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Abstract 
 

The estimation of plant water status is an essential component of precision crop management, and is directly related 
to plant physiological processes and ultimately crop yield. Hyperspectral models developed to estimate plant water 
content have met with limited success and have not been rigorously validated. A spectrum matching technique was 
applied to the hyperspectral data to directly calculate the canopy equivalent water thickness (EWT) using a look-up 
table approach. The objective of this study was to test the validity of this algorithm using crop water status 
information collected on the ground. Data were acquired over an experimental test site near Indian Head, 
Saskatchewan using the Probe-1 airborne hyperspectral sensor. Plant biomass samples were collected 
simultaneously from 96 plots spanning eight fields of various crop types (wheat, canola, and peas). The model was 
validated against EWT estimated from biomass samples as well as more conventional measures of crop water 
status. Results indicate that the liquid water retrieval technique can be used to estimate crop water status for broad-
leafed crops such as peas and canola, but is not a reliable estimator of wheat this early stage of vegetative growth. 
This may be related to the low level of water in the crop and the contribution of soil to the reflectance signal. 
 

 

Introduction 

The quantification of plant water status, along 
with other parameters related to plant growth and 
development are crucial components of precision 
crop management (Moran et al., 1997). The 
accurate estimation of crop water content has 
potential for use in variable rate irrigation 
scheduling, early yield prediction and as input into 
crop ecophysiological models. Traditional 
methods of quantifying plant water status require 
destructive point sampling which is costly and 
provides limited spatial coverage.  Extrapolation 
of point samples to areal coverages through 

geostatistical techniques such as kriging is often 
inaccurate (Pacheptsky and Acock, 1997). Remote 
sensing offers the potential to rapidly quantify 
plant characteristics over a large spatial scale, if 
suitable models can be developed to extract 
biophysical parameters.   

The objective of this study is to test a model 
developed by Staenz et al. (1997) for the 
estimation of canopy water status using 
hyperspectral sensors.  The model provides high 
spatial resolution information on canopy water 
content, at an appropriate scale for agricultural 
studies. Application of this and similar models has 



 
 
 
 
 
 
 
been limited to AVIRIS sensors over naturally 
vegetated landscapes in drought-prone areas.  

Models of Plant Water Status 

The development of high resolution, hyperspectral 
airborne sensors permits the opportunity to 
quantify microscale plant processes, such as plant 
water stress, over field scales. Liquid water 
absorbs solar radiation strongly in a series of 
absorption bands in the near infrared (NIR) and 
short-wave infrared (SWIR) regions (Curacio and 
Petty, 1951). Changes in plant liquid water 
content impact the optical properties of leaves in 
two ways. Changes in the amount of liquid water 
effect the reflectance spectra directly by the 
absorption by water, which is apparent in the 
“depth” of the absorption features. Secondly, as 
leaves lose turgor pressure, changes in the 
arrangement of the interfaces between cell walls, 
intercellular air pockets, chloroplasts and 
protoplasm occur. This impacts the internal 
scattering processes within the leaves that 
influence the overall shape of the reflectance 
spectra  (Carter, 1991).  This complexity has 
inhibited  the development of useful models. 

Several methods have been used for the 
quantification of plant water concentration using 
hyperspectral remote sensing. Empirical 
relationships between reflectance in the NIR and 
SWIR and water content have largely proved 
unsuccessful, with sensitivity limited to plants 
with less than 70 percent of full saturation, 
(Bowman, 1989; Riggs and Running, 1991). 
Derivative spectroscopy can remove some of the 
confounding variables that may influence infrared 
reflectance that are not related to plant water 
content (Danson et al., 1992; Shibayama et al., 
1993), but these models are highly influenced by 
the degree of spectral smoothing (Rollin and 
Milton, 1998). Both of these approaches have met 
with limited success in the estimation of water 
content at canopy level under field conditions.  

Semi-empirical models have more recently been 
used to quantify water status in field situations. 
Indices based on the relative depth of the 
absorption features have been developed to 
minimize the variability resulting from spectral 

smoothing and the confounding effects of multiple 
internal scattering. These are generally based on a 
ratio of reflectance at an absorption maximum and 
a reference wavelength. The water index (WI), is 
the most commonly used and is the ratio of 
reflectance at 900 nm and 970 nm (Peñuelas et al., 
1993). The WI has been found to be related to 
gravimetric or volumetric measures of canopy 
water status (Gamon et al., 1999; Champagne et 
al., 2001). This can be attributed to the strong 
relationship between WI and canopy biomass. As 
the biomass in the sensor field of view increases, 
the volume of water also increases due to the 
relationship between dry matter accumulation and 
plant water. Optical indices have had only limited 
testing using airborne sensors. Moreover, simple 
band ratios represent empirical estimations of 
plant water status, making the development of 
widely applicable relationships difficult (Datt, 
1999).  

To overcome the limitations of indices, a semi-
empirical approach to the estimation of canopy 
water status was developed to directly derive the 
equivalent water thickness The depth of the water 
absorption features is related to the overlapping 
absorption of atmospheric water vapour and plant 
liquid water. The absorption peak of liquid water 
is offset to longer wavelengths by approximately 
20 nm, making it possible to separate the 
absorption effects of each phase. According to the 
Beer-Lambert law, the transmission of radiation in 
these overlapping absorption bands is directly 
related to the total amount of water in each phase 
in a given pixel. Using the Malkmus (1967) 
atmospheric transmission model, a curve fitting 
procedure was developed to estimate column 
atmospheric water vapour and separate this 
amount from liquid water in the target vegetation, 
based on the offset in the absorption minima (Gao 
and Goetz, 1990). Combining a non-linear least 
squares curve-fitting technique with a radiative 
transfer code, a selection of spectral bands in the 
850 to 1250 nm range (including both the 940 nm 
and 1140 nm atmospheric water vapour 
absorption and the 970 nm and 1180 nm liquid 
water absorption minima), can be used to 
calculate the canopy equivalent water thickness 
(EWT) (Green et al., 1991). Using airborne 
sensors, the absorption maxima at 1300 nm, and 



 
 
 
 
 
 
 
1880 nm 2500 nm are not usable since there is 
near total atmospheric absorption of water and, as 
a result, near zero reflectance (Bull, 1991). The 
EWT is the hypothetical thickness of a sheet of 
liquid water in the target. This is functionally 
equivalent to the volume of water in the canopy 
and is a measure of plant water status.  This 
algorithm and similar curve-fitting techniques 
have been applied using AVIRIS data over 
vegetated landscapes (Gao and Goetz, 1994; 
Roberts et al., 1997; Ustin et al., 1998). Staenz et 
al. (1997) modified this algorithm to apply it to 
data sets from various sensors and incorporated a 
look-up table (LUT) approach to the calculation 
of at-sensor radiance to decrease the computation 
time. This approach has not been rigorously tested 
using ground information on plant water content. 

Materials and Methods 

 The study was conducted over a precision test 
farm near Indian Head, Saskatchewan (50° N, 
104° W).  The site included eight fields, four 
seeded with wheat (Triticum.), two with canola 
(Brassica kaber) and two with peas (Lathyrus.). 
All fields were in the vegetative stages of growth 
at the time of sampling. 

Image Data Collection and Processing 

Image data were acquired using the airborne 
Probe-1 hyperspectral sensor (Earth Search 
Sciences Inc., 2001). The Probe-1 is a 
"whiskbroom style" instrument that collects data 
in a cross-track direction by mechanical scanning 
and in an along-track direction by movement of 
the airborne platform. This sensor collects 
upwelling radiance in 128 spectral bands in the 
visible, NIR and SWIR between 440 nm and 2500 
nm. The bandwidth is between 11 and 18 nm at 
full width half maximum (FWHM). Probe-1 is 
mounted on a three-axis gyrostabilizer to 
minimize geometric distortion from the aircraft 
movement. The flying altitude was 2500 m for a 
swath width of 3 km and a spatial resolution of 5 
m.  

Image processing was carried out using the 
Imaging Spectrometer Data Analysis System 
(ISDAS), a software package, developed at the 

Canada Centre for Remote Sensing, for 
processing and analysing hyperspectral data 
(Staenz et al., 1998). A vicarious calibration of 
the sensor was required to correct for errors in the 
calibration coefficients supplied with the data 
(Secker et al., 2001). A radiometric re-calibration 
of the sensor radiance was made using ground 
spectra obtained simultaneous to aircraft data 
acquisition over a section of pavement, using a 
portable spectroradiometer (GER Corporation).  

Liquid Water Derived from Probe Data 

Image data were used to calculate canopy 
equivalent water thickness (EWT) using a spectral 
curve fitting procedure described by Staenz et al. 
(1997) and implemented in the IDSAS 
atmospheric correction tool. The model calculates 
canopy EWT by fitting a water absorption 
coefficient spectrum  based on the Beer-Lambert 
law. An initial set of surface reflectances was 
selected over the 940 nm atmospheric water 
absorption region and adjusted for liquid water 
transmittance. The adjusted surface reflectance 
was converted to an at-sensor radiance using look-
up table parameters derived using the MODTRAN 
3 radiative transfer code (Berk et al., 1989). The 
predicted at-sensor radiance is compared to the 
measured radiance using a non-linear least-
squares fitting technique (Press, 1992). The model 
retrieves both the atmospheric water vapour 
content and the canopy liquid water on a pixel-by 
pixel-basis. 

The water index was calculated from image 
reflectance values to test the usefulness of this 
method of liquid water retrieval against other 
remote sensing techniques. 

Field Vegetation Data 

Biomass samples were collected at 96 sampling 
locations, distributed over the eight fields, on the 
day of the image acquisition. At each location, 
three replicates were taken within 2-3 m of the 
centre of the sampling site. For each replicate, all 
of the aboveground crop biomass samples were 
harvested within a 0.5 m by 0.5 m area. Samples 
were weighed within one hour of harvest to obtain 
fresh weight. Samples were then oven dried at 



 
 
 
 
 
 
 
105°C for 48-72 hours or until no changes in 
weight were observed by further drying.  Sites 
were located using a GPS receiver with �1m 
accuracy. 

Several measures of plant water status were used 
to compare ground measurements to the EWT 
derived from the image data. This was done to 
isolate the indicator that the image data best 
detects and to resolve this to indicators that are of 
greater use for the physiological assessment of 
crop health. These are described in Table 1. The 
gravimetric water content (GWC) is indicative of 
the level of plant water stress and varies under 
ambient environmental conditions. Water content 
expressed as a percentage of fresh mass (GWCF)is 
generally used, but can be misleading when water 
content is high since large variations of water 
amount result in only small changes in GWCF. 
Water content expressed as a percentage of dry 
mass (GWCD) is a suitable measure, except under 
conditions of extreme water stress, where 
depletion of dry matter will occur as a result of 
changes in physiological productivity of the plant 
when changes in actual water amount have not 
occurred. The EWT is the hypothetical depth of 
water in the canopy layer and is functionally the 
same as the EWT calculated from the image. 

 
Plant Water Measure Formulation 

Gravimetric Water Content 
(% of Fresh Mass) FM

DMFM
GWCF

)( �

�

 

Gravimetric Water Content 
(% Dry Mass) DM

DMFMGWCD
)( �

�

 

Equivalent Water Thickness 
(cm) 

� �
A

DMFMEWT
w �

�

�

�

 

Table 1. Plant water content measures calculated from 
biomass samples. FM is the fresh mass, DM is the dry 
mass, �w is a physical constant representing the density 
of water (1 g cm-3) and A is the ground area from 
which the vegetation was sampled (0.25 m2). 

In addition to biomass, plant height was recorded 
at each sampling location. Vegetation, soil and 
residue fractions were estimated using vertical 
photographs collected over each site using a 
digital camera mounted on a tripod. These were 
digitized in three channels (blue, green and red) 
and processed with PCI ImageWorks (PCI 
Geomatics, 1997). Unsupervised classification 

was carried out and classes were aggregated into 
leaf cover, residue, and soil components.  

 Image Registration 

Ground sampling locations were located in the 
Probe-1 image using an image to image 
registration with a georeferenced IKONOS 
panchromatic image of 1 m resolution. The 
georeferenced image was warped to fit the Probe 
data using a 2nd order polynomial in the 
GCPworks module of PCI software . Due to the 
high root mean squared error (RMSE = 3) of the 
image registration, data were extracted from both 
a single pixel and a 5x5 pixel window surrounding 
the georeferenced location. This was done to 
determine if errors in the image registration would 
produce significant differences in the results.  

Results  

The values of EWT extracted from the image for a 
single pixel and for a 5x5 pixel window were 
compared. On average, the values extracted from 
the 5 pixel window were 5% higher than the 
single pixel values. The average variation of EWT 
within each window was 17% of the measured 
value, suggesting there was significant variation 
in water content in a relatively small area. For this 
reason, the 5 pixel window values were retained 
for analysis to minimize the errors resulting from 
the image-to-image registration. Further work 
must be done to improve the accuracy of the 
registration process. 

Model Validation 

The relationship between EWT measured from the 
image and from the biomass samples is given in 
Figure 1. A direct relationship between the EWT 
from the image and the EWT from the biomass 
could not be established since the ranges of the 
two data sets were not of the same magnitude. The 
values extracted from the image ranged from 0.05 
cm to 0.22 cm while the calculated values from 
the biomass range from 0.9 cm to 26.9 cm. This 
suggests that the sensor is only detecting a 
fraction of the canopy liquid water. The crop 
height for all fields averaged 30 cm, and was 
higher for peas and lowest for wheat. Further 



 
 
 
 
 
 
 
studies are needed to assess the penetration depth 
of NIR reflectance.  

The relationship between measured and image 
derived water content is relatively strong for the 
pea and canola crops, and non-existent for the 
wheat crop. This could be a result of the sampling 
procedure used. The water content of the biomass 
is derived from all of the above ground plant 
matter, including leaves and stems. The 

accumulation of water in the plant at this early 
growth stage might not be apparent at the sensor 
level if it is primarily in the stems. Further 
investigation must be done to examine the reasons 
for these results. The liquid water in plants with 
broader leaves, canola and peas, was more easily 
detectable than grass species like wheat for the 
less advanced stage of growth observed here.  

Both the image derived and the biomass water 

contents have the lowest range for wheat. For all 
crop types, there was a larger scatter of points at 
biomass EWT’s of less than 8 cm suggests that at 
lower water contents, the image derived EWT is 
not a good estimator of total canopy water. This is 
consistent with results that found the absorption 
feature to be dominated by noise at low levels of 
water absorption (Gamon et al., 1999). This is 
also dependent on the noise inherent to the sensor 
The reflectance curves in the visible and NIR is 
given in Figure 2. The 970 nm absorption feature 
is shallowest for wheat and deeper for canola and 
peas. The relatively low level of water in the 
wheat crop at this early growth stage results in 
minimal absorption, making the estimation of 
plant water content unreliable. The combination 
of the low level of plant liquid water and the 
physical nature of wheat plants contributed to the 
lack of sensitivity of the model. The model should 
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Figure 2. Average reflectance curves for each 
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Figure 1. Relationship between image derived 
EWT and EWT calculated from biomass 
sampling for each crop type. 



 
 
 
 
 
 
 

be validated using data from more phenologically 
advanced crops to confirm these observations.  

The cover fractions for each field and for each 
crop type are given in Figure 3. Soil was a 
significant portion of most of the fields, 
averaging 40% over all fields. Wheat had a 
slightly higher proportion of soil through all four 
fields, as high as 66% in Field 8. The fraction of 
green vegetation was similar for all crop types, 
averaging 46 % for peas and canola and 47 % for 
wheat. Overall, the image equivalent water 
thickness was positively correlated with the 
amount of green vegetation cover (r = 0.71 for 
canola, r = 0.73 for peas and r = 0.61 for wheat). 
The percentage vegetation cover for the wheat 
fields was comparable with the pea and canola 
fields, meaning that the green vegetation cover 
was evident in the photographs but was not 
detected by the estimation of water content. This 
could be again related to the prominence of stems 
in the measured water content. The high amount 
of exposed soil in the wheat fields could also have 
the effect of saturating the reflectance signal. 

 
 GWCF GWCD EWT 

Canola 0.75 0.73 0.72 
Wheat 0.05 0.10 0.09 
Peas 0.76 0.72 0.74 
All  0.50 0.54 0.54 

Table 2. Correlation coefficients between image 
derived EWT and  various expressions of water 
content, averaged for each crop type. 

Equivalent Water Thickness and Water Index 

The image derived EWT was highly correlated 
with the Water Index calculated from the image 
reflectance (Figure 3). This is consistent with 
results found for natural vegetation (Gamon et al., 
1999). This suggests that the model currently 
being tested is as good as what is currently 
available for remotely sensed estimates of plant 
water content using optical sensors. Deriving the 
EWT directly has the advantage over WI in that it 
is calculated directly from the image radiance and 
does not require conversion to reflectance. 

Expression of Plant Water Content 

The correlation coefficients for image-derived 
EWT and expressions of water content from 
biomass sampling are given in Table 2. There is 
little difference between the correlations for all 
three measures, suggesting the image derived 
EWT is a consistent estimator of all three 
measures. While EWT is a term largely confined 
to remote sensing studies, the consistency of the 
relationship between image derived EWT and 
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other more conventional measures of water status, 
justifies the use of EWT in agricultural studies.  

CONCLUSION 

Preliminary results indicate that the curve-fitting 
model is a reasonably good estimator of crop 
water status in both canola and peas, but a poor 
estimator for wheat crops at this stage of crop 
growth. Equivalent water thickness, as estimated 
by the model, was found to be correlated with 
EWT calculated from the biomass, as well as 
more conventional measures of plant water 
content, making it a suitable measure of crop 
physiological status. The model offers a potential 
improvement over conventional vegetation 
indices, which must be empirically calibrated to 
each scene. Further research is needed to examine 
the incongruity between biomass EWT and sensor 
derived EWT. 
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