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ABSTRACT

Conventional per-pixel classifierswill have limited effectiveness in the interpretation of
very high resolution satellite imagery. More flexible approaches will be needed which
rely on abroader set of scene attributes, especially spatial and contextual ones. This
raises issues related to methods for combining such diverse attributes in a consistent
decision-making framework. Evidential reasoning provides an alternative approach. A
methodology, involving segment-based labelling is described. The implications for
attribute selection, integration into complex recognition modules and the derivation of
evidential weights from training are discussed.

BACKGROUND

The availability of high resolution (1-3 m) commercia satellite imagery presents the
civilian remote sensing community with new challenges in the area of information
extraction. First, the highest spatial resolutions will be achieved by having the sensors
operating in monochrome or low spectral dimensionality modes. This means that a
greater emphasis must be placed on exploiting spatial and contextual attributes than has
been the case with, for example, Landsat TM images. Second, because of the wealth of
intra-object detail in this new imagery, higher level image primitives (e.g. lines, regions,
etc.) will be more useful in interpretation than pixels and these will be best exploited
within the frameworks of goal-directed, image understanding (IU) recognition strategies.

For the past 3 years, a program has been underway to develop and assess automated
recognition methods for high resolution data (Guindon, 2000). Our approach involves the
creation and processing of segmented renditions of monochrome images. For each
segment, both spectral and spatial attributes are derived as well as a spatial organization
table which links each segment to its adjacent (first order) neighbours. A goal-directed
strategy is used to identify and label a subset of segments belonging to object classes of
interest (e.g. roads, buildings, etc.). Thisinvolves the application of recognition modules
consisting of combinations of attribute tests couched in the form of rules. Each module is
tailored to a specific object class and therefore will only encompass those attributes most
suitable for distinguishing segment members of that class from all other segments/classes.
Each attribute within a module will have an associated evidential weight that quantifies



its relative discrimination effectiveness. When a segment is examined, each attribute
condition which is met adds additional evidence to support the hypothesis of class
membership. If the accumulated evidence exceeds a threshold, the segment is assigned
the relevant class label.

From a procedural point of view, goal-directed labelling differs significantly from
conventional per-pixel classifiers such as maximum likelihood ( hereafter referred to as
MLHD). MLHD is asingle pass operation where the probabilities of membership of all
possible classes are computed for each pixel and where a decision regarding the class
membership of each pixel is reached independent of al other pixels (i.e. in a context-free
manner). The maor features of a goal-directed approach, on the other hand, are quite
different and involve sequential and iterative execution of a series of class-specific
recognition modules leading to the gradual creation of a scene interpretation. In addition,
since only afew object classes may be of interest, a‘sparse’ interpretation as opposed to
a‘wall-to-wall’ classification may be sought. The need for iterative processing arises
from the use of semantic context (e.g. a segment may only be recognizable as being part
of aroad once nearby buildings have been identified). The other major use of context is
to direct searches for objects in restricted regions of an image thereby limiting testing to
only a subset of the full segment population.

The objective of this paper isto summarize some of the principal issues and underlying
assumptions related to the exploitation of combinations of diverse attributes within the
framework of a goal-driven segment labelling strategy. To aid in the discussion, we
compare and contrast our evidence accumulation labelling (EAL) approach (see Guindon,
2000) with MLHD. The issues considered include attribute (band) selection and
combination, training and decision rule definition.

ATTRIBUTE SELECTION AND COMBINATION

(8 MLHD

In conventional MLHD classification of multi-spectral images the principal attributes
of apixel areits radiometric responses (grey levels) in various spectral bands. These
‘spectral attributes’ form the components of an overall spectral vector. Implicit to this
assumption that the spectral axes are orthogonal and that these bands have some measure
of equivalence. If spatial (texture) information is to be exploited as well, then it is most
convenient to encode texture measures in the form of ‘ pseudo-bands' that can form
additional dimensionsin an overall spectral-spatial space (e.g. Haralick, 1979). Once
again one must assume that there is dimensional equivalence of all attributes and that
compliance with an analytical form of the probability density function (PDF), typically a
multi-variate normality condition, still applies. The author is unaware of any studies that
have addressed the validity of these assumptions.

Another key feature of MLHD classification is the requirement that the same attribute
set (i.e. vector space) be used to evaluate each class membership probability. This
presents a number of challenges when selecting a suitable attribute set. In the interest of
computational efficiency and improved classification performance, it is desireable to
limit vector dimensionality in order to eliminate redundant attributes and attributes with
low class discrimination power that may lead to enhanced inter-class confusion. The



selection criteria are generally based on maximization of inter-class divergence measures
as viewed in this vector space. These measures take into account inter-class grey level
differences and intra-class attribute covariance.

(b) EAL

In adiverse attribute regime involving spatial and contextual measures that cannot be
expressed in a‘pseudo-band’ form, there are no rational arguments to support an a priori
anaytical PDF form for individual attributes let alone for ones in combination. In
addition, many attributes will only have a meaningful truncated range of values for a
given class and hence the concept of a continuum of probability of occurrence over a
broad range is inappropriate. For example, roads may exhibit a range in widths and
therefore one can compute some dispersion measure to characterize that range (e.g.
standard deviation) but using thisin a continuum sense to compute probabilities of
finding 1 km wide roads is meaningless. The acceptable value range of an attribute such
as width then must be set by physical arguments or by the observed range of values of
training example, i.e. in amanner independent of other object classesin the scene. This
differsfrom MHLD where decision boundaries are governed by relative inter-class
probability levels.

A second important fact is that not all attributes are applicable to al classes of objects.
For example, ‘width’ may have relevance to roads but will be of limited usein
identifying agricultural fields and be of no usein recognizing forested areas. Thisimplies
that the recognition module of each object class should consist of a unique set of
meaningful attributes.

Third, one must differentiate between two types of attributes in a recognition module,
namely, those will be characteristic of every segment member (hereafter referred to as
requisite attributes) and those which are characteristic of the class but will not necessarily
be exhibited by every member (corroborative attributes). Taking the examples of roads
again, width and measures of logical connectivity within an overall network may be
considered requisites for a new road segment candidate while radiometric similarity to
nearby road segments may be considered supporting or corroborative evidence. It isonly
necessary to estimate the evidential weight of the latter attribute category since requisite
attributes, by definition, have a statistical certainty of 1 and act as a screen to limit the
candidate segment pool which must be examined. EAL is based on the premise that the
more corroboration found the higher the confidence in the class label hypothesis.

Finally, one has to deal with inter-attribute correlation or covariance. Most evidential
reasoning models assume statistical independence (e.g. Haralick and Shapiro, 1992).
Because EAL sums evidence from attributes in a scalar sense rather than a vector one, it
isdifficult to utilize correlation. On the other hand, it can be estimated using statistical
binomial theory (Guindon, 2000).

TRAINING
(@) MHLD

There are two key features of training per-pixel classifiers such as MHLD. Firgt, itis
most convenient to acquire training samples in sets of contiguous blocks rather thanin a



truly random way. Implicit in this approach is that inter-sample spatial auto-correlation is
minimal. Second, since typical images contain hundreds of thousands or millions of
pixels, it isfeasible to capture thousands of training samples at least for the major
thematic classes of interest. This means that the statistical uncertainty in derived
parametric measures will be small.

(b) EAL

Segment-based labelling faces a number of different challenges. First,
gpatial/contextual attributes are useful because they exploit an underlying spatial
organization of features in a scene (e.g. road segments are not randomly distributed but
form alinked network). This organization cannot be captured through random sampling.
Instead, ‘wall-to-wall’ training acquisition must be used in restricted training sub-scenes.
Second, the number of segmentsin a scene will be much smaller than the number of
pixels. In our studies (Guindon, 2000), atypical residential sub-scene at 2 metre
resolution covering 256X 256 pixels will typically be partitioned into about 2000
segments of which only 20-30 may be road segments. This implies that the number of
training segments that can be practically captured will be small and hence the limitations
of small number statistics must be taken into account when computing evidential weights
and inter-attribute correlation.

DECISION RULE DEFINITION

(@) MHLD

The training data define the mean class vectors and the covariance matrices for each
class. From thisinformation, one can calculate, for any pixel vector, the probability of
membership in each class and therefore select the most probable class. The key points are
that the class probabilities can be assessed simultaneously and need only be computed
once since a decision regarding class membership for a pixel isindependent of its
surroundings.

(b) EAL
Evidential accumulation relies on a completely different approach.

(1) Because the processing is goal-driven, one addresses the probability of membership
inone class only at atime, i.e. the question being dealt with is of the form ‘is there
sufficient evidence to support the hypothesis that segment A is a member of object
class C?’. In this sense al non-class C segments are grouped together in asingle
population. Thus the evidential weight assigned to an attribute must be related to the
ratio of the probability that a class C segment meets the attribute test condition
divided by the probability that a segment, not of class C meets the attribute test
condition. It should be noted that this approach differs from probabilistic inexact
reasoning methods such as Dempster-Shafer and diagnostic expert systems such as
MY CIN (see, for example, reviewsin Haralick and Shapiro, 1992 and Rich, 1983).
In these cases the numerical measure of belief (evidence) is associated with the
absolute probability that a hypothesisis true given that the attribute condition is



observed. In our case, evidential weight measures the relative merit of an attribute
within a specified attribute group.

(2) Since most recognition modules will contain a number of corroborative attribute
tests, afinal class membership decision must be based on an evidence accumulation
threshold. This evidence threshold can be estimated by summing the ratios described
above, each weighted by the absolute probability that any segment of class C will
meet the attribute test condition.

(3) In the above sense, evidential weights can be considered measures of belief since
they are pro-active measures of identification. On the other hand, EAL is an iterative
procedure and one must allow for the possibility that alabel assigned to a segment in
an early iteration may be found to be incorrect in later stages when a more complete
(contextual) interpretation become available. Continual consistency checking forms
an integral part of EAL. Fortunately the concept of measures of disbelief, expressed
as negative evidential weights, is readily supported and can be used to eliminate
commission errors. A ‘stable’ interpretation is reached when both measures of belief
and disbelief do not change the label status of any segment during an iteration.

CONCLUSIONS

The low spectral dimensionality of imagery acquired by very high resolution satellites
will require that a greater reliance be placed on spatial/contextual attributes to achieve an
optimum scene interpretation. The ‘vector’ attribute representation, currently in usein
per-pixel classification isill-suited to diverse sets of attributes which go beyond spectral
and pseudo-spectral features. An aternate approach isto use goal-directed evidential
reasoning. The underlying issues and assumptions of one such approach, EAL, based on
segment labelling, have been discussed through a comparison with conventional
maximum likelihood classification. Although EAL is more complex, involving iterative
processing and on-going consistency checking, evidential measures including inter-
attribute correlation can be derived from properly acquired training data.
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