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Abstract 

 

A Haze Optimized Transformation (HOT) is developed and assessed for the detection and 

characterization of haze/cloud spatial distributions in Landsat scenes. The transformation is 

derived from an analysis of a visible-band space where spectral response to diverse surface 

cover classes under clear sky conditions is highly correlated but spectral response to haze 

is highly sensitive to both optical wavelength and haze optical depth. The robustness of the 

detection algorithm is demonstrated through its application to visible band imagery of 

seven Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) scenes that encompass diverse surface cover and atmospheric characteristics. A 

methodology for utilizing the transformed image to radiometrically compensate visible 

band imagery is presented and quantitatively tested in the correction of an example ETM+ 

scene.  
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1. Introduction 

 

Users of satellite scenes for terrestrial applications are faced with two important realities. 

First, atmospherically clear scenes are seldom available for the temporal window of 

interest even in the case of the restricted geographic coverage of Landsat scenes (e.g. 185 

km x 185 km). Second for hazy scenes, there typically is a paucity of ancillary data upon 

which to base an absolute atmospheric correction. Contamination by spatially varying, 

semi-transparent cloud and aerosol layers (hereafter referred to by the generic term �haze�) 

is a common problem that affects a significant portion of scenes within existing Landsat 

archives. Haze can arise from a variety of atmospheric constituents including water 

droplets, ice crystals or fog\smog particles (Kaufman, 1989). Its resulting influence on 

measured radiance varies significantly among the six 30-metre resolution TM and ETM+ 

spectral bands (note: hereafter we will use the term �TM� to refer to the 30-metre bands of 

both sensors), being most pronounced within the visible spectral region. There remains a 

pressing need for a robust, image-based capability to accurately detect and isolate 

spatially-varying forms of haze and to compensate for its influence on radiance in at least a 

relative (i.e. within-scene normalization) sense. Such an ability would have a significant 

impact on many applications, in particular land cover classification and mapping (e.g. Song 

et al., 2001).  
 

A number of studies on image-based atmospheric correction have been undertaken and 

here we briefly summarize the ability of the most common approaches to model spatial 

variations in haze. First, dark target subtraction methods for haze removal have been 

extensively developed and utilized (Chavez 1988; Chavez, 1989; Teillet and Fedosejevs, 

1995; Teillet et al. 1987). In general the approach involves the estimation of band-specific 

grey level offsets from histogram lower bounds. These offsets are then applied scene-wide. 

In principal, the method can be extended to model intra-scene haze variations by 

partitioning a scene into sub-areas and estimating histogram lower bounds for each (e.g. 

Teillet et al., 1987). However, since accurate histogram lower bound estimates require 

large pixel populations, this extension can only be used to model coarse-scale haze 

structure (i.e. on the scale of tens of kilometers). Liang et al. (1997) have proposed an 

alternate strategy that combines �dark object� detection and physical atmospheric 
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modelling. This technique has the advantage that isolated pixels (e.g. dense vegetation) are 

sought thereby allowing for the characterization of more detailed haze structure (i.e. down 

to the scale of a kilometer).  

 

 A second approach involves isolating the haze contribution in a scene through a 

radiometric transformation. During the extension of the Tasselled Cap (TC) transform 

(Kauth and Thomas, 1976) to the Thematic Mapper (TM) sensor, it was noted that haze 

seemed to be a major contributor to the 4th TC component (Crist et al. 1986; Crist and 

Cicone, 1984a; Crist and Cicone, 1984b; Lavreau, 1991; Richter, 1996a; Richter, 1996b).  

It is important to note that the original TC transform was tailored to separate surface 

radiometric contributions of soil and vegetation (i.e. �brightness� and �greenness� 

components) and hence is not optimized for haze detection. Subsequently, Richter (1996a) 

developed an aerosol haze removal methodology based on a reduced two-band version 

(TM bands one and three) of this Tasselled Cap transform. Richter�s approach required 

complex procedures to compensate for the surface cover information also captured by the 

transform. In addition, he applied it to a restricted data set composed of a single TM 

subscene.  

 

The work reported here has resulted from the need for a practical, scene-based, simple-to-

use methodology for rudimentary haze removal from Landsat imagery in order to improve 

land cover mapping performance. Since a relative intra-scene normalization is sought that 

is capable of detecting and accounting for haze with fine-scale structure, we have elected 

an image transformation approach. 

 

This paper reports on results of this study and addresses two objectives: 

(a) To develop a robust transformation to characterize the spatial distribution of the 

contribution of haze and clouds to image radiometry. This transformation has been 

designed to minimize terrestrial surface influences and be applicable to imagery from 

all Landsat sensors. Extensive use is made of atmospheric radiation transfer modelling 

to support this development.  

(b) To present a methodology that employs the haze transformed image to radiometrically 

adjust visible band imagery. As a �proof of concept�, an example TM scene is 

processed and quantitatively assessed.     
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A new �haze optimized transformation�, hereafter referred to as HOT, is introduced and 

developed in section 2. The results from a modelling investigation of the sensitivities of 

HOT to various atmospheric conditions are described in section 3. In section 4, haze 

distributions, extracted from seven Landsat TM images using the transformation are 

presented and the capability of the transformation to extract the haze spatial variation is 

examined and compared with the fourth component of the Tasselled-Cap transformation. 

Section 5 outlines a methodology to utilize the HOT image to radiometrically adjust visible 

band imagery. An assessment of the HOT-based method using paired hazy and adjusted 

images is also described in this section. 

 

2. Haze Optimized Transformation (HOT) 

An optimized transformation will be one that quantifies atmospheric influences on satellite 

image radiometry but at the same time is insensitive to surface reflection effects. A number 

of criteria must be met to achieve these goals. 

(a) A spectral space (i.e. a mix of spectral bands) must be selected within which the 

spectral responses of different land cover types, under clear atmospheric conditions, are 

highly correlated. This will result in a well-defined surface response vector in spectral 

space. Hereafter we will refer to this vector as the �clear line� (CL). 

(b) The effect of haze on apparent radiance must be different for the component bands of 

the selected spectral space. As a result, increased atmospheric contamination will 

manifest itself in increased migration away from the CL. 

(c) A suitable transformation will be one whose coefficients define a direction orthogonal 

to the CL and whose response magnitude is proportional to the deviation from this line. 

The conceptual framework of this approach is similar to that of Kauth and Thomas 

(1976) in which orthogonalization was employed to separate surface contributions of 

soil and vegetation cover. The difference here however is that the spectral responses to 

surface cover and atmospheric variations in spectral space are not orthogonal and 

therefore the transform response will only be proportional to atmospherically-induced 

radiance. 

 

A simple spectral space, consisting of two visible bands, meets the first two criteria, for 

example, bands one and three in the case of the Landsat TM (hereafter TM1 and TM3). To 
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validate this selection, we have generated clear sky radiance estimates for TM1 and TM3 

for a set of representative surface cover types of Canadian landscapes (Table 1). The 

surface reflectance spectra were retrieved from 4-metre resolution PROBE-1 

measurements (Secker et al., 2001) and used as input for MODTRAN, an atmospheric 

radiation transfer model (Berk et al. 1999).  PROBE-1 samples were averaged to simulate 

the 30-metre resolution of the Thematic Mapper. Figure 1 illustrates the position of each 

surface class, coded as A to K, in the TM1-TM3 spectral space. High spectral correlation is 

apparent, resulting in a well-defined CL. The correlation coefficient for the clear-sky 

points A to K is 0.993. In this simulation it was assumed that the top-of-the-atmosphere 

(TOA) radiance for a surface type does not include the radiation scattered by the 

surroundings, i.e. the so-called �adjacency effect� was ignored. In a real image, adjacency 

effects would generate a range in the pixel radiance within a surface type around the �ideal� 

value. Therefore, the correlation coefficient for real images can be expected to be less than 

0.99 but still be significantly high. The direction of the CL can be expressed by its slope 

angle,  Θ, and hence HOT, the transformation that quantifies the perpendicular 

displacement of a pixel from this line will be given by; 

                                        HOT  = B1 sinΘ  - B3 cosΘ                                         (1) 

where B1 and B3 are the pixel�s band one and band three digital numbers (DNs) 

respectively. 

 

In practice the proposed method can only be applied in a relative rather than absolute sense 

since absolute information regarding the atmospheric conditions over most scenes will not 

be available. Therefore, the angle Θ must be estimated from pixels selected from areas of a 

scene that visually are deemed to be the clearest, and hence Θ will vary somewhat scene-

to-scene. HOT will then be employed to adjust the rest of the scene to the same 

atmospheric conditions as these clearest areas, i.e. to undertake a relative, not absolute 

intra-scene balancing.  

 

To better understand the effects of atmospheric contamination in the TM1-TM3 spectral 

space, MODTRAN version 4 code was employed to estimate apparent TM1 and TM3 

radiances for nineteen different levels of atmospheric optical depth. Atmospheric profiles 

for mid-latitude-summer conditions and haze contamination arising from thin-layered 
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stratus cloud were studied. The optical depth of this cloud at 0.55 µm has been varied 

between 0 and 6.7 in eighteen equal increments. A solar zenith angle of thirty-eight 

degrees was assumed in these estimates although the ratio of band radiances and hence the 

clear line slope should be independent of this parameter. Rayleigh scattering and gas 

absorption of the idealized standard atmosphere are included in the calculation. The 

Landsat-5 sensor gains and offsets were employed during the conversion from radiances to 

digital numbers (DNs). The simulated radiances were calculated for an ideal atmosphere 

without the background aerosols since the background aerosol effect is linearly related to 

other path scattering effects. If the scattering effect of the background aerosols were to be 

included, the position of the CL would shift but its slope would not change appreciably. 

 

Figure 1 shows the resulting �haze trajectories� for each surface class, illustrating the 

migration away from the CL with increasing contamination (increasing optical depth). It 

should be noted that the slopes of lines of constant cloud optical depth are similar to the 

slope of the true CL. For example the slope of clear-sky CL in Figure 1 is 1.03 while the 

slope of the cloud line at level nineteen is 0.98. This implies that a first order radiance 

adjustment for haze can be achieved for TM1 and TM3 using suitably scaled  HOT values 

computed from the image data. On the other hand, a closer inspection of Figure 1 reveals 

that the slopes of the haze trajectories monotonically decrease for surface classes of 

increasing absolute reflectance in these bands. This means that the proposed HOT is not 

completely insensitive to surface reflectance and may require, as a second-order term, a 

surface-dependent adjustment.  

 

An important aspect of a transformation for haze detection must be its insensitivity to 

surface reflectance variations. For the 12 surface classes listed in Table 1, we have 

estimated clear sky radiances for all 30-metre resolution TM bands. From these we have 

estimated corresponding response levels of the HOT and 4th Tasselled Cap (TC) 

transformations (Crist and Ciccone, 1984b). Figures 2(a) and 2(b) illustrate plots of HOT 

(uppercase letters) and TC (lower case letters) values vs. DN level for TM1 and the near-

infrared band TM4 respectively. The latter band is included to illustrate the potential of 

applying HOT to bands beyond the visible portion of the spectrum. Qualitatively, the HOT 

values of different surface cover classes are similar for the same haze level, and, hence, to 
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first order, this transformation is independent of cover class. On the other hand, the TC 

values exhibit significant variation, indicating that the TC transformation is much more 

sensitive to surface reflectance.  Further modelling (not shown) has indicated that TC 

response tends to increase both as a result of increasing cloud optical depth and increasing 

surface reflectance. This implies a surface-induced increase can be mistaken for haze in the 

TC transform image.  Bright land surface types (urban, road and bare soil) are the most 

confusing since they trigger TC responses comparable in magnitude to those observed in 

high haze conditions over vegetated terrain. In Richter�s (1996b) methodology, based on a 

TC hybrid, additional steps were needed to identify and exclude urban regions.  

 

Finally, in a practical application of transformations such as the HOT or TC, a threshold 

must be specified below which no haze compensation is attempted, assuming that lower 

transformed values are an unresolved mixture of haze and surface components. To exclude 

the surface effects, the haze-equivalent threshold of TC must be much higher than that of 

HOT.  To examine these effects, scatter plots were generated of HOT (Figure 3a and 4a) 

and TC (Figure 3b and 4b) vs. TM1 and TM4 respectively. The plots were derived for a 

clear-sky urban/vegetation sub-image of a Landsat-5 TM scene of P21/R26 acquired on 

August 12, 1998. The observed tendency and change behaviour in the HOT-TM space for 

both TM bands (Figures 3a and 4a) agree well with model predictions. This confirms, with 

real imagery, the earlier model prediction of the superior performance of the HOT in the 

minimization of surface effects. It also provides evidence that simulation can capture the 

essential features of real data behaviour and therefore offers a powerful tool to aid in the 

design and development of practical, image-based methodologies.   

 

3. Sensitivity to Cloud and Aerosol Types 

 

In this subsection we address the issue of the dependence of HOT response to differing 

types of haze. To accomplish this, one surface class has been selected (conifer forest) and 

haze trajectories have been generated for it for various cloud and aerosol conditions 

(Figure 5). Besides stratus clouds (Figure 1), cirrus clouds consisting of ice crystals at high 

altitudes, rural aerosols with 23- and 5-km visibility (type 2 and 3), urban aerosols with 5-

km visibility (type 4) and a background aerosol type with 50-km visibility (type 5) were 

modelled. For comparison, an ideal atmosphere without cloud and aerosols (type 1) is also 
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presented. To generate the appropriate trajectories, ice cloud optical depth at 0.55 µm was 

varied from 0 to 3.6, while water cloud optical depth ranged from 0 to 2.8. The HOT 

values increased with increasing cloud optical depth. For four types of atmospheric 

particulates (ice crystals, water droplets, urban aerosols and rural aerosols) with the same 

optical depth at 0.55 µm (δ0.55 = 1.27), the corresponding radiances in each TM band varied 

due to differences in the scattering and absorption properties (Figure 6). Summarizing 

Figures 5 and 6, the apparent radiances in the TM visible bands increased with the 

atmospheric condition in the order ice cloud, urban aerosols, water cloud and rural 

aerosols, with a same δ0.55, as did the HOT response. Ice clouds reflect less than water 

clouds in all of TM bands, thus, ice clouds appear darker in TM images than water clouds 

with the same optical depth. The HOT values of ice clouds were also lower than those of 

water clouds with the same cloud optical depth. In addition, the model results also show 

that TM1 and TM3 DNs increased but TM4 remained constant with increases in HOT 

response in the low optical depth range of clouds and aerosols. This implies that for 

optically very thin cloud or aerosol layers over coniferous forests at least, there should be 

no need to radiometrically compensate TM4 data.  

 

Since the absorption and scattering properties of atmospheric aerosols can vary greatly 

depending on the aerosol composition, we expect that different aerosols, exhibiting the 

same optical depth, will not induce the same spectral radiance change in a given TM band. 

For example, urban aerosols (type 5) exhibit higher absorption in TM4 due to their higher 

soot content (WMO, 1986). For urban areas with heavy air pollution, we expect that TM4 

DN level will decrease with increasing HOT response. On the other hand, for a rural 

aerosol layer, the change in DN level will be less in TM4 than in the TM visible bands as 

HOT increases. In summary, the simulation results indicate that the relationship between 

HOT values and TM radiances varies with different cloud/aerosol types. Nevertheless, the 

haze trajectories for different types of haze are near-coincident especially in the visible 

bands (Figure 5a and 5b), i.e. their dispersion is much lower than the radiometric dynamic 

range associated with the spectrum of surface cover types. This implies that knowledge of 

haze type is not needed to undertake a first order HOT-based radiometric compensation. 

On the other hand, the HOT value cannot be used to infer optical depth without additional 

information.  
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4. Example Results 

 

To test the effectiveness of HOT, we applied it to seven scenes covering representative 

Canadian landscapes and encompassing a broad spectrum of atmospheric conditions 

ranging from clear conditions through translucent haze to opaque cloud. A summary of the 

scenes and their clear line descriptors (i.e. slopes and correlation coefficients) are 

presented in Tables 2 and 3. HOT (left panel) and TM3 (right panel) image pairs for six of 

the seven cases are illustrated in Figures 7.  Although the CL slopes exhibited some 

variation, all scenes exhibited high (≥0.87) correlation coefficients. 

 

The haze/cloud types in these seven images include both �natural� (i.e. cumulus,status and 

cirrus) and �man-made� (i.e. aircraft contrails) conditions. The surface types in these 

images cover a broad spectrum of visible-band reflectance from clear water at the low end 

to urban and snow/ice at the high end. The most common surface features in all scenes are 

forests and inland water bodies. 

 

In scene P21/R26-a (Figure 7a), a contrail-induced middle-level system, created by the 

shearing effect of cross winds, occupies the left portion of the image. A contrail at about 9-

10 km altitude (estimated from solar zenith angle and the distance between the contrail and 

its shadow) is above it. A thin haze layer covers a large area in the left part of the same 

image. The right part of the image appears the clearest and this region was used as the 

clear-sky area to define the HOT �clear line�.  The terrestrial surface cover is primarily a 

mix of forest/vegetation types with some urban/road features in the upper portion of the 

image.  

 

A second image of P21/R26, hereafter referred to as P21/R26-b, has also been studied. 

While it would be considered clear overall, based on a cursory inspection, the HOT image 

and a more detailed visual analysis reveals the presence of a thin haze layer in the left part 

of the scene. The maximum difference between the hazy (in the left part of the scene) and 

clear (the right part) areas is about 5 DNs in TM1. This systematic trend in brightening 

across the image could be associated with differences in scan sensor viewing of a dense 

atmospheric moisture/aerosol layer. For comparison, HOT and fourth TC images from TM 
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P21/R26-b are shown in Figure 7b. There are bright features in the TC transformed image 

which are obviously not haze-related but rather are associated with high visible-band 

reflectance ground features such as building complexes, roads and bare ground. On the 

other hand, the HOT is much less sensitive to these targets.   

 

The image P55/R18 (Figure 7c) covers a mountainous area of mixed forest consisting 

primarily of mature stands and areas of regeneration following harvesting. The mountain 

peaks are generally barren rocks, partly covered with ice/snow. A thin stratus cloud layer is 

present over a broad valley that dominates the middle portion of the scene. The HOT 

transformation has captured this feature in detail including developing cloud cells along 

the mountain range embedded in the relatively uniform distributed haze layer. The next 

three scenes (Figures 7d to 7f) contain complex atmospheric features. In image P49/R21 

(Figure 7d), a stratus or cirrostratus layer covers a mountain valley landscape that includes 

both forest and patches of regenerating low-vegetation. In the sub-image of P34/R23 

(Figure 7e), there were two contrails and cumulus cloud clusters over coniferous/deciduous 

forest and farmland (Figure 7e). In image P15/R29 (Figure 7f), an extensive, thin, 

transparent cirrus system, in the right part of the image, overlaps bright-white cumulus 

cloud clusters.  In lower part of image P10/R28 (Figure 7g), there are clusters of well-

developed thick cumulus clouds with thin ice cloud tops.  A thin cirrostratus layer overlaps 

these convective cloud clusters. In summary, these examples illustrate that diverse 

atmospheric conditions can be detected in detail by the proposed transformation.  

 

We emphasize again that the HOT is based on the assumption that TM1 and TM3 

radiances will be highly correlated for those pixels within the clearest portions of a scene 

and that this relationship holds for all surface classes. From an inspection of the HOT 

images for the test TM scenes we conclude that some surface types violate this assumption 

to varying degrees and could potentially trigger spurious, non-atmospheric, HOT 

responses. These classes include: 

 a). Snow cover and shadows over snow. These areas are easily confused with cloudy 

pixels. Some mountain snow could not be removed from the HOT images  (Figures 7c and 

7d) due to the fact that in TM1 vs. TM3 spectral space, snow deviates significantly from 

the linear trend associated with other land spectral classes and lies well into the high haze 

region of the HOT. Fortunately, this problem can be overcome since snow and cloud can 
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be separated by other means, for example by generating a snow mask based on an analysis 

of TM band 5 data (Dozier, 1984; Dozier and Marks, 1987). 

 b). Water bodies. The HOT value over some but not all water surfaces is relatively high. 

These �problem� water bodies are apparent in the cases of Figures 7f and 7g. The 

anomalies might be caused by either sediment in shallow water or by wind-induced waves 

on the water surface. As with snow, this problem can be easily overcome through the 

creation of a water body mask, for example, through thresholding the near infrared TM4 

image.  

c). Bare soil. The response of the HOT over bare soil area appears to be relatively low, as 

the above modelling results indicate. Under very low haze conditions, fallow fields are 

dark in the HOT image in comparison to neighbouring crops. 

 

5. HOT Application to Visible Band Adjustment 

 

In this section we describe a methodology to use the HOT image to radiometrically adjust 

the visible bands of Landsat imagery. The approach is applied the image shown in Figure 

7c (P55/R18) to remove the radiometric effects of the broad haze layer that dominates the 

central portion of scene. 

 

Because of its simplicity, the HOT-based haze image lends itself to a correspondingly 

direct, first order, methodology for radiometric adjustment. In brief, this procedure 

involves the following steps. 

 

(a) Clear line (CL) definition. The scene is visually inspected to locate its clearest regions. 

Example sub-images in this region and TM1 and TM3 DNs of their constituent pixels 

are regressed to define the clear line and hence the HOT coefficients. In our example 

scene, the clear area, labelled C in Figure 11 has been used in the above process. 

(b) HOT image generation. The transformation is applied to each pixel to generate the 

HOT image (left panel of Figure 7c). The principal haze feature that dominates the 

central portion of the scene exhibits HOT values in the range 30 to 40 while higher 

values are associated with surrounding isolated clouds.  

(c) Histogram generation. For each visible band, DN histograms are generated for pixels 

grouped according to their HOT level. This grouping is in narrow increments of HOT 
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ranging from the clearest to the haziest levels. Figure 8 illustrates some example 

histograms for band 3 of our example scene. Since, in the visible bands, haze adds to 

observed radiance, we expect to observe a systematic migration of these histograms to 

higher DN levels with increasing levels of HOT.  We quantify the level of migration of 

a given histogram by the offset of its lower bound level relative to the histogram lower 

bound of the clear area pixels. Figure 9 shows the relationship between lower band and 

HOT for TM bands 1 to 3 where the observed HOT level of the clear area is 

approximately 30 and histograms have been generated for hazy areas in HOT 

increments of 1. 

(d) Radiometric Adjustment Estimation. In analogy with methods proposed by others (e.g. 

Chavez, 1988; Liang et al., 1997), we utilize a form of �dark target� subtraction to  

normalize the image to the radiometric level of the clearest areas. To illustrate this 

procedure, we take an example of TM1. From Figure 9 we note that, for this band, the 

histogram lower bound for clear pixels  (i.e. HOT=30) is approximately 20 DNs. 

Consider a hazy pixel with an observed HOT level of 40. It is a member of a histogram 

with a lower bound 27. This implies that the pixel should have its band 1 DN level 

reduced by 7 during the radiometric adjustment phase. This procedure can be used to 

adjust all bands for which the histogram analysis has been done. Finally, it should be 

noted that this form of histogram analysis assumes that similar dark targets are present 

under all haze conditions, a less stringent condition than full histogram matching 

required in Richter�s (1996b) procedure. 

(e) Image Adjustment. Figure 10 illustrates the results of adjusting TM3 for haze. The 

lower left image illustrates the whole scene and can be compared with the hazy input 

image of Figure 7c. Visually the result is pleasing with an apparent good recovery of 

surface detail under the principal haze feature. In addition, 3 sub-windows have been 

selected for a more detailed visual �before-and-after� comparison. 

 

A further quantitative investigation on the effectiveness of the HOT-based method has also 

been undertaken using the example scene. Four image windows, shown in Figure 11, were 

selected in the paired hazy and adjusted images for detailed evaluation. One window, 

labelled �C� constitutes the clear area used in the CL definition. The other three windows 

(labelled 1 to 3) are distributed within the dominant haze feature and sample its range of 
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HOT levels. The four windows include similar land cover types, i.e. mature forests, 

regenerating harvested areas and associated roads. 

 

The three scattergrams presented in Figure 11 illustrate the effects of adjustment in the 

TM1-TM3 spectral space. The left plot shows pixels for the clear area (window �C�) only, 

while the centre and right plots show all pixels within the four windows prior to and 

following haze adjustment respectively. The impact of the adjustment is to migrate those 

hazy pixels, constituting the distinct second peak in the center scattergram, back to the 

clear line. Figure 12 further demonstrates the effectiveness of HOT to characterize haze 

variation and its impact on TM3. Histograms of HOT values for each window, presented in 

Figure 12a, illustrate the distinctiveness of the clear vs. hazy regions. The differences in 

mean HOT value between the hazy windows and the clear window are 7.7, 6.0 and 5.4 (for 

windows 1 to 3 respectively) while the corresponding differences in mean TM3 DN are 

7.8, 6.1 and 4.1 (Figure 12b). By comparing the mean window DN levels before and after 

adjustment for windows 1 to 3, we estimate that the haze contribution to observed DN 

level amounted to 15.0, 12.3 and 10.8 per cent for band 3 and 16.9, 13.5 and 11.8 percent 

for band 1. 

 

6. Conclusions 

 

A robust, Haze Optimized Transform (HOT) has been developed for quantifiying spatial 

variations in atmospheric contamination on Landsat TM and ETM+ satellite imagery. In a 

two-dimensional spectral space consisting of visible bands (TM1 vs. TM3), the spectral 

response of diverse land surface types under clear-sky or low haze conditions are highly 

correlated and define a distinct �clear line�. HOT then measures the orthogonal 

displacement of a pixel from this line. The transform is image-based and easy to use, 

requiring only that the analyst identify areas within the clearest portions of a scene in 

order to define the clear line. Its robustness has been validated through its application to 

seven test TM scenes encompassing a diverse set of atmospheric conditions and surface 

classes.  It should be noted that the methodology is equally applicable to Landsat Multi-

Spectral Scanner (MSS) data where the green and red bands can be employed to define a 

HOT. 
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Through MODTRAN simulations, the transformation has been investigated and sensitivity 

studies have been carried out to understand the response of the transform to differing haze 

levels and haze sources. The main results of this investigation are: 

a. The HOT is relatively insensitive to surface cover variations compared to the 4th  

Tasselled Cap (TC) transform, in particular in reducing the confusion between high 

haze regions and �clear-sky� pixels with high visible band reflectance levels. 

b. The impact of haze of increasing optical depth can be characterized by a 

�trajectory� in spectral space. For differing forms of haze in the TM1-TM3 spectral 

space these haze trajectories are nearly coincident for the same underlying surface 

class. This suggests that HOT should be robust and suitable for characterizing a 

broad range of atmospheric conditions. An application of HOT to a diverse TM 

image data set confirmed this to be the case. 

c. There is monotonic decrease in haze trajectory slope with increasing level of 

surface reflectance in the visible bands. This phenomenon is of second order and 

does not preclude the application of an effective first order haze removal procedure 

that is proportional to the HOT magnitude. 

 

A methodology is presented to adjust visible band radiances for atmospheric contamination 

based on observed HOT level. A simple, automated procedure can be used in which the 

relationship between radiometric adjustment level and HOT magnitude is quantified 

through a histogram analysis procedure analogous to conventional �dark target� 

subtraction. The effectiveness of the methodology has been confirmed through its 

application to one of the test scenes (P55/R18). 

 

Finally, since the compensation procedure results in a migration of pixels back to the clear 

line in visible spectral space, this has the negative effect of eliminating residual thematic 

discrimination differences between these bands. In many applications of Landsat data this 

is an acceptable trade-off. For example, in the creation of the U.S. National Land Cover 

Data set derived from classification of Landsat TM imagery, only one visible band, TM3, 

was used (Vogelmann et al. 2001). In the case of Landsat MSS data numerous principal 

component analyses (e.g. Thomas et al. 1987) have shown that the effective dimensionality 

of this sensor is really only 2 since the discriminatory power of the sensor arises primarily 

from differences between visible and infrared spectral responses.  
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Table 1. Surface classes used in the model simulation studies. The surface spectra were 

retrieved from Probe-1 measurements. 

Code Type Feature 

A Coniferous forest Tree canopy 

B Lake water Median size lake 

 

C 

 

Urban 1 

Residential area: mixture of asphalt, 

concrete, gravel, grass/tree areas, building 

roof tops, streets and vehicles. 

 

D 

 

Urban 2 

Industrial area: mixture of gravel, dirt, 

buildings, steel bins, trucks, trains, vehicles 

and vegetation 

 

E 

 

Road 

Gravel road intersection with vegetation 

surrounded 

F Bare soil 1 Dry bare soil 

G Bare soil 2 Wet bare soil 

H Grassland Grass 

I Deciduous  Deciduous woods and shrubs 

J Cropland 1 Crop in growth 

K Cropland 2 Crop in growth 

L Snow Unpolluted snow cover 
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Table 2. Summaries of HOT parameters for the 7 TM test scenes including the clear line 

(CL) slope (SCL), TM1 and TM3 transform coefficients (SinΘ and CosΘ respectively) and 

correlation coefficients, rCL.  

 

Scene Date Satellite SCL SinΘ CosΘ rCL 

Path21/Row26-a 98-08-12 Landsat-5   1.32 0.797 0.603 0.93 

Path21/Row26-b 99-05-27 Landsat-5   1.32 0.797 0.603 0.93 

Path55/Row18 99-08-05 Landsat-7  1.57 0.835 0.549 0.95 

Path34/Row23 99-08-18 Landsat-7  1.73 0.865 0.500 0.89 

Path15/Row29 00-08-15 Landsat-7  1.46 0.825 0.565 0.91 

Path10/Row28 99-08-28 Landsat-7  1.72 0.864 0.503 0.87 

Path49/Row21 99-09-12 Landsat-7  1.73 0.868 0.496 0.94 

 

 

Table 3. The types of cloud and surface in TM scenes investigated.  

JC: Jet contrail and contrail-induced cloud; Ci: Cirrus; St: thin Stratus or fog; Cu: 

Cumulus; Mi: mist or thin cirrostratus. A-M of the surface types are corresponding to those 

in Table 1. 

 

Scene Cloud type Surface type 

Path21/Row26-a JC, Ci, Mi A, B, C, E, H, I 

Path55/Row18 St A, B, I, L 

Path34/Row23 JC, Cu A, B, C, D, E, H, I, J, K 

Path15/Row29 Ci, Cu, JC A, B, C, D, E, F, G, H, I, J, K 

Path10/Row28 Cu, Mi, Ci A, B, C, D, E, F, G, H, I, J, K 

Path49/Row21 Ci, Cu A, B, I, L 
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FIGURE CAPTIONS 

 

Figure 1. Schematic diagram of the TM1-TM3 spectral space illustrating the conceptual 

components of the haze optimized transform (HOT). Under clear sky conditions, radiances 

of common surface cover types, coded as A to H, exhibit high correlation and define a 

�clear line� (CL). The effect of haze of increasing optical depth, illustrated by the 

numerical sequences 1 to 18, is to pixels to �migrate� away from the clear line. The HOT 

quantifies the atmospheric contamination level at a pixel location by its perpendicular 

distance, in spectral space, from the clear line. 

 

Figure 2. Model predictions of HOT (uppercase letters) and 4th Tasselled Cap (TC) 

transform (lower case letters) values for a mix of surface cover types exhibiting a range in 

visible reflectances. In both spectral bands, the HOT exhibits a higher degree of 

insensitivity to surface reflectance, suggesting that it will be more effective in isolating and 

quantifying atmospheric contamination in images than the TC transform. 

 

Figure 3. Scatterplots of HOT and TC transform values versus TM1 DN level for pixels 

selected from clear areas of TM scene P21/R26. The model prediction (see Figure 2) of the 

marked insensitivity of the HOT compared to the TC transform to surface reflectance is 

confirmed with real imagery. 

 

Figure 4. Scatterplots of HOT and TC transform values versus TM3 DN level for the same 

pixel sample shown in Figure 3. In this spectral band both transforms exhibit an 

insensitivity to surface cover. 

 

Figure 5. Comparison of haze �trajectories� predicted from MODTRAN modelling, for 

different cloud-only and aerosol-only types. For the five aerosol-only cases, the number is 

plotted at the data point location. The near coincidence of these trajectories for the same 

surface cover type suggests that the HOT is robust in responding in a similar way to 

varying types of atmospheric contamination. On the other hand, it cannot be used to 

independently estimate optical depth. The surface cover type is coniferous forest. 
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Figure 6. The simulated radiance for four cloud/aerosol types (water cloud, ice cloud, rural 

aerosol and urban aerosol) with the same optical depth at 0.55 µm (δ0.55=1.27). The surface 

cover type is coniferous forest. 

 

Figure 7. Example results of applying HOT to generate a transform image the 7 test 

scenes. With the exception of Figure 7b, HOT and the parent TM3 images are presented in 

the left and right panels respectively. In the case of 7b, the 4th Tasselled Cap transform 

image is displayed in the right panel in order to illustrate the superior performance of HOT 

in suppressing surface cover response. (7a, 7b, 7c, 7d, 7e, 7f, 7g) 

 

Figure 8. Histograms of TM3 DN level for pixels grouped according to HOT level. The 

histogram lower bound values are observed to increase with increasing HOT level as 

expected for the additive effect of haze on image radiometry. 

 

Figure 9. Observed histogram lower bound versus HOT for bands TM1 to TM3 for scene 

P55/R18. The clear area pixels exhibit a HOT level of approximately 30 while the 

dominating haze feature of the scene are characterized by HOT values between 30 and 39. 

The data presented can be used to adjust the radiometry of each band to the clear area 

level. 

 

Figure 10. Example result of employing the HOT image to radiometrically adjust band 3 

of scene P55/R18. Besides the overall scene, selected windows (before and after 

adjustment images) are presented in full resolution to illustrate recovery of surface detail. 

 

Figure 11. TM1-TM3 scatter plots of four image windows (lower right) with similar 

surface cover. Window �C� is located in the clearest portion of the scene while the other 

three (labelled 1, 2 and 3) are under haze cover. The effect of the adjustment procedure is 

to bring hazy pixels into alignment with the reference clear area data. 

 

Figure 12. Histograms of (a) HOT and (b) TM3 DN levels for the four windows illustrated 

in Figure 11. The TM3 data illustrates the data migration arising from the adjustment 

process. 
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