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Abstract – Monitoring vegetative areas with airborne 

hyperspectral sensors is being more frequently used to 
relate at-canopy spectral reflectance to canopy condition. 
Increased application of these techniques is expected with 
the advent of space borne hyperspectral systems (such as 
EO-1 Hyperion and CHRIS-PROBA). These studies are 
often limited by the non-Lambertian nature of vegetation 
reflectance, the well known bidirectional reflectance 
distribution function (BRDF), where varying solar and 
viewing geometry can result in significant variations in 
the observed remotely sensed signal due to canopy 
architectural properties. This is often noted as an 
increased brightening of the observed signal as the 
scattering angle between the sun and sensor decreases. 
This is also true when attempting to compare images from 
different sensors, or from the same sensor taken at 
different times. Various studies have examined the 
sensitivity of broadband and hyperspectral vegetation 
indices (VI) to BRDF. These studies often conclude that 
the choice of VI should be based on the solar/viewing 
geometry and vegetation specific to the image acquisition. 
No individual VI appears immune to the BRDF effect. 

Rather than attempt to define a technique with little 
sensitivity to view/solar geometry, the non-Lambertian 
reflectance characteristics can be used to normalize 
imagery to one view/solar geometry. Assuming consistent 
mean leaf and background reflectance, inversion of a 
semi-empirical model can be used to determine BRDF 
coefficients, which can then be applied to normalize the 
imagery to a specific viewing/solar geometry. If the model 
has coefficients that directly relate to canopy properties, 
then this process can also provide information directly 
relating canopy architectural and biophysical properties 
to the remotely sensed signals. One such model, FLAIR, 
has been successfully used to investigate canopy 
characteristics from broadband imagery. Application of 
this model to hyperspectral imagery of an agricultural 
area is being pursued, examining the usefulness of 
normalizing the BRDF before relating spectral reflectance 
to biophysical characteristics.  

 
I. INTRODUCTION 

 
Interest in the application of hyperspectral remote sensing 

has increased over the past two decades, leading to a variety 
of studies which examine relationships between this data and 
various environmentally significant parameters. High 

resolution spectral reflectance of vegetative surfaces provide 
a variety of spectral features which can be identified. Several 
studies focus on the amplitude of absorption features as a 
method of identifying canopy condition. Vegetation indices 
(VI’s), calculated as linear combinations of two (or more) 
spectral reflectance factors, have been found to correlate with 
canopy cover [1][2], effective leaf area index (eLAI) [3][4], 
relative water content (RWC) [5][6], and canopy chlorophyll 
density (CCD) [1][4]. Surface spectral reflectance has also 
been used to identify and separate component fractions 
contributing to the observed canopy reflectance [7]. It has 
been shown however that such applications are sensitive to 
background reflectance (soil, residue, ground cover) [8][4] 
and view/illumination geometry (the bidirectional reflectance 
distribution function, or BRDF effect) [9][10]. 

To further the development of these studies, the influence 
of the background reflectance and BRDF on remotely sensed 
signals needs to be identified. One commonly applied method 
is to develop and apply a semi-empirical canopy radiative 
transfer model, inverting the model to input observed 
bidirectional reflectance factors (BRF’s) to determine model 
coefficients. These can be used to identify the significance of 
the background reflectance, and to normalize observed BRF’s 
to a common view/illumination geometry. [10][11][12] 

FLAIR (Four-Scale Linear Model for AnIsotropic 
Reflectance) has been successfully tested with broadband 
spectral reflectance of boreal forests [11][14]. This allows 
observed BRF’s to be normalized to a common 
view/illumination geometry for determining broadband 
spectral VI’s. This model has been modified for application 
to hyperspectral data, allowing inversion of high resolution 
spectral reflectance for BRDF normalization. Testing of this 
model has been performed with data collected over 
agricultural regions of southwest Ontario, during the summer 
of 1999, taken with the Probe-1 hyperspectral sensor.  

 
II. DATA ACQUISITION 

 
An agricultural study area near Clinton, Ontario (43° 40’ 

N; 81° 30’ W) was identified and used as part of a study 
examining the potential development of hyperspectral remote 
sensing data products useful for precision farming. The area 
is mainly corn, bean, and small grain (wheat and barley) 
crops. A few mixed deciduous forested areas also exist.  

Detailed ground surveys of specific fields, including 
canopy cover, reflectance, and eLAI, were taken during this 
study [1][3]. Airborne Probe-1 hyperspectral imagery was 



acquired on 7-July, with mid- and late-morning passes. The 
imagery consists of 128 spectral bands ranging from 430 nm 
to 2500 nm, with a pixel spatial resolution of 5 m × 5 m. 
Hyperspectral surface reflectance imagery was produced 
using the Imaging Spectrometer Data Analysis System 
(ISDAS) [13] developed at Natural Resources Canada – 
Canada Centre for Remote Sensing. 

 
III. MODEL INVERSION DEVELOPMENT 

 
The FLAIR model was initially developed for inversion of 

broadband reflectance imagery [10][11]. In short, this model 
relates observed BRF to the sum of four component mean 
reflectance factors (for more detail, see [10]), expressed as:  

 
ggttzgzgztzt kRkRkRkRBRF ×+×+×+×=   (1) 

 
where Rx are the four scene component mean reflectance 
factors defined as the ratio of nadir reflected radiance from 
the scene component to nadir reflected radiance which would 
be reflected by a 100% reflecting Lambertian panel located at 
the top of the canopy, above the target component. The four 
scene components are shaded overstorey (zt); shaded 
background (zg); directly sunlit overstorey (t); and directly 
sunlit background (g). kj are the viewed scene component 
proportions, functions of view/solar geometry and eLAI. 

Inversion was performed over a range of eLAI, using a 
modified simplex method [10], with the the optimal result 
identified based on a comparison of the observed and derived 
BRF’s (using root mean square error and/or correlation 
coefficient). Defined by this model, shaded and sunlit 
reflectance factors are independent values, which is not true. 
These values are related by having user determined multi-
scattering limits (MSt and MSg, defined as the ratio of shaded 
to sunlit reflectance factors for the overstorey and 
background respectively) where the multi-scattering factors 
have to be similar (one within a set percentage of the other).   

For application to hyperspectral data, the model required 
additional development: i) multiple spectral bands had to be 
inverted concurrently; and ii) shaded reflectance factors had 
to be more closely linked to sunlit reflectance factors. The 
model was developed as a tool in ISDAS to allow for ease of 
interaction with hyperspectral data cubes. 

The ability to invert FLAIR with multiple bands was 
developed by expanding (1) for n bands, thus providing 4n+1 
model coefficients (Rxn

,eLAI). These coefficients are related 
in the inversion such that all kj for bands m≠n are zero. Thus 
only the four component reflectance factors for a specific 
band are contributing to the BRF’s of that band. 

 
gngtntzgnzgztnztn kRkRkRkRBRF ×+×+×+×=   (2) 

 
The option of relating Rxn

 between bands was also 
considered, for example setting the near infrared band 

overstorey reflectance factors to be greater than the red band 
overstorey reflectance factors. This would increase the 
number of constraints by n2, increasing computational time. 
As FLAIR automatically restricts Rx to between 0 and 1, and 
kj between 0 and 1, and as the sum of the four products are 
limited by the observed BRF’s for each band, additionally 
constraining one band relative to another was found 
unnecessary. Thus the only factors relating reflectance 
between bands are canopy eLAI and view/solar geometry, 
inputs to the four kernels.             

Multi-scattering factors were initially limited, requiring 
one to be greater than half of the other (MSt ≥ ½MSg;  
MSg ≥ ½MSg). This was done by inverting the data, 
examining coefficients, adjusting multi-scattering limits if 
they did not meet this criteria, and re-running the inversion. 
While providing multi-scattering factors that appear 
reasonable for broadband considerations, there was no check 
to see if the optimally derived set of eLAI and Rxn

 would 
reasonably result in the derived Rzxn

 values. When inverting 
hyperspectral data, this process becomes computationally 
expensive. Empirical expressions for the multi-scattering 
factors were thus determined using a two-stream model of 
canopy radiative transfer [8]. Now as the inversion iterates 
over potential values of eLAI, resulting Rx are used to 
determine multi-scattering factor limits based on this two-
stream approximation as a function of spectral band. If any 
derived multi-scattering factors are outside these limits then 
the limits are applied and the inversion repeated.  

 
IV. APPLICATION 

 
As partial validation, the multi-band FLAIR inversion 

model (mFLAIR) was run using the 2-band boreal forest data 
initially used to validate the single band FLAIR [11][14]. 
With multi-band inversion, one eLAI value is determined as 
optimal. It was found that the eLAI value determined with 
mFLAIR was always closest (within 0.25) of that derived for 
the near-infrared single band inversion, as expected [11]. 
Optimal sunlit Rx values were usually smaller than their 
single band derived counterparts (< 20%) as were MSx 
(resulting in slightly larger values of Rzx). 

Testing of this model is presently being performed on the 
Clinton agriculture hyperspectral imagery. This will 
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Fig. 1. Change in Equivalent Water Thickness (∆EWT) 
when using the Water Index relation derived for pass-A 
on pass-B BRF data for the Pigbarn corn field. Mean 
∆EWT = 0.011. 



investigate relationships between mFLAIR derived 
coefficients (Rxn

, eLAI) and field measurements. This study 
also considers the application of normalized data in 
developing VI – canopy characteristics relationships.   

Using a corn field in the south-east corner of the study area 
(Pigbarn field) as an example preliminary study area, the 
effect of using mFLAIR to normalize canopy BRF before 
developing VI – canopy relationships is examined. Between 
flight lines (taken 45 minutes apart), the incident solar zenith 
angle changed from 43° (pass-A) to 35° (pass-B), with the 
result apparent as an increase in BRF. One study has 
previously developed an empirical relationship between the 
Water Index (WI = BRF(900nm) / BRF(970nm) [15]) and 
measured Equivalent Water Thickness (EWT) of corn using 
pass-A data [6]. When this relationship is applied to pass-B 
data, a decrease in derived EWT is noted, related only to the 
BRDF and not to any sudden change in field moisture. The 
difference in derived EWT using the pass-A WI – EWT 
relationship is demonstrated in Fig. 1. 

By using the BRF values of this field from both passes, 
FLAIR inversion provides coefficients for this field which 
allows the BRF from pass-B to be normalized to pass-A solar 
geometry conditions. Once normalized, the developed WI – 
EWT relationship found to apply to pass-B (Fig. 2).         

   
V. DISCUSSION – CONCLUSION 

 
Preliminary study of normalizing observed BRF’s of 

uniform crop canopies has demonstrated the potential of 
developing vegetation indices which are more generally 
applicable, and not limited to unique view/solar illumination 
geometries. Further work shall continue examine this 
potential for agricultural crops, other vegetative land cover 
classes, and various vegetation indices.   
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Fig. 2. Change in Equivalent Water Thickness (∆EWT) 

when using the Water Index relation derived for pass-A 
on normalized pass-B BRF data for the Pigbarn corn 
field. Mean ∆EWT = 0.002. 
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