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Abstract

In 1997, the Canada Centre for Remote Sensing acquired RADARSAT-1, SPOT and IRS-1C

imagery over an agricultural site in western Canada. These data were used to address the information

content of RADARSAT-1 imagery for mapping crop type and for providing information on crop condition,

and to explore the implications of crop growth stage on crop monitoring with radar imagery. The use of

radar for crop mapping is particularly attractive because of its all weather capability and the sensitivity of

microwaves to canopy structure and moisture. Results from this study indicated that multi-date

RADARSAT-1 imagery, with or without satellite optical imagery, can provide accurate information about

crop types, although timing of image acquisition was important. Regression analysis established that some

indicators of crop vigor � in particular Leaf Area Index and crop height � were correlated with backscatter.

The highest correlations were for wheat and potatoes. However, backscatter was insensitive to variations in

corn growth and only moderately sensitive to differences in indicators of canola crop condition.

Nevertheless, this study clearly demonstrates that multi-temporal RADARSAT-1 imagery can be used to

provide useful crop information.
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1. Introduction

The vast acreages associated with the global agricultural resource base mean that mapping and

monitoring the state of this resource via traditional field surveying is prohibitive. The challenge of

monitoring the state of crops and soils is further complicated by their dynamic nature. Crop type varies

from field to field and from one season to the next. Crop condition variability is even more significant with

the state of the crop varying diurnally and throughout the growing season. Research into the area of

precision agriculture has also demonstrated the significant variability in crop condition that is often present

within a field.

The spatial and temporal variability associated with crop growth dictates that in many instances,

mapping and measuring crop characteristics remotely may be the only viable option. However, the

application of remote sensing to crop monitoring requires frequent coverage and often requires data

acquisitions during specific critical crop phenological stages. These requirements are true for projects

directed towards simple crop type identification, as well as for those involving detailed assessments of the

condition of the crop. In promoting remote sensing technology for agricultural mapping and monitoring,

the infrequent revisit schedule of earth observation satellites compounded with the obstruction of data

collection as a result of cloud cover, has been a significant impediment. However, the all weather capability

of Synthetic Aperture Radar (SAR) means that reliability associated with the collection of earth observation

data can be greatly enhanced.

The use of visible and infrared sensors to classify crop type and to assess crop acreages has been

extensively explored in previous research (see for example, Rosenthal and Blanchard, 1984). Projects like

the Large Area Crop Inventory Experiment demonstrated the capability of optical imagery for estimating

crop acreages. Further, the dependence of visible and infrared reflectance on plant pigmentation and

internal leaf structure led researchers to examine the capabilities of optical sensors for assessing indicators

of crop condition. Numerous studies have successfully related various vegetation indices using ratios of red



3

and infrared reflectances with crop vigour, condition and biomass (Dusek et al., 1985; Gardner et al., 1985;

Jasiniski, 1990).

In the microwave region of the electromagnetic spectrum, it is the large scale structure and

dielectric properties of the target that influence the amount of energy scattered back towards the sensor.

Since crop structure and plant water content vary as a function of crop type, growth stage and crop

condition, it is reasonable to assume that SAR sensors would be able to differentiate among crop types and

detect changes in crop condition. In fact several previous studies, using primarily ground-based

scatterometers or airborne SAR systems, have demonstrated the ability of K-band (Bush and Ulaby, 1978),

X-band (Hoogeboom, 1983), C-band (Brown et al., 1992) and L-band (Ulaby et al, 1980) radar to

discriminate crop cover classes. Other research has reported the improvement in crop classification when

both visible-infrared and active microwave data are used together (Rosenthal and Blanchard, 1984) and has

demonstrated the advantages of multi-date visible, infrared and SAR datasets (Brisco and Brown, 1995).

Several researchers have gone beyond the establishment of simple crop classes and have tried to

link indicators of crop condition � including canopy moisture, Leaf Area Index (LAI) and biomass weights

� to SAR backscatter. These results have generally been encouraging although the correlations have been

dependent upon SAR configurations and crop characteristics. Experiments based on truck mounted

scatterometers demonstrated the dependence of backscatter on canopy moisture content (Brakke et al.,

1981; Ulaby and Bush, 1976), LAI (Brakke et al., 1981; Prevot et al., 1993) and crop dry weight (Brakke et

al., 1981). However, optimal incidence angles varied among the results, with recommended angles from

steep (20o) to shallow (70o).

Although the capability exists, operational implementation of an agricultural monitoring system

based on SAR imagery has yet to occur. A system set up to monitor crops would require meteorological

and crop growth models that predict crop condition and final yield. Data are required as inputs to these

models and operational SAR data could be provided by sensors like RADARSAT-1 and ERS-2. Since

optical and microwave sensors respond to very different target characteristics, their role in crop monitoring
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can be viewed as complementary. In particular, the all weather capability of SAR sensors can ensure that

data gaps that often exist during monitoring with optical sensors are filled. The flexibility associated with

RADARSAT-1 beam steering significantly improves the revisit schedule and makes RADARSAT-1 data

particularly attractive for agricultural monitoring.

Advances in low cost computing systems, global position satellites, and production of machinery

for variable rate seeding, crop inputs, crop protection products, as well as on-the-fly yield monitors have

enabled producers and service providers to divide fields into areas of homogenous characteristics and

manage each zone separately.  Remote sensing is playing an important role in this area because the imagery

provides an objective map of the spatial variability and allows monitoring of the crop condition throughout

the growing season.  Applications of remote sensing that are proving to have a commercial market include

i) defining soil management zones representing areas of similar soil characteristics; ii) irrigation

scheduling; iii) detecting weeds during pre-emergence, vegetative growth, ripening, and post harvest; and

iv) detecting crop stress and damage due to pests, disease, and extreme weather.  Soil management zones

are used to direct soil sampling and fertility planning.  Mapping soil moisture is used to determine

irrigation schedules.  Crop scouts use the crop condition variability detected by remote sensing to identify

the cause and to follow-up with an action plan to reduce the impact of this variability on yield.

The research conducted in previous agricultural studies, in conjunction with potential commercial

applications of remote sensing data, suggests that the use of an operational all weather satellite like

RADARSAT-1 for agricultural monitoring needs to be explored. This study specifically addresses the

following objectives:

1. Examine the capability of RADARSAT-1, as well as visible and infrared imagery, for mapping crop

type and identify the optimal timing of image acquisition.

2. Determine the impact of variations in crop growth stage on mapping crop information from remotely

sensing imagery.

3. Investigate the sensitivity of RADARSAT-1 and optical sensors to indicators of crop condition.
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2. Methodology

2.1 Description of data acquisition

The site used in this study is centred on the town of Carman (98o 00� W longitude, 49o 30� N

latitude), located in southern Manitoba (Canada) (figure 1). Both sandy and heavier clayey soils are found

across the site and this soil mix is reflected in the diversity of agricultural crops, including canola, wheat,

barley, oats, sunflowers, soybeans, corn, potatoes and flax. The Canada Centre for Remote Sensing (CCRS)

used this site in 1997 as part of its ongoing program for development of SAR applications in agriculture. As

well, this region was also used as the CCRS precision agriculture research site and consequently,

quantitative information on site specific crop condition was available.

Figure 1. Location of the Carman study site. The town of Carman is situated south and west of
Winnipeg, Manitoba (Canada).

A total of 10 Standard and Fine mode descending RADARSAT-1 images were acquired over the

Carman area in 1997 during the months of June, July and August (table 1). Available cloud free optical

imagery was also acquired and included a SPOT HRV (August 6) and an IRS-1C PAN (July 4) image.

Hourly meteorological records were used to assess target conditions at the time of image acquisition.
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Table 1. RADARSAT-1 descending and satellite optical imagery acquisition schedule
Carman, Manitoba (1997)

Acquisition Date
(1997) Acquisition Mode Incidence Angle

June 28 Fine 2 39-42o

July 4 IRS-1C PAN
July 5 Fine 4 43-46o

July 15 Standard 4 34-40o

July 18 Standard 1 20-27o

July 22 Fine 2 39-42o

July 29 Fine 4 43-46o

August 5*+ Fine 5 45-48o

August 6 SPOT HRV
August 8 Standard 4 34-40o

August 15* Fine 2 39-42o

August 22 Fine 4 43-46o

+ Only partial coverage of site
*Meteorological records suggest rain on canopy at the  time of acquisition

To characterize field conditions during the 1997 growing season, crop information was collected

on July 18-19, 1997 for approximately 300 fields in the Carman area. For each field this included crop type,

phenological stage, crop height and percent crop cover. Differential GPS ground co-ordinates were

gathered at road intersections at approximately 1.6 km intervals across the study site. Positional accuracies

for the GPS model used are well within a RADARSAT-1 Fine Mode pixel (approximately 3-5 metres in the

XY direction, 95% of the time). These data were used in the subsequent geocoding of the RADARSAT-1

imagery.

During the same week in which general crop information was documented, field crews also

collected information on crop growth across 12 pre-selected fields. On each of the 12 fields, transects were

planned across the fields, along which sample sites were located. In general, 8-12 sample sites were located

in each field. The location of all within-field sample points was also recorded using a differential GPS. At

each sample point along the transect, a number of specific measurements and samples were gathered:
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(1) Biomass: At each site, a 0.5 x 0.5 m sample of above ground crop was cut and placed in a plastic bag.

Biomass samples were weighed wet in the field, and then oven dried for 48-72 hours and re-weighed. Plant

water content (PWC) was calculated using:

( )[ ] 100)(/)()( ×− gbiomasswetgbiomassdrygbiomasswet (1)

(2) Leaf Area Index (LAI): A subsample of plant biomass was used to measure leaf area in the lab with a

Li-Cor 3100 area metre. The leaf area of the subsample (LAsub) was used to establish the Leaf Area Index

of the 0.5 x 0.5 m sample area through:

( )
( ) [ ]m.5x5ofareasample
gweightwetsubsample

gweightwettotal
msubLA 0.0)( ÷× �

�

�
�
�

�
(2)

This approach to LAI estimation works well for crops with continuous cover or crops with

relatively narrow row spacing (potatoes, wheat, and canola). Table 2 lists the mean, standard deviation and

range of values associated with each measured crop variable. LAI measurements for wheat, potatoes and

canola agree well with those given in the literature for crops with a similar growth stage (Prévot et al.,

1993; Cloutis et al., 1996; Hocheim and Barber, 1997). Corn LAI values were larger than expected.

However, since the measurement technique was applied consistently from site to site, relative differences in

LAI from one site to the next are valid.

(3) Crop height: At each site, crop height was recorded in centimetres.
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Table 2. Summary of variables measured for each crop type

Number
of Sample

Points

Height
(m)

Wet
Biomass

 (g)

Dry
Biomass

 (g)

Plant Water
Content

(%)

Leaf Area
Index

(m2/m2)

Mean 0.60 355.57 80.60 75.04 2.23

Standard Deviation 0.35 235.27 57.66 12.56 1.10

Standard Error of Mean 0.07 45.28 11.10 2.42 0.21

Minimum Value 8 5.0 1.1 67.7 0.4

Wheat 27

Maximum Value 104 767.8 201.2 85 4.3

Mean 0.44 561.49 58.25 89.02 2.79

Standard Deviation 0.14 246.13 23.98 2.35 1.59

Standard Error of Mean 0.02 37.98 3.70 0.36 0.25

Minimum Value 10 45.3 8.9 80.4 0.2

Potatoes 42

Maximum Value 78 1560.2 127.8 94.4 6.2

Mean 1.13 811.25 106.64 86.19 3.20

Standard Deviation 0.17 225.85 32.18 2.69 0.80

Standard Error of Mean 0.04 49.28 7.02 0.59 0.17

Minimum Value 81 343.3 53.3 80.5 1.9

Canola 21

Maximum Value 142 1152.2 176.2 89.3 5.3

Mean 1.14 840.32 101.20 87.40 8.89

Standard Deviation 0.38 408.36 49.81 2.24 4.50

Standard Error of Mean 0.08 89.11 10.87 0.49 0.98

Minimum Value 36 120.3 16.5 83.5 0.9

Corn 21

Maximum Value 152 1603.1 184.8 90.9 16.6

2.2 Data pre-processing and analysis � crop type classification

All RADARSAT-1 imagery used within this project was processed at the Canadian Data

Processing Facility (CDPF). This processing included application of the Payload Parameter File

corresponding to the acquired imagery. This file contains the antenna elevation gain pattern that is applied

during processing to reverse the illumination variation that occurs during imaging.  The image quality and
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calibration of these data are expected to be consistent with those reported by Srivastava et al. (1999); a

relative radiometric accuracy of better than 1.0 dB.

Prior to image analysis, the digital number values were converted to radar brightness (βo) by

reversing the application of a Look Up Table. This Look Up Table had been applied just prior to the data

transfer to CD-ROM in the CDPF.

The RADARSAT-1 data were then geocoded using the satellite ephemeris information, ground

control points with positions obtained using GPS, and a second order cubic convolution resampling

algorithm. The SPOT and IRS images were image-to-image rectified with the SAR images, using the same

resampling algorithm.

From the information recorded on the crop survey sheets, masks were drawn over selected

homogeneous fields and mean power and reflectance values extracted for each field. The potential of the

extracted values for crop type classification was evaluated with the help of a class separability measure

known as pairwise transformed divergence (Swain and Davis, 1978). This measure represents the statistical

distance between class pairs and is an indirect and a priori estimate of the probability of correct

classification. The transformed divergence TD for class pair ),( ji  is given by:

�
�
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�

�
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−
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with

( )( )[ ] ( )( )( )[ ]T1111 tr
2
1tr

2
1D jijijiijjiij mmmmcccccc −−++−−= −−−− (4)

where: ic  is the covariance matrix, 1−
ic  the inverse covariance matrix and im  the mean vector for class i .

Similarly, jc , 1−
jc and jm  represent the statistics for class j . The trace of the matrix in question is

indicated by tr, whereas T refers to the transposed matrix. Computation of ijTD  is based on the assumption

that the classes have Gaussian (normal) probability density functions. For the classes studied this

assumption will be valid because they are comprised of data points that represent field averaged values. For
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the single variate case, that is, when the classification potential is assessed for a single RADARSAT-1

acquisition or a single optical image channel, equation 4 can be rewritten as:

( ) ( )2
2222

22 11
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where: im , jm  represent the means and 2
is , 2

js  the variances of the classes i and j. However, research

such as that reported by Brisco and Brown (1995) has emphasized that successful classification of crops

requires multi-temporal/sensor acquisitions. RADARSAT-1 acquisitions that provided high individual

ijTD  values were therefore assessed further in conjunction with two complementary image channels, that

is, one or two RADARSAT-1 acquisitions and/or one or two satellite optical channels.

In the present study, two classes were considered separable if the ijTD  value was equal to or

greater than 1.9. A ijTD  value of 1.9 can be shown to correspond to a lower bound for the likelihood of

correct classification of close to 78% (van der Sanden and Hoekman, 1999). Field averaged values

associated with 3-channel image combinations that offered good classification potential were then used in

Gaussian maximum-likelihood classifications. Successive evaluation of the results by means of confusion

matrices and the Kappa coefficient allowed for a direct assessment of the classification capacity of the

channels in question (Lillesand and Kiefer, 1994). In contrast to the overall classification accuracy, the

Kappa coefficient accounts for errors of omission and commission and the effects of chance agreement.

The Kappa coefficient is thus considered a more robust indication of classification accuracy. For each

image combination, the same dataset was used for both the design of the classifier and the evaluation of the

classification results. The adopted procedure is nevertheless valid (van der Sanden and Hoekman, 1999)

since the aim of the study is to assess the relative rather than the absolute classification capacities of the 3-

channel image combinations studied. Assessment of absolute probabilities of correct classification requires

datasets that are substantially larger than those studied.
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2.3 Data pre-processing and analysis � crop condition assessment

In examining the imagery collected over several of the 12 intensively sampled fields, significant

within-field variability was detected on several of the image acquisitions. Visual interpretation of the

images using field observations suggested that the RADARSAT-1 imagery was showing differences in soil

attributes during periods of low vegetative growth and differences in crop growth during more advanced

growth stages. The IRS-1C PAN imagery provided good boundary definition of these within-field

differences.

In order to quantify this relationship between crop condition and both radar and optical data, site

crop variables were regressed against SAR backscatter coefficients and optical reflectance values. Both

bivariate and multivariate linear regression models established the significance and direction of the

relationship between crop variables (height, biomass, plant water content and Leaf Area Index) and the

remotely sensed data. Fields with the same crop type were pooled together and the crop types examined in

this analysis included wheat, potatoes, canola and corn. Since grain crops were senescing in early August,

imagery acquired during August was not used in this analysis. All crops were generally in their vegetative

or seed development phases during the late-June to late-July time frame. Only the Fine Mode acquisitions

were examined since these data provided the necessary spatial resolution and incidence angles for

evaluating the sensitivity to within field crop variability.

Prior to extracting site specific backscatter coefficients, each of the 1-look Fine Mode images was

filtered using a 3x3 Frost filter in order to reduce speckle effects. The equivalent number of looks in the

resulting images was approximately 2.5. Once the GPS locations of the sample sites were overlayed on the

geocoded imagery, site specific backscatter and reflectance values could be extracted. In response to

locational errors associated with image georeferencing and to residual speckle effects, mean backscatter

and reflectance values were based on a 10x10 pixel window centred on each within field site. This 100-

pixel sample, coupled with the filtering, sufficiently reduced speckle effects. The effect of speckle on the
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mean backscatter values computed for these 100-pixel samples is well within the bounds of within scene

radiometric accuracy (Hoekman, 1990).

As described previously, 0.5 x 0.5 m samples of crop biomass were collected during ground data

acquisition. Relative to the size of each pixel, these crop samples are small. However, sample sites were

chosen within the field to be representative of the surrounding crop area. Although a regression approach

that uses measured crop data is required to establish the sensitivity of SAR and optical imagery to crop

condition, several factors including geometric inaccuracies and the relatively small biomass sample sizes

can create uncertainties within the statistical models. These uncertainties will account for some of the

unexplained error in the regression analysis.

3. Results and discussion

3.1 Crop type classification: transformed divergence statistics based on a single RADARSAT-1 image

Divergence statistics were calculated for all of the Carman image acquisitions. Results for the best

two RADARSAT-1 dates are presented in table 3. All SAR acquisitions except July 18 (Standard Mode 1)

were at angles greater than 35o. At these larger incidence angles, interaction between the microwaves and

the crop canopy is maximized. For the Standard Mode 1 acquisition, poor separability was observed among

all crop types. The poor crop class separability at steep SAR angles is likely a function of the increased

penetration through the crop canopy and the greater contribution to total backscatter from the soil surface.

This penetration results in less dependence of the backscatter on crop variables.

Although the Standard Mode 1 acquisition indicated the difficulty in crop classification due to the

confounding contributions associated with the canopy and soil, the timing of acquisition during the growing

season is also critical. Divergence statistics derived for the RADARSAT-1 imagery collected early in the

growing season (late June to early July) indicated poorer separation among most crops. With the relatively

low vegetative cover, significant soil contributions likely still exist even though incidence angles were large

(greater than 35o).
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The only exception was canola (June 28) which was separable from barley and corn at this early

growth stage. For this late June acquisition, the canola crop covered most of the soil surface, providing

greater interaction of the microwaves with the crop and less soil contributions. However for all other crop

comparisons, it was not until late July that some separability was observed, using a single RADARSAT-1

image. In this agricultural region during late July to early August, crops have completed their vegetative

growth period and are now in their reproductive and seed development stage. During this stage, canopy

moisture content and canopy structures change dramatically. Brisco and Brown (1995) also reported the

enhanced separability of crops during the reproductive and seed development stage for a similar site in the

Canadian Prairies.

With a single late July to early August RADARSAT-1 image, broadleaf crops were generally

separable from small structured crops. However, backscatter within the broadleaf crop class was similar.

For example sunflowers, with their large distinctive leaves, stalks and heads, had a backscatter significantly

different from the small structured grain crops. However, it was more difficult to separate sunflowers from

other broadleaf crops that also have large leaf and stalk structures. Thus separation of crops beyond 2

classes � broadleaf and small grains � would be difficult using only a single RADARSAT-1 image.

In examining each individual RADARSAT-1 image, the late July/early August time period was

best for crop type discrimination. This compares well with Brisco and Brown (1995) who found that the

highest multi-date crop classification accuracy for C-HH included a July 21st and an August 10th

acquisition. Using three images the authors were able to classify crops to a 72% overall accuracy.
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Table 3. Transformed divergence results for best two RADARSAT-1 dates

July 22 (RADARSAT-1 Fine 2) (39-42o)
Barley Beans Canola Corn Flax Oats Sunflower

Beans 1.82
Canola 1.69 0.05
Corn 1.77 0.01 0.02
Flax 0.04 1.67 1.50 1.61
Oats 0.01 1.92 1.83 1.89 0.08

Sunflower 2.00 1.05 1.61 1.35 2.00 2.00
Wheat 0.34 0.77 0.64 0.73 0.18 0.50 1.90

Average Divergence: 1.11

August 8 (RADARSAT-1 Standard 4) (34-40o)
Barley Beans Canola Corn Flax Oats Sunflower

Beans 0.87
Canola 1.35 0.62
Corn 0.63 0.00 0.46
Flax 0.43 2.00 2.00 2.00
Oats 0.08 1.51 1.90 1.34 0.08

Sunflower 1.80 1.55 0.37 1.25 2.00 1.99
Wheat 0.05 0.46 0.98 0.30 1.66 0.35 1.56

Average Divergence: 1.06

3.2 Crop type classification: transformed divergence statistics based on three channel combinations

Although analysis of single date imagery suggested that some crop classes could be separated,

these results clearly indicate that multi-date imagery would be required to classify crop type at an

acceptable level of accuracy. To address this requirement divergence statistics were regenerated based on

three channel combinations of SAR, SPOT and IRS imagery. Both divergence (table 4) and field based

classification (table 5) results are provided.

Divergence statistics and classification accuracies (tables 4 and 5) are presented for only those

image combinations with Kappa coefficients exceeding 0.80. Separation among small grain crops (oats,
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barley, and wheat) based on SAR backscatter is difficult due to the crops� very similar structures.

Divergence statistics were first generated with individual grain classes maintained and were then calculated

after pooling the fields of oats, barley and wheat into a single small grain class.

The three-channel comparisons of crop separability supported the divergence measures calculated

using a single SAR acquisition or single optical channel. Using a mid-season SAR acquisition (July 22)

coupled with late season SAR data or an IRS PAN or SPOT HRV acquisition, greater than 80% overall

classification accuracies were achieved. The best combinations used either two or three dates of

RADARSAT-1 and the IRS-1C acquisition. With these choices, both the transformed divergence statistics

and the classification results demonstrated excellent crop separation, particularly if grain crops are pooled

into a single class. The transformed divergence numbers confirm significant confusion among wheat,

barley and oat fields, when both optical reflectance and microwave backscatter data are used. Even once

pooled, the grain class had the highest classification errors, most likely related to the significant variability

observed within this class. Differences in grain crop varieties and significant differences in crop growth

stages contributed to high within class variability. The multi-temporal image provided in figure 2 illustrates

that RADARSAT-1 is detecting a large number of crop classes. These classes are primarily related to crop

type differences. However, growth stage and crop condition are also contributing to backscatter differences.
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Figure 2. RADARSAT-1 colour composite of the Carman study area. This three-date multi-temporal image is a
composite of July 22 (F2) displayed in red, July 5 (F4) displayed in green and June 28, 1997 (F2) displayed in blue. A
number of different crop classes are obvious. The differences in backscatter from one field to the next are a result of not
only crop type, but also growth stage and crop condition.

Of note is the relatively poor classification performance of the three-channel SPOT image. The

Kappa coefficient for this multi-channel image was low (0.66) and most crops were poorly classified with

the exception of corn and canola. The flowering and podding of the canola crop at the time of the SPOT

acquisition results in significant changes in crop reflectance and likely explains the better separability

associated with this crop. Timing of optical image acquisition in reference to crop growth stages is

important and the early August SPOT acquisition is not optimal for crop discrimination (Bober et al.,

1996). However, persistent cloud cover that occurred over the site during the month of July reinforces the

advantages of SAR in agricultural monitoring.
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Table 4. Transformed divergence results for three channel combinations of satellite optical
and RADARSAT-1 imagery

IRS PAN July 4
RADARSAT-1 July 22
RADARSAT-1 August 8

Wheat Barley Beans Canola Corn Flax Sunflower
Oats 0.90 0.33 2.00 2.00 2.00 1.70 2.00

Wheat 0.41 1.87 1.98 1.90 1.95 2.00
Barley 1.98 2.00 1.99 1.99 2.00
Beans 2.00 1.51 2.00 1.96
Canola 1.95 2.00 2.00
Corn 2.00 1.98
Flax 2.00

Grains 1.88 1.98 1.93 1.94 2.00

IRS PAN July 4
RADARSAT-1 July 22
RADARSAT-1 August 22

Wheat Barley Beans Canola Corn Flax Sunflower
Oats 0.80 0.94 2.00 2.00 2.00 1.13 2.00

Wheat 0.99 1.89 1.96 1.98 1.46 2.00
Barley 2.00 1.99 2.00 2.00 2.00
Beans 2.00 1.78 2.00 2.00
Canola 1.99 2.00 2.00
Corn 2.00 2.00
Flax 2.00

Grains 1.93 1.98 1.99 1.10 2.00

RADARSAT-1 July 22
RADARSAT-1 August 8
RADARSAT-1 August 22

Wheat Barley Beans Canola Corn Flax Sunflower
Oats 0.92 1.21 2.00 2.00 2.00 1.78 2.00

Wheat 1.05 1.82 1.98 2.00 1.98 2.00
Barley 2.00 1.99 2.00 2.00 2.00
Beans 1.94 1.51 2.00 2.00
Canola 1.99 2.00 2.00
Corn 2.00 2.00
Flax 2.00

Grains 1.84 1.99 2.00 1.96 2.00



18

Table 4 con�d. Transformed divergence results for three channel combinations of satellite optical
and RADARSAT-1 imagery

SPOT Channel 3 August 6
RADARSAT-1 July 22
RADARSAT-1 August 8

Wheat Barley Beans Canola Corn Flax Sunflower
Oats 0.90 0.91 2.00 2.00 2.00 1.87 2.00

Wheat 0.69 1.62 1.99 1.96 1.99 2.00
Barley 1.96 2.00 2.00 2.00 2.00
Beans 1.59 1.18 2.00 1.66
Canola 1.98 2.00 1.99
Corn 2.00 2.00
Flax 2.00

Grains 1.67 1.98 1.97 1.98 2.00

Three Channel SPOT (August 6)
Wheat Barley Beans Canola Corn Flax Sunflower

Oats 0.32 0.84 1.42 1.90 2.00 1.09 1.83
Wheat 1.00 1.53 1.92 2.00 1.23 1.84
Barley 2.00 2.00 2.00 1.56 2.00
Beans 1.79 1.29 0.73 1.33
Canola 1.92 1.95 0.90
Corn 1.92 1.54
Flax 1.71

Grains 1.80 1.97 2.00 1.22 1.97

Table 5. Field based classification accuracies

3 Channel Combinations Corn Flax Grain Sunflower Beans Canola Overall
Accuracy

Kappa
Coefficient
(Grains
Separated)

Kappa
Coefficient
(Grains
Pooled)

IRS PAN (July 4)
July 22 & August 8 Radarsat-1 83% 100% 81% 100% 100% 97% 88% 0.64 0.84

IRS PAN (July 4)
July 22 & August 22 Radarsat-1 100% 100% 75% 100% 100% 97% 87% 0.62 0.83

July 22, August 8 & August 22
Radarsat-1 94% 100% 77% 100% 100% 94% 87% 0.70 0.82

SPOT Channel 3 (August 6)
July 22 & August 8 Radarsat-1 94% 100% 80% 100% 50% 97% 87% 0.70 0.82

3 channel SPOT (August 6) 83% 14% 75% 70% 33% 91% 75% 0.60 0.66
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3.3 The influence of crop growth stage

Figure 3 illustrates the changes in backscatter as a function of changes in the growth stage of

canola. In this example, differences in backscatter are evident within a single canola field. Parts of this field

were planted on three different dates. As the canola crop forms pods, the crop structure changes

dramatically, and backscatter increases. On July 22nd, for the top section of the field where the canola had

already podded, backscatter was higher relative to the centre of the field where the crop was still flowering.

However, backscatter increased in this centre section later in August once this part of the field reached the

podding and ripening stage.

Figure 3. The effect of growth stage of a canola crop on RADARSAT-1 backscatter. In this figure, three dates of Fine
Mode RADARSAT-1 imagery have been combined (August 15th displayed in red, June 28th displayed in green and July
22nd displayed in blue). Parts of this canola field were planted at three different times. As a result, the field is
segmented into three areas, each at a different crop growth stage. This image illustrates that as the canola changes from
flowering to a podding stage, the change in crop structure results in an increase in backscatter.
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To further explore the effect of developmental stage on SAR return, fields were grouped by

growth stage and mean backscatter was calculated for all grain and canola fields. The effect of changes in

crop structure and moisture on backscatter is evident in figure 4. Some changes in backscatter from one

growth stage to the next are within the sensor calibration uncertainty. However, the Carman data

demonstrate that backscatter decreases once the grain crops head. As well, the increase in backscatter

associated with a change in canola from flowering to podding as seen in figure 2, is observed for other

fields in the site. Although these changes represent only 1-2 dB, the influence of developmental stage on

SAR backscatter must be considered during crop monitoring.

Figure 4. Variation in radar backscatter as a function of the growth stage of canola and grain crops. These mean
backscatter values were derived from the July 22nd (1997) RADARSAT-1 Fine Mode acquisition.

As presented in table 3, for single-date imagery, divergence numbers were particularly low for

spring grains. Brisco and Brown (1995) also reported poor separability of grain crops and suggested that

this was due to the very similar structure among the various grain classes. For the data presented here, class

confusion was likely also related to the large variability in backscatter responses associated with the spring

wheat class. As evident in figure 4, at the time of field data collection wheat crops across the site were in
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various stages of growth including vegetative growth, heading, and senescing. These variations were

primarily a result of slight differences in planting dates and to a lesser extent, differences in soil

characteristics. This variation within the wheat class suggests that information on the developmental stage

would likely be required for the classification of grains. Crop development could be tied to planting date,

derived from an early season image acquisition and  knowledge of the local crop calendar.

3.4 Crop condition assessment

 As evidence of the sensitivity of RADARSAT-1 data to indicators of crop vigor � height,

biomass, plant water content and LAI � bivariate correlation coefficients are provided in table 6. These

coefficients are based upon site specific measurements (generally 10-12 sites per field) gathered for a

number of different crops including wheat (3 fields), potatoes (3 fields), canola (2 fields) and corn (2

fields). In table 6, bivariate correlation results based on the linear regression of crop variables against

backscatter are provided separately for the wheat, potatoes and canola crops. Coefficients derived for the

corn crop are not provided as none of the correlations were significant at a probability level less than 0.05.

Saturation of the SAR signal, or at least reduced sensitivity to increases in canopy biomass, may explain the

poor results associated with the corn canopy. For example, although the variance associated with corn

canopy height (cm) was high (standard deviation of 38.06) the backscatter (dB) associated with these

measurement points on the July 22nd acquisition did not vary a great deal (standard deviation of 0.77).

Ferrazzoli et al. (1992) reported that at L-band, HH-polarized backscatter from corn and sunflower crops

increased with LAI, but saturated once LAI reached the value of 2-3. Further plant growth had little or no

effect on backscatter. The relatively large LAI values associated with the corn canopies (table 2) suggest

that a similar saturation effect may be occurring. However, this saturation does not occur for all crops.

Prévot et al. (1993) indicated that no saturation of C-HH backscatter was observed with increasing LAI for

wheat canopies, even though LAI was high (LAI > 4).

Regressions were run for only the June 28th and July acquisitions since senescence of grain crops

was occurring in August. Although coefficients from as early as June are given, correlation results are
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likely more valid during the period closest to the ground data acquisition (third week of July). With crop

growth, values for each crop variable (height, biomass, water content and LAI) will be different for each

SAR acquisition. Measurements were made only once in the growing season and therefore, extrapolation of

results to other SAR acquisitions relies on the assumption that site to site differences in these crop variables

remains relatively constant.

The bivariate results provided in table 6 suggest that on a number of dates, crop variables are

significantly correlated with C-HH backscatter, particularly for the wheat and potato crops. In general,

these crop variables accounted for approximately 25-50% of variability in backscatter. The most significant

correlations are observed for crop height and LAI. Cloutis et al. (1996) also reported the significance of

these two variables for C-HH SAR data acquired on an airborne platform. As well, the strength of the

bivariate correlations for the RADARSAT-1 data examined in the present study is similar to those given by

Cloutis.

As with these RADARSAT-1 results, Cloutis et al. (1996) reported that the strength of the

correlations was crop type dependent. The changes in the geometric and dielectric properties of the crop

during its vegetative, reproductive and seed development stages are extremely complex, and these changes

are crop type dependent. Although these two SAR studies attempt to characterize crops with very simple

measures, it remains difficult to capture these physical changes in a single crop variable. As suggested from

this study, for some crops like canola, these changes may be more difficult to parameterize.
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Table 6. Correlation coefficients established between RADARSAT-1 backscatter
and indicators of crop vigor

Simple Correlation Coefficients (R Values)
Multiple

Correlation
Coefficients
 (R Values)

Date of
Radarsat

Acquisition Crop
Height

Wet
Biomass

Dry
Biomass

Plant
Water

Content

Leaf Area
Index

Height, Wet
Biomass and LAI

June 28 0.67* 0.40 0.39 -0.51* 0.48* 0.87*
July 5 0.44 0.02 0.03 -0.30 0.04 0.17

July 22 -0.69* -0.65* -0.65* 0.31 -0.61* 0.76*
Wheat

July 29 -0.91* -0.83* -0.81* 0.45* -0.80* 0.92*
June 28 0.71* 0.41* 0.64* -0.44* 0.73* 0.84*
July 5 0.63* 0.33* 0.53* -0.43* 0.67* 0.85*

July 22 0.67* 0.41* 0.53* -0.31* 0.66* 0.84*
Potatoes

July 29 0.70* 0.34* 0.50* -0.31* 0.66* 0.82*
June 28 0.76* -0.27 -0.56* 0.36 0.03 0.79*
July 5 0.59* -0.39 -0.34 -0.08 -0.11 0.66*

July 22 -0.07 -0.05 -0.19 0.29 -0.07 0.10
Canola

July 29 0.18 -0.25 0.05 -0.42 -0.29 0.60
* Correlation coefficients are significant at p < 0.05

In general, RADARSAT-1 backscatter was positively correlated with measured crop variables, but

with two notable exceptions. Although researchers like Brakke et al. (1981) have reported positive

correlations in similar studies, the Carman wheat samples with greater biomass, LAI and height had lower

C-HH backscatter for the late July RADARSAT-1 acquisitions. This reversal in the backscatter relationship

is likely related to the change in wheat structure during this period. Wheat plants that are further along in

their development are now heading. This change in crop geometry can lead to a decrease in backscatter

(Bouman, 1991; Bouman and van Kasteren, 1990) and can effectively override expected increases in

backscatter with increases in crop biomass. The effect was also evident in figure 4.

In an early study, Ulaby and Bush (1976) were surprised to find that as plant water content in

wheat decreased, backscatter actually increased. The researchers hypothesized that the decrease in

attenuation within the wheat canopy allowed the radar to �see� more of the wet underlying soil, resulting in
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increased backscatter. Cloutis et al. (1996) also attributed inverse relationships to the influence of

underlying soil characteristics. The negative correlations between backscatter and plant water content for

earlier stages of wheat and potato may also be attributable to similar soil influences. Meteorological data

indicated rainfall and cool temperatures in the days prior to the June 28 and July 5th acquisitions. The

relatively weak correlations between plant water content and C-HH backscatter is most likely attributable

to diurnal patterns and fluctuations in plant water content from day to day. Brisco et al. (1990) found that

wheat plant water content can vary between 2-5% over a 24 hour period. As well, from early in the growing

season (late June) to mid-July wheat total plant moisture content can increase by a factor of four

(Hochheim and Barber, 1997). These results indicate that knowledge of the crop calendar is critical in

assessing crop condition from SAR.

The coefficients provided in table 6 suggest that multiple crop variables are required to fully

explain variations in backscatter. Both dry biomass and plant water content are derived from wet biomass

and consequently, these two variables were not included in the multivariate approach. The multiple

correlation coefficients are also listed in table 6.

In comparing the bivariate and multivariate correlation coefficients, it is obvious that in almost all

cases, the amount of explained variance increases as more than one crop characteristic is taken into

account. As reflected in the simple regressions, the wheat and potato crops produced the best results. For

these crops, these three crop variables now account for as much as 85% of the variation in C-HH

backscatter. The difficulty in detecting differences in corn condition from backscatter persisted.

The sensitivity of a multi-spectral SPOT image to crop condition variation is established in table

7. Results from a multivariate model that incorporates an early and mid season RADARSAT-1 image are

also listed. By including a second RADARSAT-1 image, the unexplained variance for the wheat and potato

crops is reduced. However, no improvement is observed in the performance of the model for either the

canola or corn canopies. The July 29th acquisition was particularly important in defining differences in the

wheat crop. The larger contribution of this date to the model may be related to the rapidly changing wheat
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structure at the time of this later acquisition. Both RADARSAT-1 dates contributed equally to the

multivariate model for the other crop types.

In comparing regression results using a multi-spectral SPOT image with those derived from the

multi-temporal RADARSAT-1 dataset, the strength of the correlations with crop indictors are similar. This

observation suggests that the acquisition of an early and mid season RADARSAT-1 pair can provide

similar information about crop condition, when compared with a late season multi-spectral optical image.

Table 7. Regression results using multi-temporal RADARSAT-1 data
in comparison with SPOT multi-spectral data

Crop Variable

3 Channel SPOT  (August 6
Acquisition)

Multiple Correlation Coefficients
 (R Values)

Radarsat-1
 (June 28 and July 29 Acquisitions)
Multiple Correlation Coefficients

 (R Values)

Height 0.96* 0.92*
Wet Biomass 0.89* 0.89*Wheat

LAI 0.88* 0.86*
Height 0.76* 0.78*

Wet Biomass 0.51* 0.49*Potatoes
LAI 0.80* 0.75*

Height 0.69* 0.59*
Wet Biomass 0.43 0.37Canola

LAI 0.43 0.30
Height 0.70* 0.24

Wet Biomass 0.51 0.41Corn
LAI 0.51 0.45

* Coefficients are significant at p < 0.05

4. Conclusions

Results from the study presented here indicate that multi-date RADARSAT-1 imagery, with or

without satellite optical imagery, can provide accurate information about crop types. Timing of image

acquisition is important and the greatest success at separating crop types was achieved with imagery
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gathered during the period of seed development. As expected, larger incidence angles, like those associated

with RADARSAT-1�s Fine Beam Modes, are required to establish crop type. The greatest confusion is

observed among the various grain crops (wheat, barley, and oats). The similar structure associated with

wheat, barley and oats contributes to confusion among these crop types. Field observations suggested that

within this grain class, growth stage varied primarily as a result of differences in planting date. This

increased class variability results in some confusion between the grain and broadleaf crops. Nevertheless,

good classification accuracies were obtained. The poorer classification results associated with the SPOT

image are likely related to the relatively late acquisition (August 6). However the difficulty in acquiring

cloud free optical imagery over this site earlier in the season reinforces the advantages of SAR in crop

monitoring.

Regression analysis established that some indicators of crop vigor � in particular Leaf Area Index

and crop height � were moderately correlated with radar backscatter. If crop height, biomass and Leaf Area

Index are used together to define crop condition and are included in a regression model, as much as 85% of

the variance in C-HH backscatter is explained. Since bivariate and multivariate results were highly

dependent on crop type, classification of crop type is required prior to interpretation of crop condition.

Results were encouraging for wheat and potato crops. However, backscatter was insensitive to variations in

corn growth and only moderately sensitive to differences in these indicators of canola crop condition. A

pair of early and mid season RADARSAT-1 images provided similar correlation results with crop

indicators when compared with a multivariate model using three channels of an acquired SPOT image.

Imagery gathered by Synthetic Aperture Radars can provide crop type and crop condition

information. However, for SARs like RADARSAT-1 (C-HH) and ERS-2 (C-VV) that acquire data in only

a single frequency and polarization, multi-temporal datasets are required. Future space-borne SARs such as

RADARSAT-2 and Envisat ASAR will provide imagery in multiple polarizations. These sensors promise

to significantly improve the amount of crop information provided in a single acquisition and will be

exciting new tools for crop monitoring.
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