
Preprint/Prétirage

Sensitivity of Landscape Indices to Classification Accuracy

M. Beauchemin
Canada Centre for Remote Sensing,

Natural Resources Canada
588 Booth Street, Ottawa,

Canada, K1A 0Y7

D. Pan
Intermap Technologies Inc.,
2 Gurdwara Road, Suite 200,

Ottawa, Canada K2E 1A2

K. B. Fung
Canada Centre for Remote Sensing,

Natural Resources Canada 588
Booth Street, Ottawa,

Canada, K1A 0Y7

Abstract

The effect of classification accuracy on landscape indices is evaluated using the Monte Carlo simulation
method. Class membership information is used to generate a set of equally likely alternative thematic
maps. Landscape indices are then computed from each of these maps. The scatter in landscape indices is
taken as an estimate of the variability of classification uncertainties. The method is applied on three
classified Landsat TM image subscenes.

Introduction

The quantification and analysis of landscape
spatial patterns is a major component of landscape
ecology (Gustafson 1998). A large number of
measures (also referred to as landscape indices or
metrics) have been proposed to quantify landscape
patterns from thematic maps (McGarigal and
Marks 1995). Most of them attempt to capture, in
terms of a numerical value, specific spatial
characteristics of landscape. Generally, a
landscape index value does not provide much
information by itself - more information is gained
by comparing index values of alternative
landscape configurations, such as landscape
observed at different times or locations (Gustafson
1998). Remote sensing offers the opportunity to
perform such comparisons. Images of a large area
can be acquired at one time, with repetitive
capability (Gulinck et al. 2000). However, land
cover maps derived by classification of remote
sensing data are not perfect and without errors
(Foody 2000 and references therein). These errors
will likely introduce biases and uncertainties to
landscape measures. The impact of thematic map
uncertainties on landscape indices must be
determined before they can be considered reliable
measures for landscape monitoring (O'Neil et al.
1997).

Related Works

Broadly, two approaches have been considered to
estimate the effect of thematic map errors on
landscape indices. The first approach is empirical.

It compares landscape measures derived from
overlapping thematic maps based on images
acquired over a short period of time (Brown et al.
2000; Vencatasawmy et al. 2000). The scatter
observed in the derived landscape measures serves
as an estimate of the amount of error (assuming
that there is no landscape change). This approach
is interesting because the comparison is performed
on the end product and therefore there is no need
to identify individual sources of error. The main
constraint of this method is that it requires several
cloud free and geometrically rectified images that
contain no changes over a given period of time.

The other approach uses error information
associated with thematic maps. Hess and Bay
(1997) make use of the error matrix to correct
class proportions and to evaluate the effect of
uncertainties associated with the error matrix
entries on proportion-based landscape indices.
Alternatively, Wickham et al. (1997) used Monte
Carlo simulations based on misclassification
calculated from an error matrix. Errors were
introduced into a thematic map according to the
statistics provided by an error matrix. The biases
and uncertainties were then obtained from
statistics derived from landscape measures
calculated for each realization. To incorporate
spatial autocorrelation into the simulation process
(the error matrix provides no information about
the spatial distribution of errors), the amount of
error was increased for pixels located on patch
boundaries (edges).



In this paper, we present the preliminary results of
our on-going evaluation of the sensitivity of
landscape indices to classification accuracy. We
consider a method based on class membership
information to evaluate the effect of classification
accuracy on landscape indices. Because class
membership provides pixel-based information, it
takes implicitly into account the spatial aspect of
the problem. Class membership supplied by
several classifiers has been used to assess the
confidence level of classification on a per-pixel
basis (Fisher 1994; Maselli et al. 1994; Van der
Wel et al. 1998).

Class Membership

Although thematic maps are generated using hard
classification rules, information on class
membership can be obtained from several
classification techniques (e. g. maximum-
likelihood, minimum distance, fuzzy classifiers).
Class membership gives the degree to which a
pixel belongs to each class (cover category). In a
gaussian-based maximum-likelihood
classification, the probability of a pixel being a
member of a class characterized by a mean vector
M and variance-covariance matrix V is given by
(assuming equal prior):
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where n is the number of bands and X is the pixel
vector (Richard, 1993). The maximum-likelihood
a posteriori probability is obtained through the
Bayes' theorem and leads to a rescaling of Pr
between 0 and 1 (ΣPr =1). In the maximum-
likelihood classification, only the class having the
highest a posteriori probability is allocated to the
corresponding pixel, resulting in the so-called
hard classification rule. The scope of this paper is
to make use of all class membership information
to assess the impact of classifier performance on
landscape indices.

Method

The approach is similar to that of Wickham et al.
(1997) but instead of using the error matrix
information for the Monte Carlo simulations, the

likelihood derived by the classifier for a pixel
belonging to a specific class is used (Canters and
De Genst 2000; Gascoigne and Wadsworth 1999;
Fisher 1994). The a posteriori probability can be
considered to be the chance of each class being
the true class. The method consists of randomly
assigning a class, to each pixel in turn, with a
chance of occurrence for each class being
proportional to its associated class membership
strength. By repeating this procedure several
times, it results a set of equally likely alternative
thematic maps. Landscape indices are then
computed for each alternative map. The scatter in
landscape measure values computed from these
maps is taken as an estimate of the potential
variability due to classification uncertainties. In
particular, the simulation results can be used to
estimate the probability, PI, of obtaining the same
landscape index values from two images acquired
at different times (or different locations within the
same classified image). An estimation of PI is
provided by the overlapping area between the two
distributions traced by each simulation set (each
distribution must be normalized so that the area
under the curve sums to one).

Experimental Results

A 1024 by 1024 pixels image subset was extracted
from a Landsat-5 TM image acquired on 4 July
1988 over Goose Bay, Labrador. A gaussian-
based maximum-likelihood supervised classifier
was used to assign pixels to one out of 10-land
cover categories. Forest inventory maps (1:12 500
scale) from Newfoundland and Labrador Forest
Resources and Agrifoods were used for training.
Two spatially coincident subsets of the same area
were also extracted from two other TM images
acquired at different times (26 July and 27 August
1999). The same training site locations were used
to classify all 3 images. Preliminary estimate of
the overall accuracy of the 1988 map is about
80%.

Each 1024 by 1024 pixels classified image subsets
was subsequently partitioned into four distinct
quadrants (23593 ha per quadrant). Three of these
areas, labeled A1, A2 and A3, are believed to be
exempt of major disturbances due to human
activities. It is reasonable to assume that
landscape changes are minor in these areas during



the relatively short period between July and
August 1999. The fourth area, labeled A4, was
affected by changes mainly related to logging
activities. Changes in A4 were much more severe
between 1988 and July 1999, than between July
and August 1999.

Twenty realizations (Monte Carlo simulations)
were generated for each area and for each date.
Each realization was filtered with a 3 by 3 pixels
mode function prior to landscape measure
computation. This is a post-classification
procedure that is routinely used to reduce the
number of very small patches that otherwise make
maps look 'noisy' and thus influences (biases)
landscape measures. Visual inspection of the
spatial distribution of the differences in class
labeling between two simulated images revealed
that pixels most likely to change are mainly
situated on patch boundaries, supporting the
procedure adopted in Wickham et al. (1997) to
take into account spatial autocorrelation.

Landscape indices were computed for each
realization using the Fragstats program
(McGarigal and Marks 1995). Table 1 provides an
example of the results obtained. The mean and
standard deviation of edge density (ED) are given.
Edge density is defined in terms of the sum of the
lengths of all edge segments divided by the total
landscape area. It can be seen that the standard
deviation for all simulation sets is almost the
same, about 0.27 m ha-1. This represents a
coefficient of variation of less than 1% and
therefore this result seems to be in agreement with
the conclusion of Wickham et al. (1997) that
variability in the spatial distribution of
misclassification does not affect the estimates of
landscape indices. Differences in mean values of
about 3 m ha-1 are observed for areas A1 and A3
between the two images acquired one month
apart. Such differences are one order of magnitude
greater than the standard deviation, thus
suggesting a significant difference in landscape
patterns (i.e. not attributable to classification
uncertainty). We also note that differences of the
same order are observed for the areas A1 and A3
between July 1988 and July 1999. The difference
of ~0.6 m ha-1  for A2, between July and August
1999, indicates that the chance of having the same
index values from the two maps is not negligible

as the overlapping area between the two
distributions gives a probability of PI ~ 0.2
(normal distribution shapes are assumed). Finally,
a change in means of more than 12 m ha-1, far in
excess of the standard deviation values, is
observed between 1988 and 1999 for A4. This
area is known to be affected by logging activities.

Discussion

Results presented in Table 1 reflect those
obtained, for example, with contagion and
Shannon diversity indices. Because ground
reference information is lacking, it is impossible
to determine if the approach underestimates the
effect of classification uncertainties on landscape
measures or if the computed differences are true,
or a mix of these two situations. Further works are
needed to study the nature of the changes that give
rise to the computed differences.

It should be noted that the approach considered in
this paper should be internally consistent for the
comparison of landscape indices at different
locations within a same classified image.
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Table 1. Summary of the results for the edge density (ED) landscape index
[meters per hectare]. Results are based on 20 realizations.
____________________________________________________________
Area ED (mean +/- standard deviation)
Id. 4 July 1988 26 July 1999 27 August 1999
____ _____________________________________________________

A1 102.12 +/ 0.28 106.94 +/- 0.30 110.74 +/- 0.35
A2   64.28 +/ 0.22   65.52 +/- 0.24   64.95 +/- 0.23
A3 101.62 +/ 0.24 104.38 +/- 0.26 107.13+/- 0.29
A4   89.06 +/ 0.27 101.74 +/- 0.22 103.64 +/- 0.28
____________________________________________________________
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