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Abstract

This study is concerned with the extraction of directional ocean wave spectra from synthetic

aperture radar (SAR) image spectra. The statistical estimation problem underlying the wave-

SAR inverse problem is examined in detail in order to properly quantify the wave information

content of SAR. As a concrete focus, a data set is considered comprising 6 RADARSAT SAR

images co-located with a directional wave buoy off the east coast of Canada. These SAR data

are transformed into inter-look image cross-spectra based on two looks at the same ocean scene

separated by 0.4 seconds. The general problem of wave extraction from SAR is cast in terms of a

statistical estimation problem which includes the observed SAR spectra, the wave-SAR transform

and prior spectral wave information. The central role of the weighting functions (inverse of the error

covariances) is demonstrated, as well as the consequence of approximate (based on the quasi-linear

wave-SAR transform) versus exact linearizations on the convergence properties of the algorithm.

Error estimates are derived and discussed. This statistical framework is applied to the extraction

of spectral wave information from observed RADARSAT SAR image cross-spectra. A modified

wave-SAR transform is used to account for case-specific geophysical and imaging effects. Analysis

of the residual error of simulated and observed SAR spectra motivates a canonical form for the SAR

observation error covariance. Wave estimates are then extracted from the SAR spectra, including

wavenumber dependent error estimates and explicit identification of spectral null spaces where the

SAR contains no wave information. Band-limited SAR wave information is also combined with

prior (buoy) spectral wave estimates through parameterization of the wave spectral shape and use

of regularization.
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1 Introduction

The potential for extracting ocean surface gravity wave information from synthetic aperture radar

(SAR) images of the ocean surface is widely recognized. Satellite SAR missions, both current

(e.g. ERS-2 and RADARSAT) and planned (e.g. ENVISAT, RADARSAT-2), have imaging modes

dedicated to providing information on directional ocean wave spectra. Satellite-borne SAR has

the potential to add significantly to the existing in situ global wave observing system, presently

comprised of a sparse and irregularly distributed array of wave buoys. SAR derived wave spectra

are expected to be useful for validation of, and assimilation into, operational wave models [6]. While

it is evident that SAR holds much promise for observing the ocean wave spectrum, its full potential

has yet to be realized.

The basic physical mechanisms governing SAR imaging of ocean waves are reasonably well

understood [11]. A significant step forward was realized with the derivation of a closed form,

nonlinear transform relating the ocean wave spectrum to the SAR image spectrum ([10], see also

[14]). This wave-SAR transform has since been extended to cover the more general case of the SAR

image cross-spectrum [8], [13]. However, a number of issues arise when using satellite SAR in a wave

observing system. One fundamental difficulty is its inability to record wave induced modulations of

the radar cross-section at high along-track (azimuth) wavenumbers; satellite-based SAR typically

truncates signals associated with waves having less than 100m wavelengths in azimuth (e.g. [1]).

Non-wave geophysical signals such as wind further modify this azimuth cutoff [26], [7]. This latter

feature, together with speckle noise (e.g. [9]), limits the ability of the basic wave-SAR transform

to account for the full variability found in observed SAR spectra. This has lead to wave-SAR

transforms with case-specific modifications which absorb geophysical effects into the underlying

physical parameterizations of the ensemble scattering properties of the ocean surface [15], [20].

Wave estimates from observed SAR spectra rely on inversion of the wave-SAR transform. These

SAR derived wave estimates have received much attention in the context of operational wave mod-

elling and data assimilation [6], [12]. A key feature of SAR is its concentration of wave information

in specific wavenumber bands which are dependent on orbit characteristics, viewing geometry and

prevailing sea surface conditions. Data assimilation methods require the ability to systematically

compare wave spectral estimates from a model with those derived from SAR on a wavenumber de-

pendent basis. At a fundamental level we must then consider the statistical problem of combining

the information contained in (i) the observed SAR spectrum, (ii) the wave-SAR transform, and

(iii) any prior estimates of the wave field such as those produced by a model. The goal is a posterior

estimate of the directional ocean wave spectrum which maximizes the information content, and has

quantitative estimates of uncertainty.
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The purpose of this work is to extract spectral wave information from SAR. Towards this end,

we develop a statistical estimation framework for wave-SAR inversion which allows for the wave

information content of SAR to be quantified on a wavenumber dependent basis. As a particular

focus, we examine a set of RADARSAT SAR inter-look image cross-spectra co-located with a wave

buoy off the east coast of Canada. These cross-spectra are based on two images of the same ocean

scene separated by a fraction of a second and offer advantages over SAR auto-spectra in terms

of speckle noise reduction and the ability to resolve wave propagation direction [8]. We compute

and analyse the SAR spectra in terms of their statistical properties and wave information content.

A general statistical framework is developed for quantitatively examining the wave-SAR inverse

problem. This approach encompasses other wave-SAR inversion studies (e.g. [8], [10], [15], [12]).

Importantly, it provides for a means to compare and assess the consequences of the various (and

often conflicting) assumptions made in these studies, consequences which are frequently obscured

by the analytic complexity of the wave-SAR transform. Practical aspects of carrying out the

statistically based inverse problem are undertaken based on the observed SAR image cross-spectra,

the buoy wave spectra, and a wave-SAR transform modified to account for case-specific geophysical

effects.

This paper is organized as follows. Section 2 presents SAR image cross-spectra from RADARSAT,

along with co-located wave buoy spectra. In Section 3, the wave-SAR transform is briefly reviewed,

and its inversion is examined in detail. Section 4 provides an application of the inversion proce-

dure. Section 5 contains a summary and conclusions. Appendix A provides details of the wave-SAR

transform and Appendix B introduces the (random-β) regression methodology central to our de-

velopment of wave-SAR inversion.

2 Observations

In this section, we examine some RADARSAT SAR image spectra and co-located in situ buoy data

collected during the 1996 March/April Ship Detection Experiment (MASDE) [24]. Wind and wave

data were collected from two buoys (a MINIMET meteorological buoy and Datawell directional

wave rider buoy) moored near 44.5◦N, 63◦W. Directional wave spectra were processed using a

maximium likelihood method [18]. There were a total of 9 available SAR and buoy co-locations,

but 3 of the SAR images contained little discernable wave information. This appeared to be due

to low total wave energy combined with a strong azimuth component to the wave propagation

direction. We ignore these cases hereafter. Details of the remaining 6 cases are summarized in

Table 1.

The RADARSAT SAR data were processed into inter-look image cross spectra according to the
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following procedure:

1. Separation into 5 individual looks separated by 293Hz.

2. For each of the pairs (1,3), (2,4), and (3,5):

(a) extract 1024× 1024 image region and detrend
(b) calculate modifed periodgrams for 512× 512 subregions using a Kaiser window
(c) average the modified periodograms

3. Calculate raw cross-spectra by averaging the results for each of the look pairs and smooth

through convolution with a Gaussian smoothing kernel.

The end result of this procedure is a set of SAR image cross-spectra which are based on a time

separation of τ ∼ 0.4s (see [28]).

Comparison of the co-located wave and SAR spectra allows us to examine the wave modulation

of the spectral properties of the normalized radar cross-section of the ocean surface. The directional

ocean wave spectrum for the 6 cases are shown in Figure 1. These spectra are smooth as a

result of the spectral processing of the buoy heave, pitch and roll data. The low wavenumber

swell is recorded in all cases and case 1 shows a locally generated wind sea propagating in a near

range direction. In our treatment of the SAR data, we emphasize its fundamental nature and

make no attempt, at this stage, to correct for multiplicative speckle noise, or for the falloff of

spectral density with increasing wavenumber [9], [17]. To supress large-scale, non-wave geophysical

signals, such as marine boundary layer wind patterns [25], we have chosen not consider wavenumber

regions corresponding to wavelengths > 300m (note that ocean surface gravity wave energy may

be present at greater wavelengths, however our RADARSAT SAR spectra showed non-wave signals

at these higher wavelengths). Finally, note that buoy and image spectra differ in that the former

is derived from a time-averaged point measurement while the latter represents an instantaneous

spatial snapshot.

The real part of the SAR cross-spectra (the coincident spectra) are shown in Figure 2. There is

evidence of SAR imaging of the dominant 100-150m swell, although azimuth wavenumbers |ka| >
0.05m−1 (i.e. <125m wavelengths) are truncated. Note that case 5 images a near-azimuth travelling

wave, and in case 1 the locally generated wind sea is apparent. Peak energy of the SAR and buoy

spectra are not always co-located (even after taking account of the gain characteristics of the

SAR). While a dramatic reduction in speckle noise over the auto-spectra (not shown) is evident,

some broad band noise still persists. In theory, speckle noise should be eliminated if it is statistically

independent between looks [8].

5



To further examine the effect of the multi-look processing on the spectral energy and broad

band noise, we re-processed case 5 into 5 looks, each separated by τ ∼ 0.15s. (Case 5 records a near
azimuth travelling wave allowing for assessment of the low wavenumber non-wave signals in the

range integrated spectrum). Figure 3 shows the range-integrated coincident spectra for different

time separations. Reduction of the total energy is evident when comparing the auto-spectra (τ = 0)

with the cross-spectra (τ > 0). With increasing time separation the total energy declines to a

stable level after τ ∼ 0.3s seconds. This stabilization indicates that looks no longer overlap (in the
frequency domain) and suggests a minimal value for τ to ensure statistical independence between

looks. The remaining noise processes may be residual speckle, or may have a geophysical origin.

Information on the wave propagation direction resides in the anti-symmetry of the imaginary

part of the SAR image cross-spectra (the quadrature spectra), shown in Figure 4. The overall

magnitude of the quadrature spectra are generally less than the coincident spectra and are more

variable. For cases 2, 4, and 6 the anti-symmetry is readily evident in the spectral regions con-

taining wave information, but for the remaining cases it is not so clear. Coherency spectra were

also calculated after correcting the auto-spectra for speckle and spectral falloff with increasing

wavenumber [17]. These coherency spectra are used to separate the (coherent) wave signal from

(incoherent) noise processes. Figure 5 shows the phase spectra for regions with coherency greater

than 0.6 (this threshold coherency represents a type I error probability of 0.01 in a test for zero

coherency [22]). In cases 1, 2, 4 and 6 the negative phase regions match the wave propagation

direction. The direction of wave propagation in cases 3 and 5 are less clear. For the various cases,

values for the mean phase in these wavenumber regions are quite different (for a 100m deep water

wave we expect a phase of ∼ 0.3 radians over the 0.4s time separation between looks). This may
be explained by sampling variability coupled with the weak phase signature implied by the short

time separation of the 2-look SAR imagery (see Section 3.1).

3 Theory

3.1 The Forward Map

The theoretical basis for examining the relation between the ocean wave spectrum and the SAR

image spectrum is given by the closed form, integral transform first proposed by [10]. This has

since been extended to the more general case of the SAR image cross-spectrum [8]. The wave-SAR

transform may be represented as

Snl(~k) = h
n
W (~k); cj

o
. (1)
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Here, W (~k) is the directional ocean wave spectrum. The vector wavenumber ~k = (kr, ka) is in

satellite coordinates with kr and ka denoting the cross-track (range) and along-track (azimuth)

wavenumbers, respectively. The cj represent parameters of the wave-SAR map, some of which may

be readily specified based on satellite properties and others which depend on prevailing environ-

mental conditions (e.g. wind) which modify the scattering properties of the air-sea interface. The

nonlinear operator h{·} represents the wave-SAR transform and its functional representation is

given in Appendix A. Snl(~k) is the SAR image cross-spectrum predicted using this nonlinear map.

To facililate implementation the wave-SAR transform (1) is often cast in terms of a series

expansion (e.g. [10]),

Snl(~k) = exp
n
−π (ka/Kc)2

o ∞X
i=1

S̃i(~k) (2)

where Kc is an (equivalent rectangular width) azimuth cutoff wavenumber and depends on W (~k)

through the velocity bunching covariance function ρAA(~x) such that Kc =
p
π/ρAA(0) (see Ap-

pendix A) . The S̃i(~k) denote terms in the expansion with subscripts referring to the order of

nonlinearity. The importance of higher order terms in (2) scales with the standard deviation of

the azimuth shift due to velocity bunching and are expected to play a role for satellite platforms

in which R/V exceeds 100s [14]. [15] demonstrates that the effect of nonlinearity on the SAR

spectrum is manifest as spectral spreading of energy and the generation of higher order harmonics.

A useful simplification of the wave-SAR transform is the quasi-linear approximation. This is

obtained by considering only the leading order term S̃1(~k) in (2), i.e. that part of the transform

that is a linear in W (~k). For the cross-spectral case this takes the form

Sql(~k) = exp
n
−π (ka/Kc)2

o³
Ψ(~k)W (~k)eiωτ +Ψ(−~k)W (−~k)e−iωτ

´
(3)

where Ψ(~k) is defined in Appendix A and depends on the tilt, hydrodynamic and velocity bunching

modulation of the radar cross section by the ocean gravity wave field. The term eiωτ represents

phase shifting of the wave spectral components (wave translation) over the separation time τ

between looks. The deep water dispersion relation for surface gravity waves gives ω = (g|~k|)1/2.
The quasi-linear limit represents a weakly nonlinear approximation to the full nonlinear transform.

While it is not strictly valid for RADARSAT (R/V ∼ 120s), there is some suggestion that its

utility may be extended by straightforward modifications to the basic wave-SAR map (e.g. [15],

[26]). In any case, we adopt the philosophy that the analytically and numerically much simpler

quasi-linear transform is a useful approximation, and in Section 3.2 demonstrate its central role as

an intermediary in the inversion of the fully nonlinear transform.

Figure 6 shows the normalized quasi-linear map for an input white wave spectrum (W (~k) = 1)

with τ = 0. This approximates the transfer function between the wave and SAR auto-spectra or,
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alternatively, the gain window through which the SAR sees the ocean wave spectrum. Its main

features are the azimuth cutoff for |ka| > 0.05m−1, and near zero regions near the origin. The

modification for the cross-spectral case (τ > 0) may also be readily ascertained from Figure 6. For

our RADARSAT cases, τ ∼ 0.4s and we consider the wavenumber domain |ka|, |kr| < 0.15m−1.

According to (3), the coincident spectrum is just the auto-spectrum multiplied by cos(ωτ). This

corresponds to Figure 6 multipled by a factor varying from 1 at the origin, to 0.8 near the edges.

Similarly, the quadrature spectrum has a sin(±ωτ) in (3); the multiplication factor is zero at the
origin and rises to less than 1/2 the value of the auto-spectrum at the edges. Thus, the coincident

spectrum is larger in magnitude and slightly biased towards low wavenumber information, while the

quadrature spectrum is smaller in magnitude and biased towards higher wavenumber information.

This fact, coupled with sampling variability, helps explain the observed RADARSAT cross-spectra

of Figures 2 and 4. The nonlinear transform acts to couple the real and imaginary parts.

Practical (numerical) implementation of the wave-SAR transform is carried out in a discrete

vector space. The discrete wave-SAR transform may be represented as

snl = h{w}, (4)

where w is a vector containing the wave spectrum W (~k) evaluated over a lattice of range and

azimuth wavenumbers and vectorized. The nonlinear vector operator h{·} denotes the wave-SAR
transform, and snl is the predicted SAR (auto- or cross-) spectrum defined over the same wavenum-

ber grid. We assume, without loss of generality, that all quantities in (4) are real valued. (Real and

imaginary parts of the complex valued SAR cross-spectrum can be treated as separate elements in

snl. Note also that the regression based development of Section 3.2 may be cast in equivalent terms

for either the real or complex case [3]).

The wave-SAR transform is often modified to take account non-wave processes which influence

the observed spectrum through changes in the scattering properties of the air-sea interface. For

instance, [26] points out the role of wind effects on the scene coherence time and suggests fitting for

the azimuth cutoff Kc on a case dependent basis. [20] absorbs wind effects into the real aperture

radar modulation transfer functions which underlie the wave-SAR transform. [15] derives a modified

wave-SAR transform to account for point target spreading due to finite sensor resolution. Such

case dependent modifications to the wave-SAR transform are examined in Section 4.

3.2 Inversion of the Forward Map

The general inverse problem associated with estimating waves from SAR has two main elements: (i)

a parameter estimation problem associated with determining unknown or poorly specified quantities
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such as Kc, and (ii) a state estimation problem associated with the recovery of the wave spectrum.

Estimation of these unknowns relies on the observed SAR spectra and, where available, prior

knowledge on the wave spectrum (e.g. from a wave model). We consider separately the parameter

and state estimation problems. Parameter estimation involves compensating for case-specific effects

in the wave-SAR transform and it is treated in Section 4. State estimation deals directly with the

wave information content of the SAR and is examined in detail below.

The state estimation problem is governed by the following system of regression equations,

s = h{w}+ eo, wp = w + ep. (5)

The first equation describes the measurement process with s denoting the observed SAR (auto- or

cross-) spectrum and w the underlying true value of the wave spectrum. The zero-mean measure-

ment error eo has covariance Σo. The second equation accounts for the prior wave estimate wp

and its zero-mean error is given as ep with covariance Σp. (The assumption of unbiased error could

be relaxed). Note that we make use of a wide sense (WS) assumption about the error processes

wherein no distributional assumptions are made excepting the specification of the first and second

moments.

Recovering a minimum variance estimate1 for the underlying true wave spectrum from (5) leads

to the minimization of a cost function,

J = [s− h{w}]T Σ−1o [s− h{w}] + [wp −w]T Σ−1p [wp −w]
= ks− h{w}k2Σ−1o + kwp −wk2Σ−1p (6)

with respect to w. The first term in J is the weighted squared observation error, eToΣ
−1
o eo, and

represents both non-wave noise processes in the SAR spectrum as well as model errors in the

wave-SAR transform. The second term is the weighted squared error of the prior wave estimate,

eTpΣ
−1
p ep, and represents deviations of this prior from the underlying true wave spectrum.

The general form of the cost function (6) is applicable to nearly all wave-SAR studies. Additional

terms may be included in J to control properties of integral features such as the significant wave

height or mean propagation direction [12]. This corresponds to adding further prior information

and can be absorbed into this general framework. It is notable that the weighting functions (the

inverse error covariances Σ−1o ,Σ−1p ) used in the cost function often vary a great deal between studies

(contrast [15], [8], and [12]). The consequence of these differences in the quantity to be minimized is

1Maximum likelihood estimates would require considering the probability density functions of eo and ep. However

it is notable that under a wide variety of distributional assumptions, practical implementation of nonlinear regression

leads to use of generalized (or iteratively re-weighted) least-squares estimators, e.g. [3], [23].
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an improper accounting for the relative role of SAR derived and prior wave information for different

regions of the wavenumber domain. This leads to practical difficulties in comparing methods and

their results. We demonstrate below that the final estimates of the state and its error variance, as

well as the convergence of the minimization procedure, are strongly influenced by choice of Σo and

Σp.

In nonlinear wave-SAR inversion, minimization of the cost function is generally carried out

iteratively based on an incremental updating of a first guess wave spectrum (e.g. [10]). Denote wn

as the estimate of the wave spectrum at iteration n of the minimization procedure. The updated

wave spectrum takes the form

wn+1 = wn + δw (7)

where δw denotes the incremental change to the current estimate of the wave spectrum. Substi-

tuting this in the cost function (6) yields, for the nth iteration,

Jn = ks− h{wn + δw}k2Σ−1o + kwp − (wn + δw)k2Σ−1p . (8)

Taking the leading order term of a Taylor expansion of h{wn + δw} about wn allows (8) to be
written

Jn = kδs−Hδw)k2Σ−1o + kδwp − δwk2Σ−1p . (9)

where the increments are defined as: δs = s − h(wn), δwp = wp − wn, and δw = w −wn. The
wave-SAR transform linearized about the current state is H = (∂h/∂w)w=wn . Each iteration then

requires the minimization of a quadratic cost function; the full solution is a sequence of linear

estimation problems. Statistically, the above represents an extension of the Gauss-Newton method

of nonlinear regression (e.g. [23]) to the random-β case (Appendix B).

Within each iteration of the multi-step minimization of the cost function (6), a linear regression

problem must be solved. This yields the incremental change in the wave spectrum at iteration n,

i.e.

ˆδw = Σw
³
HTΣ−1o δs+Σ−1p δwp

´
(10)

with

Σw =
³
Σ−1p +HTΣ−1o H

´−1
. (11)

Here, Σw provides an asymptotic estimate for the error covariance of the predicted wave spectrum

(Appendix B).

The general development presented here makes clear that three quantities play a key role in

wave-SAR inversion: Σp, Σo, andH. As remarked upon previously, Σo and Σp influence the choice

of the quantity to be minimized, the convergence path taken, and the validity of the final wave
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estimates and associated errors. Consider now the specification of the quantity H, the linearization

of the wave-SAR map about the current wave state. [8] offers an analytic gradient expression ∂J/∂w

for a simplified version of (6) in which an exact linearization of the wave-SAR map is implicit.

However, a common strategy, motivated by the complexity of the nonlinear transform and its

differentiation, is to approximate ∂h/∂w by an iteration invariant H derived from the quasi-linear

transform (e.g. [15], [12]). Since J in (6) remains defined in terms of the full nonlinear transform

h{w}, the consequence of using an approximate H rests only in the convergence properties of the

algorithm. This is briefly illustrated below.

To examine the convergence of the minimization procedure, suppose that we have an estimate

wn and seek an update of the form (7) based on the increment (10). If wn is sufficiently close

to its true value wt, we may carry out a Taylor expansion of h{wn} about wt. This leads to the
following convergence formula, valid in the vicinity of the true minimum,

[wn+1 −wt] = A [wn −wt] (12)

where

A = I−Σw
Ã
HTΣ−1o

∂h

∂w

¯̄̄̄
w=wt

+Σ−1p

!
.

with I denoting the identity matrix. If the eigenvalues of ATA are less than one in absolute value,

then convergence will be achieved as n→∞. Note that ifH = ∂h/∂w|w=wt convergence is achieved
immediately. Otherwise, it is the ’closeness’ of an approximate H to ∂h/∂w|w=wt (in terms of the
eigenvalues of ATA) that will dictate the convergence properties. Numerous wave-SAR studies

suggest (but do not prove) that the quasi-linear transform provides a reasonable approximation

to an exact linearization and that convergence can be achieved under a variety of circumstances

(e.g. [15], [12]). However, the exact gradient of [8] does have attractive theoretical properties and

deserves further examination.

3.3 Limiting Cases

Case 1: SAR only

Consider the situation where wave estimation must rely on SAR alone. Observability is the main

issue in the sense that there are wavenumber regions where SAR provides no wave information.

These null spaces are evident in Figure 6. For a linearized wave-SAR map, the regression s =

Hw + eo with solution ŵ = (HTΣ−1o H)−1HTΣ−1o s cannot be achieved directly. Singular value

decomposition offers one solution for such rank-deficient regression problems (e.g. [2]). However, it

relies on an implied prior based on a minimum norm for the solution vector ŵ; this effectively sets
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wave estimates in spectral null spaces to zero. The implication for the nonlinear inversion is that

portions of a first guess wave which project into the null space will not be changed in subsequent

iterations (the algorithm may converge, but the inverse problem effectively remains ill-posed). The

first guess wave acts as a prior estimate for that portion of the wave spectrum not observable by

the SAR.

Case 2: Blending of SAR and Prior Wave Information

Consider the linearized wave-SAR transform as above. If H is a diagonal matrix, SAR derived

wave estimates for the ith wavenumber bin are determined as wsar = H
−1
ii si (where H

−1
ii exists).

Furthermore, assume that wp is the ith element of wp, and that Σo ∼ WS(0,σ2oI) and Σp ∼
WS(0, σ2pI). For each admissible wavenumber bin i, the wave estimate ŵ takes the form,

ŵ =

µ
1

1+ γ

¶
wsar +

µ
1

1+ γ−1

¶
wp.

where γ = H−2ii σ
2
o/σ

2
p. The final wave estimate is simply a weighted sum of the SAR-derived and

the prior wave estimates. The weighting is governed by γ which may be interpreted as the ratio

of (i) the error variance of SAR observations scaled by the inverse transform, to (ii) the error

variance of the prior wave estimate. If γ À 1, such as might be expected in wavenumber regions

corresponding to null spaces of the transform, the estimate reverts to wp. If γ ¿ 1, the estimate

becomes wsar.

4 Application

In this section, we examine some practical aspects of the wave-SAR inverse problem using the

observed SAR image cross-spectra. This is carried out in the context of the statistical estimation

procedure of the previous section and makes use of a modified quasi-linear wave-SAR transform

which includes case-specific non-wave geophysical and imaging effects. (Note that use of the non-

linear transform did not appear justified on the basis of its ability to explain additional variability

found in the observed SAR spectra).

The observed RADARSAT SAR image cross-spectra contain features not accounted for by the

basic wave-SAR transform of Appendix A. These include broadband noise due to residual speckle,

spectral falloff at higher wavenumbers due to finite sensor resolution, and geophysical (e.g. wind)

modifications to the azimuth cutoff. While some progress has been made in understanding these

processes, in practice they tend to be addressed either through standard pre-processing procedures

[17], or through fitting exercises based on observed SAR auto-spectra (e.g. [26], [15]). As an

alternative procedure, we consider SAR image cross-spectra and a parameter estimation procedure
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which takes account of prior wave information in order to modify the basic wave-SAR transform.

Below, we consider the coincident spectra in detail and use the quadrature spectra only for its

phase information.

In order to modify the wave-SAR map for case-specific effects, we seek to minimize a discrete

version of the cost function

Js =

Z ¯̄̄
Sobs(~k)− Smod(~k)

¯̄̄2
d~k

where Sobs and Smod denote the observed and modelled SAR coincident spectra, respectively. We

assume the following form for Smod,

Smod(~k) = Γmod(~k)×
³
cn + <{Sql(~k)}

´
. (13)

Here, Γmod(~k) = exp
©−(crk2r + cak2a)ª with cr and ca representing the falloff in power in the

azimuth and range directions. This falloff is due to point target spreading and, in the case of ca,

wind effects on the azimuth cutoff. cn represents a speckle based noise floor and is strictly valid

only for i.i.d. speckle [9]. The real part of the wave-SAR map <{Sql(~k)} is based on (3) usingW (~k)
from the observed buoy wave spectra. The radar modulation transfer functions in Sql(~k) follow

[17] with the parameters of Table 1. The unknown parameters cn, ca, and cr were estimated using

a simplex method for nonlinear minimization [21]. Results are given in Table 2. Note that while

the predicted azimuth cutoff factor ρAA(0) (derived from the basic wave-SAR transform) is quite

variable, allowing for inclusion of a case-specific ca has rendered the cutoff wavenumber Kc more

stable and realistic.

Simulated SAR coincident spectra were calculated using the modified wave-SAR transform and

the estimated values of cn, ca, and cr from Table 2 (see Figure 7). The simulated SAR spectra

compare reasonably well with the observed spectra of Figure 2 (correlations are given in Table 2).

Cases 1-3 show good correspondence in terms of both the overall magnitudes, peak locations and

level of the broadband noise. In cases 4 and 5 the observed and modelled SAR spectra compare

less well. This results from peaks in the observed wave and SAR spectra being offset across the

zero range and zero azimuth wavenumber axes, respectively (compare Figures 1 and 2). Case 6

shows a situation where the modified transform predicts range splitting where none is found.

The observation error structure was next determined based on analysis of the residuals e(~k) =

Sobs(~k) − Smod(~k) between the observed and predicted SAR coincident spectra. The postulated

error variance structure follows (13) and takes the form,q
var{e(~k)} = Γerr(~k)×

³
σn + σmφ(~k)

´
. (14)

The Gaussian function Γerr(~k) captures the falloff in the magnitude of the error with increasing

wavenumber, σn is a wavenumber independent noise term, and the model error term consists of
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scaling factor σm multipled by the structure function φ(~k). For simplicity, φ(~k) is taken to be the

quasi-linear wave-SAR map with an input white wave spectrum (see Figure 6) and modified to use

the cutoff wavenumber Kc from Table 2. Residual analysis suggests a case-independent estimate for

Γerr (with energy falloff factors cr = 100 and ca = 200) and for the noise level (σn = 1). The case

dependent σm had the following values: 1.5, 2.1, 2.3, 10.5, 1.9, and 9.8 for cases 1-6 respectively.

The high values in cases 4 and 6 resulted from mismatches in the spectral distribution of energy in

the observed SAR and buoy wave spectra. Error correlations are assumed isotropic in wavenumber

and based on the smoothing kernel applied to the raw SAR spectra. Figure 8 shows the error

variance for case 1. The above error analysis allows us to specify Σo.

As a pre-processing step in wave-SAR inversion, we separate the wave signal from non-wave

processes to avoid any broad-band noise present in the observed SAR being attributed to ocean

wave energy. First, regions of the coincident spectra were identified corresponding to coherency

greater than 0.6 (see Section 2). Second, the corresponding mean phase values in each of these

coherent regions are used to identify the portion of the SAR spectrum corresponding to the wave

propagation direction (see Figure 5). Finally, a noise floor is subtracted from these spectral regions

whose magnitude is based on the results given in Table 2. This procedure identifies the portion of

the observed SAR spectrum with useful wave information.

Figure 9 shows SAR-derived wave estimates based on inversion of the wave-SAR transform.

These are based on the coherency and phase filtered SAR spectrum, s, and the modified wave-SAR

transform, H, of (13) using the values of Table 2 but with cn = 0 (we have removed the noise

floor). Wave estimates are then determined as ŵ = (HTΣ−1o H)−1HTΣ−1o s. Null spaces where the

SAR has no information content are explicity identified as part of this inversion procedure. It is

clear that comparison of the SAR derived wave estimates with the buoy spectra would normally

take place in a very limited region of the wavenumber plane. Moreover, the information content

of these non-null regions must take account of the error variance of the SAR derived wave. Panel

(b) of Figure 8 shows this error variance for case 1. Note that in spectral regions adjacent to null

spaces the error variance tends to be large reflecting the sensitivity of wave estimates to the azimuth

cutoff. The overall energy content of the SAR derived and buoy wave spectra in non-null regions

show a reasonable match in all cases with the exception of cases 4 and 6.

Estimation of the complete directional wave spectrum must combine wave information from the

(band limited) SAR with the (broad band) buoy wave spectra, taking into account the wavenumber

dependence of their respective error covariances. Initial experiments with direct blending of the SAR

and buoy information using (10) lead to discontinuties near the azimuth cutoff (imagine combining

the wave spectra in Figures 1 and 9, also see Section 3.3). However, the error variance of the wave
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estimates (panel (c) of Figure 8) reveals the main properties associated with the blending of SAR

and prior wave estimates: null spaces are eliminated and the overall error variance is reduced.

As an alternative to direct blending, we also considered parameterization of the true wave

spectrum in terms of the buoy spectrum, but allow for its free rotation through an angle θ. In

terms of the cost function (6), or (9), we let w = rot{θ;wp} and we minimize J with respect to
θ. The two terms in the cost function are then interpreted as measuring the weighted squared

differences between: (i) the observed SAR spectrum and that predicted using the rotated buoy

wave spectrum, and (ii) the buoy wave spectrum and its rotated version. The second term acts

as a regularization term that biases the final estimator towards a state of minimal rotation. For

simplicity we assume Σp = σ2pI. Figure 10 shows the cost function J versus the rotation angle θ for

the 6 cases. Three treatments are applied: baseline (σ−2p = 0), weak regularization (σ−2p = 15−2),

and strong regularization (σ−2p = 10−2). The results indicate multiple minima in J for the baseline

situation. Strong regularization generally biases results heavily towards θ = 0. Weak regularization

allows for an unambiguous choice of the optimal θ required to bring the wave spectra of Figure 1

into agreement with the SAR based wave information. Generalized cross-validation would provide

a more formal means to choose the strength of the regularization term [4].

5 Summary and Conclusions

In this paper, we have examined the problem of extracting information on the directional ocean wave

spectrum from SAR imagery. A unique aspect of this study is its emphasis on statistical aspects of

the inverse problem, as well as the use of SAR image cross-spectra. Our framework for wave-SAR

inversion allows the wave information content of SAR to be quantified on a wavenumber dependent

basis. The RADARSAT SAR data used here were processed into two looks at the same ocean

scene separated by 0.4 seconds. Speckle noise was greatly reduced in comparison with the SAR

auto-spectra, though some broad band noise persisted. The coincident spectrum clearly showed

the wave modulation of the radar cross-section in limited, but identifiable, regions of wavenumber

space. The quadrature spectrum had much greater variability but the associated phase spectrum

was able to resolve propagation direction for most cases. However, the mean phase values in each

of the wave groups varied significantly about the value expected based on a deep water dispersion

relation.

The extraction of wave information from observed SAR spectra was examined from the perspec-

tive of a statistical estimation problem, specifically a random-β extension of nonlinear regression

(Appendix B). This general formulation highlights key issues and allowing an assessment of the

consequences of the differing assumptions made in past wave-SAR inversion work. It was shown
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that the wave-SAR inverse problem requires estimates for the error covariances associated with

(i) the observed SAR (including errors in the wave-SAR transform), and (ii) the prior wave es-

timates. Specification of these quantities varies widely between studies (contrast [12], [15], [8]).

Another common simplification of wave-SAR studies uses the the quasi-linear wave-SAR map as

an intermediary in the inversion of the fully nonlinear transform (e.g. [10], [12]). We showed how

this approximation to an exact linearization of the wave-SAR map about the current wave state is

linked to the convergence properties of the minimization algorithm. These are important issues to

consider for the use of SAR in a wave data assimilation system.

A simple wave-SAR inversion procedure was carried out for the purpose of examining practical

issues pertinent to wave extraction from SAR. Towards this end, we elected to focus on the real part

of the SAR image cross spectra, and use the quadrature spectra only for its phase information. A

modified wave-SAR transform was used that empirically accounted for broad-band residual speckle

[9], spectral falloff with increasing wavenumber [17], [15] and sea surface effects on the azimuth

cutoff [26]. These parameters were estimated using a fitting procedure designed to minimize the

squared difference between the observed and modelled SAR conincident spectra. A canonical form

for the observation error covariance was determined based on an analysis of the residuals between

the observed and predicted SAR coincident spectra. Wave extraction from the SAR spectra was

achieved by filtering for broad band noise and wave propagation direction using the coherency and

phase spectra. Inversion of the modifed wave-SAR transform emphasized the highly band limited

nature of the SAR wave information, and provided for explicit treatment of the null spaces and

estimates of the wavenumber dependent error variance.

There are a number of outstanding issues involved in SAR processing for optimal extraction

of ocean wave information (e.g. [27]). At the heart of the cross-spectral method is the multi-look

processing of the SAR data which produces independent looks at the same ocean scene. Ideally,

these looks should be temporally separated by a significant fraction of the period of the dominant

wave groups. However, time separations are constrained by the Doppler bandwidth of the SAR to

be a fraction of a second. The relation of the noise processes to the Doppler filtering and multi-

look processing remains unclear. We also illustrated how the coincident and quadrature spectra

provide complementary information on the wave spectra due to the (deep water) dispersion relation

embedded in the wave-SAR transform. However, the extent to which look separation and cross-

spectral SAR processing may be optimized for the extraction of waves remains an open question.

A key issue in extracting wave information from SAR is the appropriate use of the highly band

limited wave information. Null spaces must be explicitly identified and quantitative estimates of

the wavenumber dependent error covariance are necessary. We have argued that the observation
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error covariance matrix Σo plays an important role in wave-SAR inversion. This quantity includes

shortcomings in the wave-SAR transform, noise and non-wave signals, as well as errors of represen-

tativeness due to sampling variability [16]. Our prototype expression for the Σo reflected two main

features: (i) compensation for the non-uniform response of the SAR to changes in wave energy for

different spectral regions (see [15]), and (ii) uncertainties associated with noise and pre-processing.

Our treatment has taken account of the full wavenumber plane and emphasizes that the SAR pro-

vides as much information about both where the wave energy is located in wavenumber space, as

well as regions in which there is no wave energy. This treatment would be greatly enhanced by a

more extensive data set on which to base the error analysis.

The assimilation of SAR in operational wave models is under active development [6]. Like many

satellite data sources, SAR is nonlinearly related to the prognostic variables of interest (i.e. a non-

linear measurement operator). We have outlined the estimation problem associated with the use

of SAR in a wave data assimilation context. Blending of the band limited SAR derived waves with

model estimates requires additional assumptions in order to obtain physically realizable wavenum-

ber spectra (e.g. to account for spectral discontinuties near the azimuth cutoff). Unfortunately

generic spectral shapes for swell do not exist, unlike for a wind sea [19]. Parameterization of the

wave-spectral shape in terms of that predicted by a wave model has been suggested [12]. Our

simple experiments with such a parameterization, allowing for free rotation of the spectral shape,

indicated the complexity of such an optimization: multiple minima were found in the cost function

and additional regularization was required.

In conclusion, satellite-based SAR inter-look image cross spectra offers useful, though limited,

information on the directional ocean wave spectrum. A basic understanding of the inverse problem

associated with wave extraction from SAR is central to the continued use of SAR for understanding

ocean waves. We have examined a regression based framework to investigate the problem and

emphasize the importance of taking proper account of uncertainities in the observed SAR spectrum

and the wave-SAR transform. Continued investigation of SAR imagery co-located with in situ wave

information is needed (e.g. [20]). These studies should focus on rectifying uncertainties in the wave-

SAR transform, as well as providing for a robust statistical description of non-wave, geophysical

effects (such as wind) on the SAR spectrum and including parameterization of errors. Such studies

would clearly advance the practical use and theoretical understanding of SAR imaging of ocean

waves.
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Appendix A: The Wave-SAR Transform

The closed form, nonlinear integral transform relating the ocean wave spectrum to the SAR image

auto-spectrum is due to [10], and has been extended to the case of SAR image cross-spectra [8].

Following [8], the wave-SAR transform may be summarized as,

S(~k) =

Z
e−i~k·~xG(~x,~k)d~x (15)

where S(~k) represents the SAR image cross-spectrum based on two looks at same ocean scene sep-

arated by the time interval τ (the functional dependence on τ is implicit). The vector wavenumber

~k = (kx, ky) is in satellite coordinates and denotes the cross-track (range) and along-track (azimuth)

wavenumbers, respectively. The corresponding coordinates in the spatial (image) domain are given

by ~x = (x, y). A basic version of the (wave spectrum dependent) G-function in the integrand takes

the form

G(~x,~k) = exp
n
k2y

³
ρAA(~x)− ρAA(~0)

´o
×n

1+ ρII(~x) + iky (ρIA(~x)− ρAI(~x)) + k2y (µIA(~x)− µAI(~x))
o

(16)

where

µab(~x) = ρab(~x)− ρab(~0)

with a, b denoting one of I or A. The covariance functions ρab in the above take the form

ρab(~x) =
1

(2π)2

Z
ei
~k·~x ³Nab(~k)W (~k) +N∗ab(−~k)W (−~k)´ d~k

where ∗ denotes complex conjugation, W (~k) is the ocean wave spectrum, and

Nab(~k) =
1

2
Ta(~k)T

∗
b (
~k)eiωτ .

Here, the Ta,b are the radar modulation transfer functions which summarize the ensemble properties

of the interaction of the radar waves with the sea surface with a, b subscripting denoting either

the real aperture radar (RAR) tilt and hydrodynamic modulation TI , or the velocity bunching

modulation TA. [17] gives a very basic form for these relations,

TI = c i kx, TA =
R

V
ω

Ã
kx

|~k| sinα+ i cosα
!

(17)

where c is a constant, R denotes range (distance from the antenna to the target), V is the plat-

form velocity, and α is the incidence angle. More detailed and realistic RAR modulation transfer

functions are available and frequently used, e.g. [20].
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The wave-SAR transform (1) is generally evaluated based on series expansion of the exponential

term exp{k2yρAA(~x)} in (16), i.e.

S(~k) = exp
n
−k2yρAA(~0)

o
×
∞X
n=0

1

n!
× (18)

h
k2ny F {ρnAA(~x)(1+ ρII(~x))}+ k2n+1y F {ρnAA(~x)(ρIA(~x)− ρAI(~x))}+

k2n+2y F {ρnAA(~x)(µIA(~x)µAI(~x))}
i

where F denotes the Fourier transform operator. The integral in (15) is thus cast as a sequence of

readily evaluated Fourier transforms.

The analytic properties of the nonlinear wave-SAR transform for the case of SAR auto-spectra

(τ = 0) have been examined by [14]. In the cross-spectral case (τ > 0) a phase shift eiωτ is

introduced into the Nab function. This represents a simple wave translation model valid over the

O(1s) time separation between the looks. The frequency ω can be based on a dispersion relation,

which for deep water takes the form ω = (g|~k|)1/2.

The quasi-linear limit of (18) contains only those terms in the square brackets which are linear

in W (~k), i.e.

S(~k) = exp
n
−k2yρAA(~0)

o³
Ψ(~k)W (~k)eiωt +Ψ(−~k)W (−~k)e−iωt

´
(19)

where

Ψ(~k) = NII(~k) + iky
³
NIA(~k)−NAI(~k)

´
+ k2yNAA(

~k).

This represents a weakly nonlinear approximation to the full nonlinear transform, and is uniformly

valid over the wavenumber space. Note that it is analytically and numerically much simpler than

either (15) or (18).
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Appendix B: Random-β Regression

Consider the system of regression equations

s = Hw + eo, wp = w + ep

where the regression coefficientsw are treated as a random variable (hence the designation “random-

β”). These can be combined a single regression equation as s

wp

 =
 H

I

w +
 eo

ep

 .
Assume that the errors are uncorrelated, i.e.

var

 eo

ep

 =
 Σo 0

0 Σp

 ,
where Σo and Σp represents the associated error covariance matrices. The above equation is now in

standard regression form, and the generalized least squares solution for ŵ is obtained immediately

as

ŵ = Σw

(HT I)

 Σ−1o 0

0 Σ−1p

 s

wp


= ΣwH

TΣ−1o s+ΣwΣ
−1
p wp, (20)

where Σw is the error covariance matrix of ŵ and given by

Σw =

(HT I)

 Σ−1o 0

0 Σ−1p

 H

I

−1

=
h
HTΣ−1o H+Σ

−1
p

i−1
. (21)

An alternative expression may be derived as follows. Substituting (21) into (20) and solving for

ŵ yields

ŵ = wp +ΣwH
TΣ−1o (s−Hwp)

= wp +K(s−Hwp),

where we have defined the gain matrix K = ΣwH
TΣ−1o . This makes clear how the observations

may be viewed in terms of updating the prior estimate and is directly linked to a single-stage

transition of the Kalman filter [5].
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Table 1: Summary of the RADARSAT SAR parameters and environmental conditions during
MASDE. Satellite parameters include the beam mode, incidence angle α, and the range to velocity
ratio R/V . Environmental parameters include: the significant wave height Hs, the peak period T0,
the peak wavenumber kpeak, the wind speed at 10m U10, and the wind direction Udir in satellite
coordinates with 0◦ denoting the azimuth direction.

Case Date Beam α R/V Hs T0 kpeak U10 Udir
1 96/03/20 S3 32.9 123 1.94 4.8 0.04 11.2 257.4
2 96/03/23 W1 25.7 116 1.88 6.3 0.021 6.9 282.6
3 96/03/27 S4 37.6 129 1.17 5.4 0.059 4.9 198.6
4 96/04/03 W3 42.0 137 3.15 5.9 0.008 11.9 118.9
5 96/04/06 S3 27.6 117 0.95 5.3 0.019 5.7 196.1
6 96/04/09 W1 31.2 121 3.67 7.1 0.043 1.5 176.2

Table 2: Characterization of the RADARSAT SAR spectra and the wave-SAR transform. Here,
ρAA(0) is the calculated zero lag of the velocity bunching covariance function (see Appendix A).
Estimated azimuth falloff, range falloff, and noise level parameters of the SAR co-spectra are
denoted by cr, ca, and cn respectively. Kc is a fitted equivalent rectangular width cutoff wavenumber
in m−1 (see text). The final column is the correlation between the observed and simulated SAR
coincident spectra.

case ρAA(0) ca cr cn Kc corr

1 4825 495.4 132.1 3.665 2.43(10−2) 0.95
2 1571 2085 176.9 1.687 2.93(10−2) 0.89
3 200.1 3269 41.62 1.223 3.01(10−2) 0.79
4 4618 603.2 45.18 0.738 2.45(10−2) 0.54
5 448.5 940.7 1445.7 1.477 4.76(10−2) 0.68
6 6541.2 51.90 200.7 1.428 2.19(10−2) 0.83
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Figure 1: Directional wave spectra collected during MASDE from a wave buoy located at
44.5◦N, 63◦W. These are in satellite coordinates with the axes corresponding to the range ’kr’
(cross-track) and azimuth ’ka’ (along-track) wavenumbers in radians m−1. The grayscale denotes
the spectral density of wave height in m.
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Figure 2: Real part of the RADARSAT SAR image cross spectra derived from 2 looks at the
same ocean scene, separated by 0.4s in time. The axes follow Figure 1. The grayscale corresponds
to spectral density of the normalized radar cross-section. Note that the region |~k| < 2π/300m is
marked with dots to emphasize the lack of reliable ocean wave information here.
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different time separations as indicated. All spectra are normalized by the maximum value of the
auto-spectra. Following Figure 2, the region |ka| < 2π/300m is left blank.
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Figure 4: Imaginary part of RADARSAT SAR image cross spectra derived from 2 looks at the
same ocean scene, separated by 0.4s in time. The axes follow Figure 1. The grayscale corresponds
to spectral density of the normalized radar cross-section. The dotted area follows Figure 2.
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Figure 7: The real part of the modelled SAR cross-spectrum obtained based on the modified quasi-
linear wave-SAR map and the buoy wave spectra. The axes follow Figure 1 and the grayscale
represents the spectral density of the radar cross-section. Dotted areas follow Figure 2.
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Figure 8: Typical RMS error variances (from case 1) for the following spectral quantities: (a)
Residual between the simulated and observed RADARSAT coincident spectrum, (b) Wave estimate
recovered using SAR information only, (c) Wave estimate using SAR and a prior wave spectrum
with σ2p = 5

2. The axes follow Figure 1. Dotted areas identify null spaces of the inversion.
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Figure 9: Wave estimates derived from RADARSAT SAR spectra. The axes follow Figure 1. The
grayscale denotes the spectral density of the radar cross-section. Dotted areas identify null spaces
of the inversion.
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Figure 10: Cost function J as a function of the rotation angle θ (see text). The rotation angle
is measured positive clockwise in degrees. Lines designate the three different treatments: baseline
case with σ−2p = 0 (solid), weak regularization with σ−2p = 15−2 (dashed), and strong regularization
with σ−2p = 10−2 (dash-dot). θmin refers to the optimal rotation angle for the minimum J in the
case of weak regularization.
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