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DESCRIPTION: 

A method is described to create large area land cover products through the 

compositing of independently classified Landsat scenes and to assess product 

accuracies based upon classification consistency analyses of inter-scene overlap 

regions.  
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Abstract 

     Over the past decade, a number of initiatives have been undertaken to create definitive 

national and global data sets consisting of precision corrected Landsat MultiSpectral 

Scanner (MSS) and Thematic Mapper (TM) scenes. One important application of these 

data is the derivation of large area land cover products spanning multiple satellite scenes. 

A popular approach to land cover mapping on this scale involves merging constituent 

scenes into image mosaics prior to image clustering and cluster labelling, thereby 

eliminating redundant geographic coverage arising from overlapping imaging swaths of 

adjacent orbital tracks. In this paper, arguments are presented to support the view that 

areas of overlapping coverage contain important information that can be used to assess 

and improve classification performance. A methodology is presented for the creation of 

large area land cover products through the compositing of independently classified 

scenes. Statistical analyses of classification consistency between scenes in overlapping 

regions are employed to both identify mislabelled clusters and to provide a measure of 

classification confidence for each scene at the cluster level. During classification 

compositing, confidence measures are used to rationalize conflicting classifications in 

overlap regions and to create a relative confidence layer, sampled at the pixel level, 

which characterizes the spatial variation in classification quality over the final product. 

The procedure is illustrated with results from a synoptic mapping project of the Great 

Lakes watershed that involved the classification and compositing of 46 Landsat MSS 

scenes.  

 



Introduction 

     Within the last decade, a number of initiatives have been undertaken to assemble 

databases of precision processed Landsat imagery. These activities have included both 

MSS  e.g. the North American Landscape Characterization (NALC) program (Lunetta et 

al., 1998), and TM imagery for example, the Multiresolution Land Characteristics 

(MRLC) consortium (Loveland and Shaw, 1996), and the GEOCover (Dykstra et al., 

2000) programs. One of the most important systematic uses of these data is large-area 

land cover mapping, for example, the creation of the National Land Cover Data (NLCD) 

product for the conterminous United States (Vogelmann et al., 2001).  

 

     Satellite-based land cover products gained widespread endorsement within the remote 

sensing community because of their potential for providing valuable large-area 

information. On the other hand, the acceptance of such information products by the 

�outside world�, (i.e. decision makers and resource managers), requires that their 

accuracy characteristics be rigorously quantified and documented. This presents two 

important challenges for information producers. 

 

(a) Moderate resolution sensors such as those carried by the Landsat series of satellites, 

large-area coverage can only be achieved by merging scenes acquired over a 

relatively broad temporal window. For example, in the case of the NALC program 

this window was targeted to span three consecutive growing seasons for each �epoch� 

data set (Sohl and Dwyer, 1998). As a consequence, the constituent scenes can exhibit 

a range in information detail related to differences in vegetative development, soil 



moisture and atmospheric conditions. This characteristic in conjunction with intra-

product variations in class proportions, can be expected to lead to significant intra-

product spatial variations in accuracy. 

 

(b) In addition, current accuracy assessment methods rely in large part on detailed 

comparison between derived information and independently acquired �ground truth� 

(Congalton and Green, 1999). Because of cost and logistics, ground truth tends to be 

limited and can be viewed as a �spot checking� exercise. In addition, truth information 

is most easily acquired in regions where thematic class purity exists, whereas image 

classifications are most likely to be uncertain near inter-class boundaries. We suggest 

that a preferred accuracy assessment strategy is one that couples limited ground truth 

testing (absolute accuracy checking) with a �wall-to-wall�, albeit indirect method, of 

relative classification consistency mapping at the individual pixel level. 

 

     A widely-used processing approach to large area mapping involves merging multiple 

scenes into regional image mosaics (e.g. Vogelmann et al., 1998, Homer et al., 1997) that 

are then classified. The apparent advantages of this procedure are that (a) it reduces the 

processing load by eliminating redundant ground coverage that is present due to 

overlapping imaging swaths of adjacent satellite tracks and (b) it eases the data 

management and classification load because only a relatively small number of mosaics 

have to be dealt with rather than a large number of distinct scenes. For example, in the 

NLCD land cover initiative, the conterminous U.S. was mapped with a set of regional 



mosaics, each consisting of 16 to 20 scenes (Vogelmann et al., 1998; Vogelmann et al., 

2001). 

 

     The repeat coverage available from overlapping imaging swaths has been a largely 

unexploited characteristic of scene data sets. It is argued that since an individual scene 

may be subject to significant limitations in information content, it is desirable that the full 

information content of the parent image data set be harnessed, including all data in 

overlap regions. In this paper, a large-area land cover mapping methodolgy is described 

involving independent clustering and classification of individual scenes followed by 

classification �compositing� to create a final large-area product. Within this methodology, 

overlapping classifications are compared and employed in two ways. 

 

(a) Classification error checking. By comparing the consistency of a scene 

classification with those of its overlapping neighbors, clusters that are likely to be 

mislabelled can be identified. 

 

(b) Accuracy characterization. An indirect measure of classification confidence can be 

derived for each cluster in each scene based upon classification consistency of its 

member pixels with neighbouring scenes. This measure can then be used during the 

compositing process both to rationalize conflicting classifications in overlap regions 

as well as to generate a net classification �confidence� for each pixel in the final land 

cover product thereby encapsulating intra-product quality variations. It should be 

noted that this form of �relative� accuracy assessment is complementary to 



conventional comparison with �ground truth� (i.e. �absolute� accuracy assessment). 

The former has the added advantage that overlap regions can constitute a significant 

portion of a mapped area especially at high latitudes while ground truth sampling 

tends to be sparse. Others have suggested using overlap regions for accuracy 

characterization, not for classification but rather landscape metric estimation (Brown 

et al., 2000). 

 

     The research presented here was undertaken as part of a joint Canada Centre for 

Remote Sensing (CCRS) United States Environmental Protection Agency (USEPA) 

effort to generate and interpret  multi-temporal synoptic land cover maps of the Great 

Lakes watershed  derived from combined NALC and Canadian-processed Landsat MSS 

imagery. The goal is a spatially consistent classification involving six broad classes 

(water, forest, agriculture, urban/developed, natural grasslands and barren). A 

conventional classification approach was employed involving scene-based unsupervised 

clustering followed by interactive cluster labelling. 

 

     In the next two sections we discuss the broad accuracy issues of cluster-based 

labelling and introduce the concept of classification consistency analysis in inter-scene 

overlap regions as a way to characterize accuracy at the cluster level. This will be 

followed by the development of specific accuracy assessment methodologies to support 

label error identification, compositing of scene-based classifications to generate large 

area products and the creation of a corresponding confidence layer. The approach was 

applied to the generation of a land cover product of the Great Lakes watershed from 46 



composited scenes. A simple stratification of the product (forest vs. non-forest land) is 

analyzed within the context of a simple statistical model.  Finally, we briefly describe 

how consistency analysis can be adapted to mosaic-based classification.  

 

Relevant Aspects of Cluster-Based Classification  

     There are a number of characteristics of cluster-based labelling that have consistency 

and accuracy implications.  

(a) Unlike �textbook� examples of clustering, pixels rarely aggregate into distinct clusters 

in spectral space that correspond to the classes of interest. This leads to difficulties in 

determining the number of relevant clusters of a data set. For this reason, the number 

of clusters is usually set much higher than the number of classes sought (e.g. 

Vogelmann et al., 1998). 

(b) Each class typically is represented by a number of clusters. The �classification� 

qualities of these clusters can be expected to vary. Intuitively, one expects clusters 

residing far from intra-class transition zones in spectral space to contain far fewer 

misclassified pixels than those near such zones As a result, an accuracy confidence 

measure is needed at both the cluster and the class levels.    

 

     To better understand the labelling scenarios that can arise in the case of clusters, 

consider the simple case of two classes, classes A and B. Of the clusters labelled as class 

A, we identify four major types based upon their pixel contents and labelling results. 

Type a. Clusters that consist predominately of �pure�, �true �class A pixels that have been 

correctly labelled as class A. 



Type b. Clusters that consist predominately of �pure�, �true� class B pixels that have been 

incorrectly labelled as class A. 

Type c. Clusters that consist primarily of spectrally �mixed� pixels that have been 

labelled as class A. 

Type d. Clusters that contain significant numbers of both �pure� �true� class A and �pure� 

�true� class B pixels. These clusters are located in a portion of spectral space where 

classes A and B are spectrally indistinct. For example, the spectral signatures of urban 

areas and fallow agricultural fields will be similar within the restricted spectral space of 

Landsat MSS imagery. 

 

     Now consider the case where two partially overlapping scenes are separately clustered 

and labelled. These classifications will exhibit a degree of independence since (a) the 

scenes may have been acquired at different dates (as with Landsat scenes from adjacent 

tracks) and (b) the cluster characterizations will be different since they are based upon 

different overall parent pixel populations. As a result, the pixels constituting a single 

cluster of one scene are expected to be distributed among a number of clusters in the 

other scene. Classification consistency analyses should provide insights into the likely 

labelling type of those clusters with significant representation in the overlap region and 

hence point to those clusters whose labels require further review.  

 

Label Error Checking 

     A 3-step methodology is used for assigning a classification �category� to each scene-

based cluster where the category indicates the confidence in the labelling result. This 



categorization is then used iteratively to improve classification consistency across scene 

boundaries. 

Step 1. 

     Since consistency checking is a relative process, it will be increasingly effective with 

increasing and comparable levels of producer accuracies of the two scenes. If this is the 

case, clusters with suspect labels should be identifiable through an �outlier� analysis 

process. This pre-requisite condition can be assessed by generating a contingency table of 

label agreement at the pixel level whose (I,J)th element  represents the number of pixels in 

the overlap region that have been assigned label I in one scene (scene #1) and label J in 

the other (scene #2). 

Step 2. 

     In this step we analyse the level of classification agreement at the cluster level. For 

example, consider some cluster α, in scene #1, that is labelled as class A. For pixels of 

cluster α located in the overlap region we generate a summary of their corresponding 

assigned labels in scene #2. We can assign cluster α to one of three possible categories. 

 

Category 1. A high proportion of the pixels of cluster α have the same label (class A) in 

scene #2. We have added confidence that the pixels of cluster α are correctly labelled, i.e. 

that cluster α is of type (a) described in the previous section. 

 

Category 2. A high portion of the pixels of cluster α have been labelled as class B in 

scene #2 where B ≠ A. A significant inconsistency is present, indicating that cluster α 

may be of type (b), (i.e. it may be mislabelled and hence requires further scrutiny). 



 

Category 3. Significant portions of the cluster α population are assigned to each of  two 

or more classes in scene #2. This inconsistent labelling result suggests that cluster α may 

be of either type (c) or (d), but the resolution of this ambiguity requires further 

information. 

 

     To employ the above categorization, one needs to define two �proportion of 

agreement� thresholds; an upper one, TU, to delineate category 1 clusters and a lower 

threshold, TL, to delineate category 2 clusters. Those clusters with agreement proportions 

between these thresholds will belong to category 3. 

 

     If we define FA to be the overall fraction of pixels of class A in scene #1 that have the 

same label in scene #2, then as a first approximation we could use FA as the upper 

threshold to test for all clusters. A drawback of this simple approach is that it does not 

take into account uncertainties in proportion estimation associated with unequal cluster 

populations. To account for cluster size variations, we derive cluster-specific threshold 

values based on FA and binomial theory confidence estimation (Thomas and Allcock, 

1984). For example, consider the case of a cluster, α, labelled A in scene #1 with a 

population of Nα pixels in the overlap region of which a proportion, Fα, has the same 

label in scene #2. We assign the cluster to category 1 if  

 

                                Fα   > TU  =  FA -  ∆FA                                                                           (1) 

  



     Where ∆FA is allows for a statistical uncertainty in an estimate of FA given a sample 

size of Nα. We set this parameter to the 99.9 % confidence interval. 

 

             ∆FA =  [3s ( 1 + 1/√(Nα) + 1/√(2Nα) )] / Nα                                   (2) 

 

             where s  =  √( NαFAQA)  and  QA = 1 � FA, the proportion of disagreement.         

 

     The lower threshold can be based on the overall proportion of disagreement for pixels, 

QA, of class A, (i.e. QA = (1 �FA)). In this case if the observed proportion of agreement 

satisfies the inequality 

                               Fα <   TL  =   QA � ∆FA,                                               (3) 

the cluster is assigned to category 2. 

All clusters not satisfying conditions expressed by either equations (1) or (3) are assigned 

to category 3. 

 

Step 3. 

     Once each cluster in scene #1 has been given a provisional categorization, clusters 

other than those of category 1 should be reviewed, resulting in possible re-labelling or 

cluster splitting actions. Note that the same process is applied to scene #2 clusters. 

Following review, the categorization process can be repeated and in this way the most 

consistent, iterative solution can be reached. 

 



     In practice a Landsat scene will exhibit significant overlap with up to four other 

scenes (i.e. two cross-track and two along-track neighbours). When assigning a category 

to a cluster, we compute the above statistics based on the aggregate level of agreement 

over all overlap regions. 

 

Classification Compositing 

      Once final classifications for each scene have been achieved, their fusion into a final 

seamless classification mosaic can be undertaken through a compositing process. To 

proceed one requires  a classification layer and a �confidence� layer for each scene. The 

confidence layer should provide an estimate of the classification quality of each pixel. As 

discussed earlier, absolute accuracy estimation is not feasible at this level of detail. 

Instead, an estimate of confidence is computed based upon inter-scene classification 

consistency. For a given scene, this involves tabulating the aggregate fractional 

agreements in classification for each of its clusters with the classifications of its available 

overlapping neighbors. To each pixel in the scene, a measure of classification confidence 

is assigned that is proportional to the level of agreement of its parent cluster, thereby 

creating a scene  �confidence� layer based upon consistency. The statistical relationship 

between consistency and inherent scene classification accuracy will be developed in the 

next section. In the compositing process, confidence is �accumulated� at the product pixel 

level as new scenes are added. The final composited product will then also contain two 

layers, namely, the final classification and the accumulated confidence layer that reflects, 

at the pixel level, both the number of available scene classifications and their levels of 

agreement. The following compositing algorithm is proposed. 



 

Let                     L(x,y)  =  current classification label of the composite at location (x,y) 

                          C(x,y)  =  current accumulated confidence for the current label                  

                          sl(x,y)    = classification label at location (x,y) of a new scene 

                          sc(x,y)    =  confidence value at location (x,y)  of the new scene 

 

Case 1: L(x,y) = 0, i.e. the composite has no current label. This can arise either if the 

location has had no coverage from previously composited scenes or if all earlier scenes 

were corrupted by cloud or cloud shadow at location (x,y). 

                Then,                      L(x,y) = sl(x,y)                                                   (4) 

                                               C(x,y) = sc(x,y)                                                  (5) 

 

Case 2: L(x,y) > 0 and L(x,y) = sl(x,y), i.e. the current composite has a label which is the 

same as that as the scene being added. Then, 

                                                 L(x,y) is unchanged 

                                                 C(x,y)  =  C(x,y) + sc(x,y),                               (6) 

 

i.e. the confidence is increased by the confidence level of the scene. 

 

Case 3: L(x,y) > 0 but L(x,y) ≠ sl(x,y), i.e. there is a conflict between the current 

composite classification and the classification of the new scene. This leads to 3 sub-cases; 

 



    Case 3a: If C(x,y) > sc(x,y), i.e. the accumulated confidence of the current composite 

exceeds the confidence level of the new scene, then 

                                                   L(x,y) is unchanged 

                                                   C(x,y) = C(x,y) � sc(x,y).                                 (7) 

 

     Case 3b: If C(x,y) < sc(x,y), i.e. the confidence level of the new scene exceeds that of 

the accumulated confidence of the current composite classification, then  

                                                   L(x,y) = sl(x,y)                                                 (8) 

                                                   C(x,y) = sc(x,y) � C(x,y).                                 (9) 

 

     Case 3c: If C(x,y) = sc(x,y), i.e. there is equal confidence supporting each of the 

conflicting classifications. In this case, one must utilize additional information to resolve 

the conflict. In our implementation, a set of heuristics, based on the distribution of 

classifications in a 3x3 window centred on (x,y) in both the composite and the scene, are 

utilized. First, if either L(x,y) or sl(x,y) differs from all of its 8 neighbours, its label is 

discarded, thereby reducing �salt and pepper� effects in the final composite. If this 

occurrence is not present, the label is selected that is in best agreement with its 8 

neighbours. Once a class label is selected, the composite confidence is set to zero. 

 

The compositing methodology has a limitation for those product locations, (x,y) where 3 

or more scenes provide classification estimations. Since, in our current implementation, 

scenes are added sequentially to the composite, classification conflict resolution will only 

be independent of the order of scene entry if it involves a conflict between 2 classes. This 



is risk has been deemed acceptable given that for Landsat the proportion of area covered 

by 3 or more scenes is small and that most realistic classification confusions arise 

between class pairs. However, it is emphasized that this problem is an implementation 

issue that can be overcome through the use of additional temporary storage layers that 

allow for the simultaneous comparison of all classification candidates at a given (x,y). 

 

Great Lakes Example 

 A rudimentary land cover product of the Great Lakes watershed, in which land has been 

categorized into 2 classes (forest and non-forest), is used to illustrate key issues, in 

particular accuracy impacts related to spatial variations in class proportions. The Great 

Lakes product is sampled at 3 arc-seconds in longitude by 2 arc-seconds in latitude 

(approximately 70 meters) and has been created through the independent classification 

and compositing of 46 scenes using the algorithms described in previous sections. During 

this process, each scene was partitioned into 150 clusters using the K-means algorithm 

and the clusters were assigned one of 5 labels (water, forest, non-forest, cloud or cloud 

shadow).  Since land-water confusion is low and the cloud-related classes can be 

considered cases of �no data�, we have restricted our analysis to the classification 

consistency of the two land categories. A total of 76 cross-track overlap regions were 

used in the analysis. Figure 1 illustrates a portion of the product, centred in northern 

Michigan and containing contributions from approximately 20 scenes.        

                                                



 

Figure 1. A portion of the Great Lakes land cover product centred on the region of 
northern Michigan. The classes include water (dark), non-forest (medium grey) and 
forest (white).  The area includes land cover information from approximately 20 
Landsat scenes. 



Statistical Model for a 2-Class Consistency 

Consider the case of a classification scenario involving two classes, A and B, and an 

overlap region that has been independently classified in two scenes. Further, let the 

numbers of true class A and B pixels in the region be NA and NB respectively. One can 

now proceed to generate a contingency table summarizing the consistency of the two 

classifications. The numbers of pixels classified as A and B in scene #1 will be given 

respectively by 

 

        MA   =  NA pA  +  NB (1-pB )                                                       (10) 

and 

        MB    =  NB pB   + NA (1-pA )                                                      (11) 

 

where pA and pB are the probabilities of correction classification of true class A and B 

pixels respectively (i.e. producers accuracies). In each equation, the first term indicates 

the number of correctly classified pixels while the second term represents the number of 

commission errors. 

 

If these classified pixels are compared to the corresponding classification in scene #2 that 

exhibits probabilities of correct classification of qA and qB, one can formulate the 4 

elements of the 2-way contingency table. For example, of the pixels classified as A in 

scene #1, the numbers classified as A and B in scene #2 will be equal to  

          MAA     =    NA pA qA    +    NB (1-pB )(1-qB )                                 (12) 

and 



          MAB          =   NA pA (1-qA )  +  NB qB(1-pB)                                   (13) 

 

respectively. Similarly for those pixels classified as B by scene #1, the numbers classified 

as B and A, i.e. MBB  and MBA,  can be readily estimated from the above two equations by 

reversing the subscripts of A and B. 

 

The number of true class A and B pixels (i.e. NA and  NB) are unknown. However, one 

can derive a number of statistical measures that can be estimated from the population 

contingency tables extracted from real scene overlap regions. This comparison between 

theory and observation is done using only overlap regions between adjacent-track scene 

pairs in order to ensure maximum independence of the classifications (76 cases). In 

addition, some further observations lead to a simplified formulation. First, two broad 

factors will affect the relative sizes of the entries in a contingency table, namely (a) the 

individual scene producer accuracies as indicated by the probabilities of correct 

classification and (b) the relative proportions of true class pixels. Given the broad classes 

(forest vs. non-forest) in the Great Lakes example, one would expect consistently high 

producer accuracies for most scenes. On the other hand, the relative proportion of forest 

to non-forest land varies dramatically from approximately 1:10 in the south to 10:1 in the 

north and hence variations in user accuracy will be dominated by the proportional factor. 

The Great Lakes example provides a good opportunity to study this factor which is 

typically difficult to assess from conventional confusion matrices. 

 



From the above arguments, the model formulation can be simplified by replacing all 

probabilities by a single unknown probability p. As a result, the elements of the 

contingency table become; 

        MAA  =  NA p2 + NB (1-p)2                                                      (14) 

  MAB = MBA  =  (NA  + NB )p(1-p)                                                (15) 

       MBB  = NB p2 + NA (1-p)2                                                        (16) 

 

Observable Statistical Measures 

Below we list a number of statistical measures that can be extracted from overlap 

contingency tables of real scenes. 

 

 FA  = fraction of those pixels classed as A in scene #1 which are also classed as A in  

          scene #2. 

     =  MAA /(MAA + MAB)                                                               (17) 

 

Similarly, the fractional component of classification agreement for class B will be 

 

 FB  = MBB /(MBB  + MBA )                                                             (18) 

 

 EA  = estimated proportion of the overlap region that is of class A based on the scene #1 

         classification 

     = (MAA  + MAB) / (MAA  + 2MAB + MBB).                                 (19) 

 



Figure 2(a) illustrates the relationships of FA versus FB for selected producer accuracies, 

p, where class A is set to forest (F) and B to non-forest (NF). Each curve is derived by 

varying the ratio of NA to NB from 0 to 1. To understand the predicted behaviour, 

consider one example, namely, the curve for p=0.9. If NA = 0, then all pixels classified as 

A will be commission errors, (i.e. 10% of NB), and hence the classification agreement 

between scenes for this class will be low. On the other hand, 90% of the class B pixels 

will be correctly classified in each scene, and of these, 90% will be in agreement between 

scenes  or 81% of the complete NB sample. When all of the overlap pixels are of true 

class A the roles of the classes are reversed. As the fraction of true class A pixels in the 

overlap region gradually increases from 0 toward 1, FA increases. This occurs because the 

proportions of pixels classed as A in each scene that are correct increase thereby 

increasing the probability of coincident A classification. Similarly, FB will decrease 

because of the increasing importance of class B commission errors. Finally, it can be seen 

that the ranges of the F values decrease as p decreases. An F value can never be less than 

(1-p) nor larger than p. In the extreme situation of random classification, i.e. p=0.5, both 

FA and FB will always be equal to 0.5 no matter what the true class proportions are in the 

overlap regions. 

 

Figure 2(c) illustrates the relationships for FA versus EA for the same values of p. It can be 

seen that EA is restricted by the same bounds as FA , again due to the limiting effects of 

commission errors. 
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Figure 2. Comparison of predicted classification consistency parameters 
for a 2-class statistical model with observed forest (F) vs. non-forest (NF) 
classification results for 76 overlap regions of the Great Lakes data set. FF 
= fractional agreement in forest classification, FNF = fractional agreement 
in non-forest classification, EF = estimated proportion of forest based on 
the classification of one scene. Model predictions for 3 producer accuracy 
levels (0.7, 0.8 and 0.9) are shown in plots (a) and (c) with corresponding 
observed data in (b) and (d) respectively. The majority of overlap regions 
in the Great Lakes data set are consistent with a producer accuracy of 
approximately 0.9. 



Figures 2(b) and 2(d) show the scatter plots of FA vs. FB  and FA vs. EA for the 76 Great 

Lakes cross-track overlap regions. From a comparison with the theoretical plots, the 

following conclusions are drawn. 

(a) Comparing Figures 2(a) and 2(b) we observe that the observed Great Lakes 

population is consistent with a model of relatively high, consistent scene 

classification rate, of approximately p=0.9. Even with this high producer accuracy, 

agreement levels between classifications can be low (<<0.5). These cases arise when 

fractional is low (e.g. sparse forest cover in the south) and result from a 

preponderance of commission errors. 

(b) Comparing Figures 2(c) and 2(d) it can be seen that while a small number of overlap 

regions, about 10% of the sample, can be explained by values of p below 0.8, most 

cases of low apparent classification agreement between scenes (i.e. low values of F) 

are consistent with the effects of dominating commission errors in regions where the 

land is primarily non-forest.  

(c) For a region as diverse as the Great Lakes watershed, spatially variations in land 

cover proportions will result in significant intra-product spatial variations in user 

classification accuracy even for rudimentary classes if land cover is derived from a 

single classification. 

 

Compositing Model 

In this subsection, the impact of classification compositing within the 2-class model is 

discussed. In practice, classification compositing is based upon confidence comparisons 

at the cluster level derived from multiple overlap regions. Here, however, it is dealt with 



at a simpler level, namely the case of two scenes with a single overlap region in which 

further subdivision associated with multiple clusters per class is ignored.  

 

In the compositing process, conflicting classifications are rationalized by comparing 

measures of �confidence� of the two competing interpretations. For the compositing 

algorithm outlined above, confidence for a class in scene #1 is defined to be proportional 

to the level of agreement in classification with scene #2, i.e. this confidence for class A in 

scene #1 is proportional to FA. In the 2-class case, the relationship of FA versus FB is 

symmetric about its midpoint (i.e. the point where NA equals NB ). As a result, we need 

only deal with the case of  

 

                NA < NB , hence FA< FB .                                                             (20) 

 

Only those pixels which were classed as A in both scenes will be composited as class A, 

i.e. 

 Number of pixels assigned to class A  = NA p2  +  NB (1-p)2 .                   (21) 

 

Of these pixels, the fraction that are true class A pixels will be given by, 

          FCA   =  NA p2 /( NA p2  +  NB (1-p)2 ).                                              (22) 

 

The impact of compositing can be assessed by comparing FCA to the fraction, FSA, of 

true class A pixels identified if only a single scene #1 were used, where  

          FSA = NA p/(NA p + NB (1-p)).                                                           (23) 



 

Turning to class B, the number of pixels assigned to this class following compositing will 

be the total of those pixels classed as B in either both or only one of the scenes, i.e. 

 

   Pixels assigned to class B  = MBB   +   MBA    +    MAB 

                                              =  NB(2p-p2 ) + NA (1-p2 ).                                 (24) 

 

As with class A, one can compute the corresponding fractions of correctly classified 

pixels with and without compositing, i.e. 

 

             FCB  =  NB (2p-p2 )/(NB(2p-p2 ) + NA(1-p2 )),                                    (25) 

 and                             

             FSB  =   NB p/(NB p + NA(1-p)).                                                         (26) 

 

Table 1 contains a summary of the variations of these fractional parameters as a function 

of the true fractional proportion of class A, NA/(NA+NB), again for the example case of 

p=0.9. The implications of compositing can be summarized as follows. 

 

(a) In the case of class A, compositing tends to reduce random commission errors, 

resulting in a greatly �purified� final class A population, i.e. an improved user 

accuracy. This is especially important when NA << NB.  

(b) The purification of class A occurs at the expense of identifying a smaller portion of 

the true class A population, i.e. a reduced producer accuracy. The numbers of true 



class A pixels found through compositing versus single scene classification are NAp2  

and NAp respectively or 81% versus 90% for our case of p=0.9. 

(c) In the case of the dominant class B, the effects are reversed but less dramatic. 

Compositing results in an improved recovery rate of true class B pixels e.g. 99% for 

p=0.9 versus 90% without compositing. On the other hand, the final population of 

pixels classed as B exhibits a marginally higher proportion of commission errors. 

 

Model Extension 

While the above statistical model dealt with a simple 2-class case, it can provide insights 

into more complex cases.  

 

(a) More than 2 classes. 

Increasing the number of classes  to m potentially leads to n-way class interactions where 

3≤n≤m. However, in some practical cases confusion may still exist at the pair-wise level 

(e.g. grass and row crop confusion (Vogelmann et al., 1998; Zhu et al., 2000)). In such 

cases, the above formulations can be directly applied. In situations where a class is 

confused with a collection of classes (e.g. �mixed� forest with pure deciduous, conifers, 

and schrubland classes), a first level of understanding can achieved by treating these 

confusing classes as a single �aggregate� class, i.e. an aggregate �class B�. 

 

(b) Multiple clusters per class. 

Typically in cluster-based classification, more than one cluster will be assigned the same 

class label. In our classification compositing methodology, consistency measures (e.g. F 



values) are estimated for each cluster. The above theory can therefore be applied at the 

cluster level as well since the measure of confidence used in compositing is proportional 

to the F values developed in this section. The cumulative impacts of factors such as 

commission errors can be assessed at the class level by weighting the effects of 

constituent clusters by their relative pixel populations. 

 

Application to Mosaic-Based Classification 

     As a final point, it should be noted that the methodologies discussed here may also be 

retro-fitted to model the spatial consistency of classifications based on multi-scene image 

mosaics. Two levels of retro-fitting are shown in Figure 3. In the traditional mosiac-based 

classification, individual scenes are first radiometrically normalized to a common 

standard then the scenes are merged into an image mosaic. The mosaic is then treated as a 

single image entity, i.e. it is clustered and the clusters are labelled. The labelling process 

in many cases may be complex. In the case of the NLCD, the initial 100 clusters of each 

regional mosaic represented only a �first cut� at data partitioning. Extensive use was made 

of auxiliary data and additional imagery to achieve final a �clustering� and labelling of 

pixels. 

   At the first level of modification, consistency checking can be accomplished by 

applying classifying each of the parent (radiometrically normalized) scenes using the 

final cluster descriptors and labels derived from the mosaic. Inter-scene overlap analyses 

can then be undertaken leading to the estimation of a confidence measure for each cluster 

and the creation of a confidence layer for the original mosaic. At the second level, the 

labelled mosaic is replaced with a fully composited product including a layer of 
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Figure 3. Schematic diagram illustrating how conventional mosaic-based classification could 
be modified to incorporate classification confidence derived from the analyses of inter-scene 
overlap regions (level 1) and scene compositing (level 2). 



accumulated confidence. This level is attractive since it combines the manual efficiency 

of mosaic processing, (i.e. only one set of clusters, derived from the mosaic, need be 

labelled), while at the same time exploiting the full available image data set including all 

overlaps. 

 

Conclusions 

     Large area land cover mapping based upon Landsat archival imagery involves the 

integration of derived information from scenes that exhibit diverse seasonal and 

atmospheric conditions and significant overlap coverage. Traditionally, scenes have been 

combined into image mosaics prior to classification thereby eliminating multiple 

coverage. It is argued that redundant coverage has the potential to both improve 

classification performance and to characterize spatial variations in quality of the final 

land cover product. An alternate land cover mapping approach has been developed which 

involves classification at the scene level followed by the integration of these 

independently classified entities. Within the context of this approach, analyses of the 

classification consistency in overlap regions can be used to identify mislabelled clusters 

and to model classification confidence at the cluster level. Finally, the same 

categorization can be employed to rationalize conflicting scene classifications and to 

generate an overlay of comparative classification confidence during the step of 

integrating scene classifications into a final seamless land cover product. 

 

This methodology has been employed to generate a synoptic land cover product of the 

Great Lakes watershed. An analysis of a simple 2-class case (forest vs. non-forest land) 



provides a number of useful insights into accuracy issues and implications for large area 

mapping. 

 

(a) If the region to be mapped exhibits significant regional variations in thematic class 

proportions, significant intra-product variations in user accuracy can occur even if 

consistent producer accuracy is maintained. This has important implications for the 

subsequent use of such products since many, such as change detection analysis, are 

dependent on high user accuracy. 

(b) Intra-product accuracy variations imply that accuracy modelling is desirable at a 

spatial detail that would be difficult and prohibitively expensive to achieve through 

conventional ground truth comparison. It is argued that the level of classification 

agreement in overlap regions provides an indirect but complementary confidence 

measure that can be assessed on a cluster basis and independently applied on each 

pixel.  

(c) Improvement in user accuracy, particularly for classes of low areal coverage, can be 

achieved by employing multiple classification estimates since random commission 

errors present in each classification are reduced during a compositing process. Since 

parent scene data sets typically include extensive overlap coverage, this should be 

exploited rather than eliminating it through mosaic creation and classification. 

(d) Even if overlap regions are exploited, desired levels of user accuracy may not be 

achievable without resorting to further redundancy, (e.g. the use of complementary 

�leaf-off� and �leaf-on� image pairs as in the case of the NLCD). The proposed 

compositing methodology lends itself to this scenario. 



(e) The compositing process includes the generation of cumulative confidence layer for 

each land cover product. This layer provides an important ancillary information 

source for post-processing activities that involve comparison of multiple land cover 

products, for example, for change detection. Confidence can be used to assess the 

statistical significance of observed changes again at the pixel level. 

(f) There are a number of pros and cons of mosaic versus scene-based classification in 

the creation of large area products. Since labelling is a labour-intensive process, the 

mosaic approach is attractive since cost and timeliness are usually important issues. 

On the other hand, mosaics have the added complexity of temporal variability which 

in turn can result in added cluster mixing (i.e. more type c and d clusters) and class 

confusion. A detailed performance comparison goes beyond the scope of this paper. 

Finally, while the compositing methodology presented here has been illustrated 

within the context of independent scene-based classification, many of its concepts can 

be fully integrated within the framework of a mosaic-based mapping strategy leading 

to the creation additional accuracy characterization based on consistency analyses. 
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Table 1. Summary of the impact of classification compositing on user accuracy for the 2-

class scenario (assumed producer accuracy of 0.9) as a function of the fractional 

representation of class A, i.e. NA/(NA+NB). For a class with low true proportional 

representation, i.e. class A, compositing can significantly enhance user accuracy (FCA) 

over a single image classification (FSA) through the reduction of random commission 

errors. This is achieved at the expense of a corresponding modest reduction in user 

accuracy of the dominant class B (i.e. FCB < FSB). 

 

  N  A /(N  A +N  B )                FC  A                                       FS  A                      FC  B                      FS  B 

        0.1                             0.9                             0.5                       0.98                      0.99 

        0.2                            0.95                           0.69                      0.95                      0.97 

        0.3                            0.97                           0.79                      0.92                      0.96 

        0.4                            0.98                           0.86                      0.89                      0.93 
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