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ABSTRACT: 
 
Spatially varying haze is a common feature of archival Landsat scenes currently being used for large-area land cover mapping and can 
significantly affect product quality. Robust haze reduction that is image-based and involves minimal operator intervention, is therefore 
a necessary a-priori step to information extraction. The practical implementation of a suitable methodology, based on a Haze 
Optimized Transform (HOT), is described. The approach is being used in a program to map the Great Lakes watershed with archival 
Landsat Multi-Spectral Scanner (MSS) imagery. The impact of haze reduction is assessed using inter-scene classification consistency 
as a ‘surrogate’ measure of user classification accuracy. Consistency comparisons made between sets of raw and haze-reduced 
scenes indicate that ‘rare’ class identification is most improved by this procedure.   
  
 
1.1 Introduction 

The last decade has witnessed a number of initiatives, for 
example the National Land Cover Data (NLCD, Vogelmann et 
al., 2001) and the GEOCover (Dykstra et al., 2000) programs, 
involving the derivation of regional and national-scale land cover 
products from moderate to high-resolution satellite images. The 
Landsat series of satellites has been a primary data source, since 
it has provided a continuity of coverage for the past 30 years 
through its Multi-Spectral Scanner (MSS), Thematic Mapper  
(TM) and Enhanced TM sensors. It is desirable, for a given land 
cover product, that source imagery be limited to a narrow 
acquisition window in order to encapsulate thematic information 
at a given ‘epoch’. Given the constraints of Landsat orbital 
characteristics and atmospheric conditions, at least a 3-year 
window is needed to obtain a comprehensive set of low cloud-
cover scenes. Even with this relaxed constraint and especially of 
early ‘epochs’ (e.g. 1970s’s MSS coverage), scenes with 
visually apparent, spatially-varying haze must be included. This 
compromise can significantly degrade subsequent image 
classification and land cover mapping quality. As a consequence, 
haze reduction must be viewed as a necessary pre-processing 
step to information extraction. 
 
 The desirable characteristics of an ‘operational’ haze reduction 
module include robustness (i.e. applicable to a wide range of 
haze conditions), ease-of-use (i.e. minimal operator intervention) 
and that it be image-based since ancillary atmospheric data will 
be limited for most archival scenes. It should be noted that only 
‘relative’ compensation for haze (e.g. adjustment to the haze 
level of the clearest portion of a scene) is sought because most 
image classification algorithms (e.g. unsupervised clustering and 
supervised maximum likelihood classification) do not require 
absolute radiometric calibration. Over the past year, research 
has been undertaken at the Canada Centre for Remote Sensing 
(CCRS) to formulate and implement such a methodology. This 
has led to the development of a Haze Optimized Transform, 

hereafter referred to as HOT, to capture the spatial distribution 
of haze over Landsat scenes. An implementation of HOT-based 
haze reduction has been included within the framework of a 
proto-type workstation currently being used to map synoptic 
land cover of the Great Lakes watershed with archival Landsat 
MSS imagery.  In this paper we describe the results of a study 
to assess the impact HOT-based processing by comparing land 
cover derived from raw versus haze-reduced scenes. 
 
A detailed description of the formulation of the HOT and its 
example application to Landsat Thematic Mapper data has been 
presented elsewhere (Zhang et al., 2002a, Zhang and Guindon, 
2002b), however, here we present an overview of its salient 
features. The transform exploits the fact that, under uniform 
haze conditions, spectral responses of a broad range of common 
surface classes are highly correlated in the Landsat visible 
bands. On the other hand, relative response to the presence of 
haze is wavelength-dependent, being most acute toward the blue 
end of the spectrum. In the HOT formulation, the clearest areas 
of a scene are first used to define a ‘clear line’, i.e. a thematic 
response line in visible spectral space (e.g. bands MSS1 vs. 
MSS2). The transform then quantifies, for a given image pixel, 
its spectral deviation from this line. The resulting raster overlay 
of HOT response then encapsulates the spatially-varying haze 
component relative to the clearest scene areas.  
 
2. Practical aspects of HOT-based haze reduction  

Here we present an overview of our haze reduction procedure 
with particular emphasis on implementation considerations 
related to the routine processing of Landsat MSS data. As 
mentioned earlier, automated image-based processing has been 
sought. Our current procedure is limited to the radiometric 
adjustment of the two visible bands (MSS1 and MSS2), in part 
because of their enhanced sensitivity to haze vis a vis the 
infrared bands and in part because haze has an additive effect 
on radiance in this portion of the spectrum. 



 

 
Figure 1 shows a schematic of the principal processing steps of 
the procedure. 
 

 
Figure 1.  Outline of HOT-based haze reduction 

 
 
 
2.1 Characterize the Radiometry of Clear Areas 

Our haze adjustment procedure is a relative one in the sense 
that it attempts to normalize a scene to the radiometry of the 
clearest portion of a scene. As a consequence, the first step in 
the process involves collecting a sample of pixels from clear 
areas to be used to parameterize the ‘clear area’ radiometry. 
Sample selection is currently done manually (the only manual 
step in the overall procedure) by delineating rectangular 
windows in the scene based on a visual estimation of intra-
scene clarity. A key objective of this process is the selection of 
a sample that spans the full visible band reflectance range, i.e. 
that it includes a mix of vegetated and non-vegetated land 
cover. 
 
The clear area sample is analyzed in the visible band spectral 
space, i.e. (MSS1 (green) vs. MSS2 (red)). In this space data is 
highly correlated and can be characterized by a ‘clear line’ 
defined through least-squares regression. 
 

2.2. Generate HOT Image 
 
In the visible band space, hazy pixels will deviate from the clear 
line since haze has a greater radiometric influence in the green 
band than in the red band. The HOT transform uses the 
observed band 1 and band 2 radiances of a given pixel to 
compute its orthogonal displacement from the clear line. When 
this is done for each pixel, a HOT image is generated that 
quantifies the spatial and intensity distribution of haze. In the 
case of Landsat MSS, this product is noisy because of a 
combination of low dynamic range and quantization errors in 
the visible band data. Noise reduction through spatial smoothing 
is feasible since haze variations tend to be on the scale of 
kilometers compared to the 80 meter spatial resolution of the 
MSS sensor. We accomplish smoothing by generating an image 
pyramid from the HOT image (Schowengerdt, 1997), selecting 
a suitable level then expanding that level back to the sampling 
interval of the parent HOT image through bilinear interpolation. 
For MSS, experience has indicated that the second pyramid 

level (i.e. 4 times reduction) provides a robust smoothing 
solution.  

 
2.3. Determine Radiometric Adjustment Parameters 
 
For those pixels exhibiting a HOT response greater than that of 
the clear areas, a radiance adjustment (i.e. reduction) will be 
applied. Based on modelling experiments (Zhang et al. 2002a), 
a linear relationship between radiance adjustment and HOT 
level serves as a good first approximation. The scale factor of 
this relationship is determined using a ‘dark target’ subtraction 
approach (e.g. Chavez, 1988). For a given visible band, a series 
of grey level histograms are generated for pixels in HOT 
intervals ranging from clear to the haziest levels for which 
adjustment is practical. The rate of increase of histogram lower 
bound with HOT defines the required scale factor. It should be 
noted that water bodies with significant sediment content will 
also trigger a high HOT response. To overcome this problem, a 
water mask is created by thresholding the MSS4 image and 
used to exclude water pixels from the histogram analysis 
described above. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2. Example of adjustment (lower) from a hazy image 
(upper) 

2.4. Adjust Visible Band Radiometry 
 



 

With scaling factors in hand, the two visible bands can then be 
adjusted on a per pixel basis. Water body pixels do not undergo 
this adjustment. This is not a major limitation since accurate 
water classification can be achieved even in the presence of high 
levels of haze. Finally, because of the necessary smoothing 
operation described above, pixels near the image boundary 
cannot be correctly processed and must be trimmed from the 
final product. Figure 2 shows an example MSS1 case with the 
raw image (top) exhibiting extensive regions of low to moderate 
level haze that have been successfully suppressed through the 
adjustment process (bottom image). 
 
3.  Classification accuracy impact of haze removal  

The assessment described here was conducted as part of a joint 
project involving the Canada Centre for Remote Sensing and the 
United States Environmental Protection Agency to generate 
synoptic land cover products of the Great Lakes watershed. 
This is being done with archival Landsat MSS data sets for three 
acquisition epochs, mid 1970’s, mid 1980’s and early 1990’s. 
Coverage of the complete watershed for each epoch 
encompasses approximately 50 scenes. 
 
A proto-type system, QUAD-LACC, has been developed to 
accomplish the mapping task Its methodology is based on 
independent classification (unsupervised clustering followed by 
cluster labelling) of each scene and subsequent classification 
compositing (Guindon and Edmonds, 2002a). In this way, a 
major feature of Landsat data is exploited, namely, the extensive 
overlap coverage of scenes from adjacent orbital tracks. This 
approach was selected for two reasons. First, by utilizing all 
available imagery, information degradation and loss in individual 
scenes due to cloud and haze can be partly overcome. Second, 
classification consistency in overlap regions can be used as an 
indicator of classification performance that characterizes the 
spatial distribution of accuracy across large area (i.e. multi-
scene) land cover products (Guindon and Edmonds, 2002b). 
 
To assess the impact of haze removal on classification 
performance, we have selected a set of 35 source scenes from 
the 1990’s epoch and created two sets of classified products, 
one derived from raw and the other from haze reduced imagery. 
For the purposes of this study, land cover has been stratified 
into two broad categories only, forest vs. non-forest land. 
Within each classified data set, consistency analyses have been 
undertaken on all cross-track overlap regions. Comparisons have 
then been made between consistency levels of corresponding 
overlap regions in the two product sets. 
 
The level of consistency can be quantified in the following 
manner. Consider the case of the overlap region of two 
classified scenes, #1 and #2. The consistency of classification of 
a class A in scene #1 can be defined as the portion of pixels, 
classed as A in scene #1, that have the same classification in 
scene #2. For a two-class scenario (classes A and B), the above 
consistency, C1A, can be expressed as: 
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where the P’s refer to the producer accuracies of each class in 
each scene (e.g. P1A is the class A producer accuracy in scene 
#1) and f is the ratio of the numbers of true class A to true class 

B pixels in the overlap region (Guindon and Edmonds, 2002b). 
Producer accuracy, PA, is defined as the probability that a true 
class A pixel is correctly labelled. This differs from user 
accuracy, Q1A, which is the probability that a pixel, classed as A, 
is indeed of true class A.  User accuracy can be expressed as: 
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As has been shown elsewhere and can be seen from a 
comparison of equations 1 and 2, consistency is a useful 
surrogate of conventional user accuracy (Guindon and 
Edmonds, 2002b). 
 
For our rudimentary classes we would expect producer 
accuracies to be high (typically above 85%). On the other hand, 
over the Great Lakes watershed, consistency and hence user 
accuracy can vary significantly because of the variations in f. If 
we take ‘forest’ for class A, f can range as low as 0.05 in the 
largely agricultural/urban south to more than 10 in the boreal 
forests of the north. In the case of southern scenes, the majority 
of pixels classed as forest can be commission errors. As a result 
of commission error randomness, forest consistency can be low 
(i.e. much less than 0.5) and therefore, as with user accuracy, 
be very sensitive to even moderate improvements in producer 
accuracy that may arise from haze reduction.  
 
For a given scene pair and its overlap region, f remains constant 
but haze processing will alter producer accuracy and hence 
consistency. While the impact of haze reduction will vary from 
scene-to-scene and hence overlap-to-overlap region, we can 
consider some simple scenarios to attempt to gauge its overall 
impact on the scene population. We will assume that the 
producer accuracies of the two classes are the same raw 
imagery and are improved by the same percentage by haze 
reduction. Initially, four scenarios were considered, namely 
initial raw producer accuracies (PRAW) of 85 and 90% and 
incremental improvements (PINC) of 2.5 and 5%.  Equation 1 
has been used to generate raw-improved consistency 
‘trajectories’ for values of f ranging from 0.05 (low consistency) 
to 20 (high consistency). The trajectories are shown in Figure 3 
along with the unity line (i.e. no change) for reference. All four 
cases predict similar, moderate levels of consistency 
improvement. 
 
Figure 4 illustrates the raw versus haze-reduced consistency 
comparison for the Landsat MSS data set. A number of points 
can be made regarding these results. 
 
(a) The data set exhibits significant scatter with offsets 

relative to the unity line which are much larger than those 
predicted from the four scenarios especially at low 
consistency levels. 

 
(b) Haze reduction results in significant improvement in all 

low consistency cases (i.e. cases where raw image 
consistency was less than 0.5). The impact is more 
difficult to discern at higher consistency levels from the 
diagram alone because of scatter. To better understand 
overall trends, we have grouped data points in intervals of 
raw consistency and computed the average haze reduced 
consistency for each. The results, shown in Table 1, 
indicate that consistency enhancement gradually 
diminishes with increasing consistency level and that haze 
processing may reduce consistency at the highest levels. 
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Figure 3.  Predicted consistency relationships for model 
producer accuracy scenarios 

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Raw Consistency

H
az

e 
R

ed
uc

ed
 C

on
si

st
en

cy

 
 

Figure 4.  Raw versus haze-reduced consistency for the Landsat 
MSS data set 

 
 
(c) Haze reduction results in significant improvement in all 

low consistency cases (i.e. cases where raw image 
consistency was less than 0.5). The impact is more 
difficult to discern at higher consistency levels from the 
diagram alone because of scatter. To better understand 
overall trends, we have grouped data points in intervals of 
raw consistency and computed the average haze reduced 
consistency for each. The results, shown in Table 1, 
indicate that consistency enhancement gradually 
diminishes with increasing consistency level and that haze 
processing may reduce consistency at the highest levels. 

 

(d) Low consistency is associated with so-called ‘rare’ 
classes, i.e. those with small proportional coverage relative 
to classes with which they are likely to be confused (i.e. 
low f values). Unless a rare class exhibits a very high level 
of spectral uniqueness, its producer accuracy will be 
degraded due to the limitations of the classification 
process where the goal is to assign a label to a given 
cluster that is indicative of its dominant class. When a 
class is under-represented relative other classes of similar 
spectral properties, many of its member pixels will be 
members of clusters dominated by other classes thereby 
reducing its producer accuracy. Based on trial runs using 
equation 1, we conclude that the observed large 
improvements at low consistency are explainable by low 
raw producer accuracies, typically in the range of 50 to 
60%, that are increased to the 85% range by haze 
processing. In addition, as f increases, forest producer 
accuracy increases to the expected levels of 85 to 90% 
even in the raw scenes. Consequently, the impact of haze 
processing gradually diminishes. Independent scene-based 
classification assessments using ground reference data 
confirms these model predictions and are being published 
elsewhere (Guindon and Edmonds, 2002b). 

 
           

Raw Scene Consistency 
Range 

Mean Haze-Reduced 
Consistency 

0.0  -  0.2 0.43 

0.2  -  0.4 0.54 
0.4  -  0.6 0.63 

0.6  -  0.7 0.72 

0.7  -  0.8 0.73 

0.8  -  0.9 0.86 

0.9  -  1.0 0.92 

 
Table 1. Mean consistency levels of haze-reduced scenes for 

different ranges of raw scene consistency. 
 

 
4. Conclusions  
 
Although Landsat data selection has been optimized for many 
large-area monitoring programs, constituent scenes may be 
contaminated by haze, thereby jeopardizing effective 
information extraction. A robust, image-based haze reduction 
methodology has been described which is suitable for bulk 
processing applications. Assessment of its impact on Landsat 
MSS scenes indicate that it can significantly improve inter-scene 
classification consistency and hence classification accuracy. This 
is particularly true for classes of low proportional coverage (i.e. 
‘rare’ classes) whose producer accuracies are limited by the 
framework of the classification methodology. 
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