates supplied with 
the data.    
 
Atmospheric correction was performed using 6S [7].  
The standard continental aerosol model was used for all 
scenes except the Maritime scenes (Paths=08,09,10) 
which instead used the maritime model.  Scene-centre 
elevation was obtained from topographic data at a scale 
of 1:50000.  Ozone and water vapour concentrations 
were extracted from AVHRR 10-day composites [2]. 
Aerosol optical depth (AOD), considered the most 
critical input parameter, was estimated from the dense, 
dark vegetation (DDV) approach [5].  The DDV 
procedure was modified into an iterative method as 
summarized below and described in [3].  Using an 
initial seed value of AOD=0.1, top-of-canopy NDVI 
was used to determine DDV targets based on two 
criteria.  The first criterion was top-of-atmosphere 1%> 
ρ2.2µm  < 5% (where ρ is reflectance with wavelength 
subscript).  The second criterion was a top-of-canopy 
NDVI>90th percentile.  By using the initial seed value 
for AOD, this NDVI was thought to be more robust 
than the more commonly used estimate of top-of-
atmosphere NDVI.  LAI maps were then generated 
based on land cover (LC) type and land use, using 
empirical regressions to either the simple ratio (SR) or 
the infrared simple ratio (IR) vegetation index (VI) as 
discussed in [4]. 
 
 
 



B. Error Analysis 
 
Three separate error analyses were performed in this study to 
assess the uncertainties of the operational variables used to 
derive a TM-based LAI product and a coarse-scale product 
from cross-calibration of TM based regressions (consult [4] 
for the coarse-scale error budget).  The first trial quantifies the 
errors due to using a 1km LC input to the algorithm rather 
than the fine-scale TM input.  The 1km LC input was based on 
a coarse-scale classification map [4].  The resultant errors will 
address the limitation of using a more generalized 1km-scale 
land cover layer for LAI retrieval.  Error trials 2 and 3 
quantify the impact of TM atmospheric correction errors on 
LAI.  The error budget within a TM-based LAI product of 
uncorrelated components is shown in (1), where N is the 
normal distribution.  Uncorrelated components representative 
of the total bias and random errors are further decomposed in 
(2) and (3), respectively.   

εLAI  ≈ N (δLAI,σLAI)  (1) 
where  δLAI  = (δALG + δVI)   (2) 
represents the systematic error and,  

σLAI
2
  = (σALG

2 + σVI
2)   (3) 

represents the random error. 
 
Firstly, to assess the algorithm (subscript ALG) uncertainty 
we must break it down into: a) regression error, b) land 
cover error and c) spatial scaling error.  Structural 
regression errors for SR and IR are about +/- 1 LAI unit 
[4], however this error is similar to the coarse-scale 
algorithms which will cancel out at the >1km-scale. 
Errors due to land cover misclassification are assumed to 
be negligible at the 30m-scale and are measured at 1km-
scale in Trial 1 of this study.  The spatial scaling errors 
can contribute relative LAI errors of 30% as documented 
in [4], however, such errors are spatially random and 
become negligible at spatial resolutions >3km.  To assess 
the impact of the vegetation index error, the VI terms in 
(2) and (3) can be decomposed into: a) radiometric 
calibration error and b) atmospheric correction & BRDF 
error.   The radiometric calibration error for ETM+ scenes 
(and cross-calibrated TM scenes) was stated to be 1-2% in 
[4].  The BRDF variability was assumed to be quantified 
in the algorithm regression residuals and the atmospheric 
correction errors at the 30m-scale are further decomposed 
as shown in (4) and (5). 

δATCOR  = (δDDV REF + δ3/7 RATIO).  (4) 
σATCOR

2
  = (σDDV REF

2 + σ3/7 RATIO
2).  (5) 

The mean ρ0.64µm of DDV targets was propagated to +1sigma 
in Trial 2 to evaluate the sensitivity of this variable on the 
atmospheric correction procedure. The second component in 
(4) and (5) was tested in Trial 3.  Since many users of the 
DDV approach for AOD determination rely on a constant ratio 
between ρ0.64µm and ρ2.2µm [5], the uncertainty in this 
assumption was thought to be an important assessment.  

To test this uncertainty, scenes were atmospherically 
corrected once using the AOD as determined from 
the DDV-constant ratio method and then recorrected 
using the AOD determined from a modified DDV-
variable ratio method.  Input data for the latter 
method is shown in Fig. 1 and was provided from the 
BOReal Ecosystem-Atmosphere Study 
(BOREAS)[8].  These data permit the extension of 
the constant ratio in [5] over a variety of top-of-
canopy NDVI values as shown in (6).   
 
ρ0.64µm / ρ2.2µm  = NDVI*(-1.2493)+1.4.       (6) 
 
Root-Mean-Square (RMSE) errors representing 
precision uncertainty, and Relative Absolute errors 
(RAE) indicating systematic uncertainties were then 
calculated for the resultant LAI maps.   
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Figure 1-Regression plot of TM3 / TM7 Vs. NDVI 
based on MMR top-of-canopy reflectance values.  

Black line is presented in (6), blue line shows 
minimum NDVI of DDV targets and the red shows 

the maximum. 
 

IV.  RESULTS 
 
Precision uncertainties in LAI as a function of 
vegetation index for the tested trials are presented in 
Table 1.  All precision errors measured for LAI fields 
derived from SR were much larger than LAI derived 
from IR.  RMS errors in LAI from SR due to land 
cover scaling and DDV reflectance uncertainties are 
approximated to be 1.41-1.59 LAI units, whereas the 
precision in the DDV ratio uncertainty is 0.66.  Errors 
in LAI from IR are reduced substantially in all cases. 
 

TABLE 1 
MEAN AND {MAX} RMSE LAI PRECISION ERRORS FOR 

EACH TRIAL ON SR & IR OVER ALL SCENES. 

 

  Trial 1 - LC Trial 2 - DDV ref Trial 3 - DDV ratio 

SR 1.59 {2.43} 1.41 {3.24} 0.66{1.84}

IR 0.92 {1.52} 0.41 {1.76} 0.17{0.86}



The mean systematic error estimates of LAI are presented 
in Table 2.  The highest RAE’s were noticed in Trial 1, 
where the mapped LAI could have a relative error of 
approximately 34% for SR and 23% for IR.  This result 
shows the impact of using a 1km land cover product to 
derive fine-scale LAI.  RAE’s associated with the two 
atmospheric correction components were calculated as 
approximately 21% and 11% for LAI derived from SR 
and 5% and 3% for LAI derived from IR.  
 

TABLE 2 
MEAN AND {MAX} RAE (%) LAI ACCURACY ERRORS FOR 

EACH TRIAL ON SR & IR OVER ALL SCENES. 

 
V. DISCUSSION 

 
The purpose of this study was to present an error budget 
for LAI retrievals at the 30m-scale.  Relative LAI errors 
from DDV reflectance uncertainty were approximated at 
11-21% for SR and at 3-5% for IR.  This implies that 
larger absolute errors occur for higher LAI values; chiefly 
due to their lower absolute reflectance in red and SWIR 
wavelengths.  The DDV ratio between ρ0.64µm and ρ2.2µm 
produced a relative error of 11% for SR and 3% for IR 
generated LAI fields.  RMSE values are typically < l LAI 
unit for IR trials.  Total LAI error at the 30m-scale is 
derived from the Euclidean sum of RMSE values and is 
approximately 0.75 LAI units using the IR vegetation 
index.  LAI is less precise when examining trials based on 
SR calculations.  Precision errors in LAI are almost twice 
as large for SR trials over IR trials. Given the results 
presented in this study and in [4], IR seems to be a more 
robust estimator of LAI than SR primarily due to the lack 
of atmospheric effects in ρ1.5µm compared to ρ0.64µm. 
 

 
Figure 2 – Canada-wide LAI product.  July 21-31, 2000. 
 
Fig. 2 provides a representation of a synthesis of both fine 
and coarse resolution LAI estimates over Canada.  The 
coarse scale estimate is derived from the SPOT VGT 
sensors as in [4].  The level of uncertainty and spatial 
resolution of these estimates will vary with data source. 

VI.  CONCLUSION 
 

A robust estimation of Landsat-scale retrieval of LAI has 
been proposed with the inclusion of uncertainty values in 
land cover scaling for adaptation to coarser resolution 
sensors.  Such approaches need to be explored to generate 
a better understanding of the uncertainties in both fine and 
coarse-scale LAI products.  Furthermore, an initial 
assessment of potential errors in LAI from the DDV 
approach to atmospheric correction is included.  These 
need to be examined further with special care given to 
errors in DDV reflectance.  The land cover scaling trial 
produced the largest systematic error in LAI.  Therefore, a 
recommendation is put forth to use a fine-scale land cover 
product to derive 30m-scale LAI whenever it is feasible to 
do so.  
 

ACKNOWLEDGMENTS 
 

We would like to acknowledge Mike Palmer, Jeremy Kerr, Josef Cihlar, 
Robert Landry, Frank Ahern, Peter White, Goran Pavlic, Jing Chen and 
Phil Teillet for providing advice and data in support of this study.  The 
SPOT-VEGETATION data was provided by the European Space 
Agency under the Vegetation Preparatory Programme. 
 

REFERENCES 
 

[1] Chen, J.M., G. Pavlic , L. Brown, J. Cihlar, S.G. Leblanc, H.P. White, 
R. J. Hall, D. Peddle, D.J. King, J. A. Trofymow, E. Swift, J. Van der 
Sanden, and P. Pellikka,  “Validation of Canada-wide leaf area index maps 
using ground measurements and high and moderate resolution satellite 
imagery,” Remote Sensing of the Environment, vol. 80, pp.165-184, 2002. 
 
[2] Cihlar, J., R. Latifovic, J. Chen, A. Trishchenko, Y.  Du,  G. Fedosejevs 
and B. Guindon,  “Systematic corrections of AVHRR image composites for 
temporal studies,” Remote Sensing of Environment (in press). 
 
[3] Butson, C., R. Fernandes, and R. Latifovic, “A robust approach for the 
automated retrieval of leaf area index from Landsat imagery,” unpublished. 
 
[4] Fernandes, R., C. Butson, S. LeBlanc, and R. Latifovic,   “A Landsat 
TM/ETM+ based accuracy assessment of leaf area index products for 
Canada derived from SPOT4/VGT data,” unpublished. 
 
[5] Kaufman, Y.J., A.E. Wald, L.A. Remer, B. Gao, R. Li, and L. Flynn, 
“The MODIS 2.1-µm Channel – Correlation with Visible Reflectance for 
Use in Remote Sensing of Aerosol,” IEEE Trans. Geoscience and. Remote 
Sensing, vol. 35, pp. 1286-1297, 1997. 
 
[6] Teillet, P.M., J.L. Barker, B.L. Markham, R.R. Irish, G. Fedosejevs and 
J.C. Storey, ”Radiometric Cross-Calibration of the Landsat-7 ETM+ and 
Landsat-5 TM Sensors Based on Tandem Data Sets,” Remote Sensing of 
Environment, vol. 78, pp.39-54, 2002. 
 
[7] Vermote, E.F., D. Tanre, J.L Deuzé, M. Herman, and J. Morcrette, 
”Second simulation of the satellite signal in the solar spectrum, 6S: An 
overview,” IEEE Trans. Geosc. Remote Sens.,vol. 35, no. 3, pp. 675-686, 
1997. 
 
[8] Walthall, Charles L., and Sara Loechel, “BOREAS RSS-03 Reflections 
Measured from a Helicopter-Mounted Barnes MMR,” ORNL Distributed 
Active Archive Center < http://www-
eosdis.ornl.gov/BOREAS/boreas_home_page.html>, Oak Ridge National 
Laboratory, Oak Ridge, Tennessee, U.S.A, 1998.  
 

  Trial 1 - LC Trial 2 - DDV ref Trial 3 - DDV ratio 
SR 34 {52} 21 {50}  11 {29} 

IR 23 {42}  5 {21}  3 {9} 
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