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Abstract— Speckle filter performances depend strongly on
the speckle and scene models used as the basis for filter de-
velopment. These models that incorporate implicitly certain
assumptions on speckle, scene and observed signals, were
generally adopted and used without any justification. In
this study, the multiplicative and the product speckle mod-
els, which have been used as the basis for the development
of the most well known filters, are analyzed. Their implicits
assumptions are discussed with regards to the stationarity-
nonstationarity of speckle, observed and scene signals. Two
categories of speckle filters are distinguished as a function
of the stationarity-nonstationary assumption on speckle ran-
dom variations. The various approximate models used for
the multiplicative speckle noise model are then assessed as
functions of speckle and scene characteristics. The Madsen
method [6] was extended to the various models to derive
the requirements on scene signal variations for the valid-
ity of the multiplicative stationary speckle model, and the
product model which forces speckle to be a nonstationary
process.

I. SAR system model

For this study, the SAR system model of [8] is used.
SAR is modeled as a two-dimensional (range, azimuth)
linear system. Fully developed speckle is modeled as a
white zero mean complex Gaussian process which mod-
ules the scene complex reflectivity r(t) (at the spatial posi-
tion t) to form, under ”the complex multiplicative speckle
model” assumption, the input signal f(t) to the linear
SAR system: f(t) = r(t) · n(t). The input signal f, which
is quadratically phase modulated and amplitude weighted
by the prefilter w, then compressed by the processor fil-
ter h, gives the following complex voltage at the output:
g(t) = f(t) ∗ q(t) + b(t) ∗ h(t) , where q is the system im-
pulse response (q = w ∗ h with * denoting convolution),
and b is the receiver noise complex signal. The latter noise
term can be ignored and the detected power is given by:

I(t) = |f(t) · n(t) ∗ q(t)|2 . (1)

II. Speckle-scene models

A. The multiplicative speckle noise model
In order to retrieve the ”unspeckled” scene radar

backscatter from the observed image sample (pixel), a
model that relates the two entities, at each pixel, as a func-
tion of speckle noise is used. The most commonly used
model is the multiplicative speckle noise model, which ex-
presses the observed intensity as the product of the scene
radar backscattering and the speckle noise intensities:

I(t) = S(t)u(t), (2)

where I(t) is the observed intensity of the pixel located at
t=(x,y), S(t) is the terrain reflectivity (S(t) = |r(t)|2), and
u(t) is the intensity of fully developed speckle noise which is
unit mean Gamma distributed. The approximate intensity
expression (2) might be deduced from the exact intensity
expression of (1) in various ways, leading to various expres-
sions for the named ”multiplicative speckle model” [9], [3],
[1], [12], [2]. These models incorporate implicitly certain
assumptions on speckle, scene and observed signals. Few of
them assume that the multiplicative speckle noise intensity
u is white noise [3], [1]. Others assume that u is correlated
noise [9], [12]. Scene reflectivity S might be presented as
an entity free from the system impulse response q [9], or
related to the system characteristics [2].

B. The product model
Under the assumption that the multiplicative speckle

model of equation (2) is satisfied at each pixel position
t, the unconditional pdf of the observed intensity is given
by:

P (I(t)) =

∫ +∞

0

P|n(t)|2 (I(t) | S(t))PS(S(t))dS(t) , (3)

where the fully developed speckle of χ2 pdf is assumed to
be nonstationary in intensity mean, with spatially varying
mean E[|n(t)|2(t)] = S(t), and PS is the spatial distri-
bution of the speckle mean S(t). The spatial averaging
of the conditional speckle distribution leads to the uncon-
ditional distribution of stationary mean S̄ =< E(I(t) |
S(t) >S(t)=< S(t) >t. This supposes that the limit S̄
exists and that the speckle mean variation process S(t) is
ergodic and stationary such that its spatial average con-
verges to its ensemble average: E(S(t)) =< S(t) >t= S̄
[10], [11].

III. Explicit filter model assumptions on the

stationary-nonstationary nature of speckle

and speckle noise

All (scalar) speckle filters of one channel polarization
SAR images assume (via equation (2)) that speckle noise is
a multiplicative unit mean wide-sense stationary process.
Such an assumption significantly simplifies filter process-
ing, as speckle statistics that are constant on the whole
scene need to be estimated once. However, even though
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these filters assume that speckle noise is a stationary ran-
dom process, speckle might be considered as a stationary
or nonstationary process. Two categories of speckle filters
might be distinguished as a function of the implicit model
assumptions on stationarity-nonstationarity nature of the
speckle random process.
1. Multiplicative Stationary Speckle Model Filters (MSSM
filters): they assume that the speckle random process is
stationary over the whole image. The most well known
filters, such as the Lee [3] and the Frost [1] filters, belong
to this category.
2. The Product Model Filters: they assume that speckle
is not ”locally” stationary within the moving processing
window. This is for example the case of the filters based
on the product speckle scene model of (3), such as the Kuan
filter [2] and the Gamma filter [4] which force the speckle to
be nonstationary in mean, with an intensity mean Gaussian
[2] or Gamma [4] distributed. Theses filters might also
be named the Multiplicative NonStationary Speckle Model
Filters (MNSSM filters).

Both of the categories above assume that the multiplica-
tive speckle noise model of equation (2)) is satisfied at each
pixel. In the following, the various approximate expressions
of the ”multiplicative speckle noise model” are considered,
and assessed with reference to the exact expression of (1).
The Madsen method [6] is extended to the various mod-
els to determine the multiplicative nonstationary speckle
models constraints upon variations of nonstationary scene
signals (i.e. for the Product Model (MNSSM) Filters).

IV. Assessment of the various multiplicative

speckle models and the related constraints

A. Exact first and second order satistics of the image in-
tensity

Under the assumption that the speckle random process
n at the input of the linear SAR system is white, the mean
of the detected intensity can be derived from (1):

E(I(t)) = E(|r(t)|2) ∗ |q(t)|2 , (4)

where |r(t)|2 = S(t). This means that the average trans-
fer function of an optical system for a coherently illumi-
nated diffuse object is the incoherent transfer function of
the optical system and not the coherent transfer function,
as shown in [5], [8]. For a wide stationary scene reflectiv-
ity r, the following expression is obtained for the observed
intensity autocorrelation:

RI(τ) =

∫ +∞

−∞
R|r|2 (y − x+ τ)|q(x)|2|q(y)|2dxdy

+

∫ +∞

−∞
R|r|2 (y − x)q(x)q∗(x− τ)q∗(y)q(y − τ)dxdy .(5)

The first term of the equation (5) can be written in the
form RSq(τ), where Sq = |r|2 ∗ |q|2. This term, which
corresponds to the scene signal autocorrelation is the au-
tocorrelation of the incoherent image of the original image
(i.e. the scene viewed through an optical system whose
impulse response is the incoherent transfer function |q|2).
The second term of (5) is the space speckle autocorrelation

function, which is a measure of the average speckle size [5].

For nonstationary scenes, the space averaged autocor-
relations should be involved in order to transform a non-
stationary correlation function to a stationary correlation
measurement provided by the space averaged entity [7].
This supposes that the averaging leads to finite limit (i.e.
the space averaged autocorrelation function exists). Under
a such condition, the space averaged intensity autocorrela-
tion R̄I(τ) can be derived, as done in [5], [6]. The expres-
sion of R̄I(τ) obtained is equivalent to (5) with R|r|2(u) be-
ing replaced by the space averaged autocorrelation R̄|r|2(u),
as shown in [6].

B. Multiplicative speckle model with correlated speckle
noise and uncorrelated scene signal

The Saleh model equation is given by [9]:

Im(t) = |r(t)|2Rq(0) · u(t) , (6)

where the normalized multiplicative speckle noise u(t):
u(t) = [|n(t)∗ q(t)|2]/Rq(0)] is a correlated process distributed
along a unit mean Gamma. Under the assumption that
the speckle process n at the input of the system is white, it
can be shown that the intensity mean E(Im(t)) is identical
to equation (4) provided that E(|r(t)|2) is slowly varying
within the width of the system impulse response q(x). Such
a condition is not needed if the model equation above is
replaced by the following one adopted in [12]:

Im(t) = [E(|r(t)|2) ∗ |q(t)|2] · [|r(t)|2/E(|r(t)|2)] · |n(t) ∗ q(t)|2 . (7)

The intensity autocorrelation function is derived. The
expression obtained is identical to the exact one of equa-
tion (5), provided that the scene reflectivity autocorrelation
function R|r|2(τ) is slowly varying compared to the system
impulse response q. For nonstationary scene signals, the
multiplicative model is valid provided that the space av-
eraged autocorrelation is slowly varying compared to the
system impulse response q, as shown in [6].

C. Multiplicative speckle model with correlated speckle
noise and correlated scene signal

The model that was adopted in [2] might be expressed
in the following explicit form:

Im(t) =
[
|r(t)|2 ∗ |q(t)|2

]
· u(t) , (8)

where u(t) is the normalized correlated noise distributed
along a unit mean Gamma. The intensity autocorrelation
might be derived under the condition that n is a white
circular Gaussian process:

RIm(τ) = RSq(τ)[1 + |Rq(τ)|2/|Rq(0)|2] . (9)

Compared to the previous model of equations (6, 7), the
use of the incoherent convolution of the scene in the first
term in equation (8) leads to exact expressions for both the
intensity mean in equation (1), and scene autocorrelation
(first term in equation (5)). However, the second term in
equation (9) remains different from the one in equation (5).
The two expressions are identical provided that the reflec-
tivity autocorrelation function is slowly varying within the



impulse system width q(x). The same expression might be
extended to nonstationary signals using the space averaged
entities. The multiplicative model remains valid provided
that the reflectivity space autocorrelation function varies
slowly within the impulse system width.

D. Frost model with white speckle noise

The Frost model introduced in [1] might be better
adapted to SAR systems using the following expression:

Im(t) =
[
|r(t)|2 · u(t)

]
∗ |q(t)|2, (10)

where u(t) = |n(t)|2/E(|n(t)|2) is a unit mean Gamma
distributed white process. It can be shown that the inten-
sity mean E(Im(t)) is identical to the exact expression (4).
The intensity autocorrelation function is derived. The first
term of the autocorrelation is identical to that of the exact
scene autocorrelation RSq of (5). Under the condition that
the reflectivity autocorrelation function (R|r|2(τ) is slowly
varying within the impulse system width q(x), the following
expression is obtained for the intensity autocorrelation, as
a function of σ0 = R|r|2 (0): RIm(τ) = (σ0)2[|Rq(0)|2 +R|q|2 (τ)].
This equation is identical to equation (5) if the system im-
pulse function satisfies, in addition to the conditions above,
the following relationship:

|Rq(τ)|2 = R|q|2 (τ) (11)

Such a restrictive condition might be satisfied under cer-
tain circumstances. Using the SAR Gaussian model of [8],
it can be shown that this relation is satisfied (modulo a
multiplicative constant) for a perfectly matched system.
The results above concerning the intensity autocorrelation
function can be extended to the space averaged autocorre-
lation for nonstationary scene signals.

E. Multiplicative speckle model with uncorrelated speckle
noise and uncorrelated scene signal

Most of the existing filters ignore the system and scene
correlation. Under the assumption that the terrain re-
flectivity r(t) is slowly varying within the resolution cell
(i.e. locally stationary within the resolution cell), the most
commonly used multiplicative model is given by [3], [2]:
I(t) = |r(t)|2 ∗ u′(t), where u′(t) = |n(t)|2/E(|n(t)|2) is a
white unit mean Gamma distributed process. Under the
condition that the scene signal is slowly varying within the
system pulse width, the statistics of the model above are
only identical to the exact solutions of equations (4) and
(5) provided that the image pixels are uncorrelated. This
might be achieved by under-sampling the image with the
risk of information corruption for not respecting the Shan-
non sampling theorem [2].

V. Models constraint upon scene signal

variations

A. Multiplicative Stationary Speckle Model (MSSM) Fil-
ters

Speckle and scene signals are assumed to be stationary,
as discussed in Section III for the MSSM filters. All the

multiplicative speckle noise models yield approximate ex-
pressions for the observed intensity whose probability den-
sity function (pdf) first and second order expressions are
similar to the exact ones obtained from the multiplica-
tive complex speckle model provided that scene reflectivity
signal and its autocorrelation function are slowly varying
within the impulse system width q(x). The model in equa-
tion (8), which involves the incoherent convolution of the
scene, looks to be the least restrictive one. It leads to exact
expressions of the intensity mean, and exact scene autocor-
relation without imposing any condition on the scene sig-
nal (with the exception of signal wide sense stationarity).
The same remark might be extended to the Frost model
(equation(10)) provided that the SAR system satisfies the
conditions given by equation (11).

B. Multiplicative NonStationary Speckle Model (MNSSM)
Filters

The product model assumes that the multiplicative
speckle noise model is valid at each pixel. This condition
is satisfied provided that the scene signal is slowly varying
within the system impulse width. Besides, the MNSSM
model assumes that speckle is nonstationary in mean, and
that the speckle mean process S(t) is stationary (and er-
godic) in mean. According to Section IV, the multiplica-
tive speckle noise model remains valid provided that the
averaged scene autocorrellation function (i.e. the averaged
nonstationary speckle autocorrelation) varies slowly within
the system impulse width. This should limit the degree of
variations of the scene signal within the processing window
used for speckle filtering.
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