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ABSTRACT1: | When processing satellite SAR
scenes in a production environment, it has been
found that image quality distortions (radiometric,
geometric, and phase) that occur in a few percent
of the scenes can be traced to errors in the Doppler
centroid (DOPCEN) estimators. Radiometric scal-
loping is particularly an issue with ScanSAR scenes
as they have more sensitive DOPCEN tolerances.

In this paper, we examine some troublesome
RADARSAT-1 scenes, in which Doppler centroid es-
timation errors are frequently caused by radiometric
discontinuities in the scene. After reviewing the op-
eration and performance of several current Doppler
estimators, we propose a scheme based on a spatial
diversity concept, in which areas that cause poor es-
timates are removed from the estimation process.

1 Introduction

Doppler Centroid (DOPCEN) estimation continues
to be an important [1] and sometimes overlooked
component of SAR processing. The issue is espe-
cially acute in the case of RADARSAT-1 ScanSAR
processing, where the estimate must be accurate to
approximately 5 Hz in order to avoid radiometric ar-
tifacts such as scalloping in the processed images [2].

In the last 10 years, a new class of estimator has been
developed based on the phase of the received signal,
rather than on the spectral amplitude. The concepts
were developed by Madsen [3], Bamler and Runge
[4], and more recently by Wong and Cumming [5]. It
is generally acknowledged that the phase-based es-
timators can be more accurate than the amplitude-
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based estimators, provided their limitations are un-
derstood, and they are applied properly.

We consider the DLR [4], the MLCC and the MLBF
[5] algorithms, as well as the classic spectral-�t algo-
rithm. We have found that their performance di�ers
as a function of radiometric discontinuities, partially-
exposed targets, noise levels, and scene contrast.

In this paper, we review the operation of the DOP-
CEN algorithms, compare their performance, explain
why it is advantageous to combine estimates from
more than one algorithm, and propose a new esti-
mation scheme that uses spatially diverse parts of
the scene to obtain reliable estimates.

2 Review of Estimators

In this section, we will review the algorithms used in
the most common DOPCEN estimators. Because of
space limitations, we will concentrate on estimates of
the \fractional-PRF" part of the Doppler centroid.
Obtaining a good fractional-PRF estimate is a pre-
requisite to obtaining a good Doppler ambiguity es-
timate, and in many cases, the associated Doppler
ambiguity estimator has similar estimation proper-
ties with respect to data anomalies.

2.1 Classic spectral amplitude �t

This was the �rst DOPCEN estimator [6] used for
satellite SAR data, and is still in common use. The
shape of the azimuth magnitude spectrum is av-
eraged over a suitable range/azimuth window, and
compared with the expected shape based on the az-
imuth beam pattern and received SNR [6, 7]. A
correlation is done between the measured and mod-
elled azimuth spectrum to determine the Doppler fre-
quency of the peak of the measured spectrum. Ac-
curacies are typically a few tens of Hz when a million
samples are analyzed.



2.2 Phase increment methods

In 1989, Madsen recognized that the centroid could
be measured by �nding the average phase incre-
ment in the azimuth data [3]. Later, Bamler and
Runge of DLR, and Wong and Cumming applied the
same principle to Doppler ambiguity resolvers [4, 5].
We refer to the latter algorithms as the DLR and
the MLCC (for Multi-Look Cross-Correlation) algo-
rithms.

Considering a point target, the change in phase be-
tween one azimuth sample and the next varies lin-
early with time along the exposure of the target, as
shown in the top panel of Fig. 1. In the bottom panel,
we show the individual phase increments in the com-
plex plane, going from the beginning of the exposure
A to the end B. We also show their vector sum (the
longer vector with the circle at its end). Since the
target is strongest at the Doppler centroid, and its
exposure is symmetrical about the centroid; �nding
the average phase increment (vector sum) along the
whole exposure will then give the Doppler centroid.
A target which is only partially exposed in the esti-
mation window (or any other non-symmetry in the
exposure) will bias the estimate. Accuracies of the
phase increment methods are generally a little better
than the classic method.
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Figure 1: Principles of phase increment methods.

2.3 MLBF algorithm

Wong and Cumming developed an additional
method of �nding the Doppler ambiguity when a
colleague at MacDonald Dettwiler, Robert Deane,
recognised that the beat frequency formed by mul-
tiplying the received signal from radar systems of
slightly di�erent centre frequencies was proportional
to the unaliased Doppler centroid [8]. The di�er-
ent radar frequencies are obtained by extracting two
looks from the range spectrum. The method is not
accurate enough to estimate the fractional-PRF cen-
troid to a useful accuracy, but it is generally accurate
enough to estimate the ambiguity.

3 RADARSAT-1 Data

We investigated four RADARSAT-1 scenes which
had DOPCEN estimation errors. They all had severe
azimuth radiometric discontinuities. An example is
the standard beam 7 scene shown in Fig. 2. The
scene is centred at 49.94o N, 63.09o W, and the data
were collected on the 142nd day of 1996, at 10:13:15
UTC. The spacecraft heading was 195.6o (descending
orbit). The scene contains part of the north shore of
the St. Lawrence River in eastern Canada (top) and
Anticosti Island (bottom). The bright land beside
the dark water creates a radiometric discontinuity of
up to 16 dB.

Also noted in the left of the scene is a darkening of
a portion of the land area caused by raw data sat-
uration. This occurs because the Automatic Gain
Control (AGC) scheme adopted for RADARSAT-1
measures the signal strength in the �rst quarter of
the range swath [9], and cannot adapt to the bright
land in the far range (left) part of the scene with the
four bits available. This artifact, which is not uncom-
mon in coastal scenes, presents a special DOPCEN
estimation case.

3.1 What upsets estimators

If the radar SNR is high enough, and equal-strength
targets are spread uniformly throughout the estima-
tion window, then most DOPCEN estimators give
excellent results. In examining scenes which gave
poor Doppler estimates, the following scene charac-
teristics were identi�ed as having a possible e�ect
upon the estimation accuracy:

� Azimuth radiometric discontinuities

� Range radiometric discontinuities

� The level of scene contrast

� Low SNR

It was soon found, as indicated in Section 4.2, that
azimuth radiometric discontinuities were the most
troublesome. We concentrate on these in this paper.



Figure 2: RADARSAT-1 Anticosti scene (beam S7)
cCSA.

4 Initial Estimator Tests

Most estimators work on a block basis, e.g. on
4096�4096 samples. To examine the behaviour of
the estimators on di�erent scene features, we di-
vided the scene of Fig. 2 into relatively small blocks
(256�1024 samples or 4.1 km in range by 5.2 km in
azimuth), and applied the estimators to each block
individually. The data were range compressed but
not azimuth compressed. This is the point in the
SAR processing ow where the DOPCEN estimation
is usually carried out.

4.1 Measuring scene statistics

Before running the estimators, we measured the
radiometric gradients, the spectral distortion, the
energy (SNR) and the contrast of each block.
The range and azimuth radiometric gradients are
shown in Fig. 3, where the prominent edges of the
land/water boundaries are clearly seen. To observe
the SNR and the spectral distortion, it is useful to
plot the azimuth magnitude spectra averaged over
each block. In Fig. 4, the spectra of azimuth block
numbers (rows) 17{24 are plotted, taken down the
left-hand side in Fig. 3 (range block (column) 28).
Low signal strength can be observed in rows 21{24,
and spectral distortion can be seen in row 20.

4.2 Simulation tests

The estimators were �rst tested on simulated data.
Millions of point targets were used to simulate dif-
ferent scene contrasts and radiometric discontinu-
ities [10].
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Figure 3: Range and azimuth radiometric gradients
of range compressed Anticosti scene.

Simulated data were �rst tested with di�erent levels
of contrast by inserting strong targets between av-
erage strength targets. It was found that the DLR
and MLCC algorithms worked best with low con-
trast scenes in which the data are more uniform and
the azimuth spectrum is undistorted. In low contrast
scenes, partial exposures are not so damaging, as the
partially-exposed targets at the start of the estima-
tion window are compensated by others of similar
strength at the end of the window.

On the other hand, the MLBF algorithm was found
to work best on scenes with high contrast. In fact,
the MLBF algorithmworks best when only one dom-
inant target is present in each range cell when the
beat frequency is clearest. When many targets of
roughly equal strength exist in a range cell, they mix
with one another and the beat frequency becomes
'smeared out'. The MLBF algorithm is not as sensi-
tive to partial exposures, as the beat frequency does
not change so much along the target's exposure.

When uniform scenes were simulated, but with range
and azimuth radiometric discontinuities, it was found
that the range discontinuities had little e�ect on es-
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Figure 4: Azimuth spectra of column 28 of the An-
ticosti scene.

timator performance. However, the azimuth discon-
tinuities had a pronounced e�ect on the estimators,
particularly with the classic, DLR and MLCC esti-
mators. When the data SNR was low, the standard
deviation of the estimates increased, but the esti-
mates were not biased as long as the spectrum was
symmetrical. Because of the di�erent sensitivities to
scene features, we recommend running the comple-
mentary MLCC and MLBF algorithms in parallel,
and using statistical quality measures to select the
best estimate [5].

Based on these tests, it was determined that the ma-
jor impact on the estimators was caused by partial
azimuth exposures. Partial exposures occur when a
strong target is present, but only part of the target
is present within the estimation window.

4.3 RADARSAT-1 data tests

The 256�1024 sample data blocks were arranged in
26 rows and 28 columns, as indicated by the annota-
tion in Fig. 3. This was convenient to run the estima-
tors down columns or across rows, to allow unwrap-
ping of estimates where necessary, and to provide a
useful display format.

Figs. 4 and 5 show a typical set of results, when the

estimators were run on the blocks going down column
28 (the left hand column). This column spans a rep-
resentative set of radiometric discontinuities and we
can observe the estimator behaviour on these scene
features. In this case, the spectral �t estimator was
used.

The upper panel of Fig. 5 shows the fractional-PRF
DOPCEN estimates, along with a straight line �t (it
has been found that DOPCEN estimates are typi-
cally linear with azimuth time, over periods of tens
of seconds). The next three panels of Fig. 5 show:
the block rms value; how close the magnitude spec-
trum �ts the expected high-SNR shape; the max/min
ratio of the spectra in dB (almost the same as the
\goodness of �t" curve); and the range and azimuth
gradients.

The following points can be observed in this typical
data set:

� The estimates conform well to the expected lin-
ear behaviour with azimuth time, except where
the data undergoes substantial azimuth discon-
tinuities. The discontinuities can be observed
in the second and fourth panels (solid line) of
Fig. 5, in the top panel of Fig. 3, as well as in
the image itself, Fig. 2.

� The estimates taken in the low-energy water re-
gions seem to be quite good despite the lower
SNR and the poor spectral �t. See rows 10 to
13 and 22 to 26. The poor �t is due to the high
noise oor, but the symmetry of the spectrum
still yields good estimates.

� The AGC change around rows 16 and 17 does
not a�ect the estimator appreciably in this case.

We ran similar tests on the other rows and columns of
this scene. We also used the MLCC, DLR and MLBF
estimators, and examined three RADARSAT-1 �ne
beam scenes with DOPCEN estimation di�culties.
From this experience, we deduce that the azimuth
radiometric gradient, as shown in the solid line in
Fig. 5, is the best single predictor of poor estima-
tor performance. We observe that if we can avoid
the blocks which upset the estimators, a good global
estimate can be made from the set of \good" blocks.

5 Global Fitting Strategy

Because we can recognize which blocks are likely
to bias the DOPCEN estimate, and the estimates
should be taken over as wide an area as possible, we
propose a global-�tting algorithm based on the fol-
lowing strategy:

1. Use of spatial diversity:

� Use as large an area as possible;
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Figure 5: Summary of results of column 28 of the
Anticosti scene.

� Divide the area into small blocks.

2. Reject blocks based on quality criteria such as:

� scene statistics, and/or

� estimator deviations.

3. Fit DOPCEN model globally over blocks:

� constrain the �t to a sensible shape;

� weight the blocks based on quality criteria.

The structure of the algorithm is outlined in Fig. 6.
The key to the success of the algorithm is to begin
with as large an area as possible, and to make a
careful choice of the quality criteria used to exclude
bad blocks from the �nal estimate (a mask is used
to exclude bad blocks during the iterations). It was
found best to begin by excluding blocks which had
a higher than normal azimuth radiometric gradient,
which ensures a reasonable initial �t, then �nish by
excluding additional blocks on a \worst-deviation"
basis.

The maximum number of blocks that can be ex-
cluded is set to an upper limit, and if this number is
exceeded, the iterations are redone with a di�erent
block size. Physical models for the Doppler based on
the satellite attitude (along with the orbit and earth

rotation) can be successfully used to predict the func-
tional form of the DOPCEN curve [11, 12, 13], and
constrain the estimate to a plausible shape.
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each small block
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Compute block

deviations within mask
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using mask
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threshold ?
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deviations from fit mask
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Model

Constraints

global_fit.eps

Figure 6: Global �t DOPCEN estimation algorithm.

5.1 Global �t results

The spectral �t estimator was run on blocks from
every row and the results are shown in Fig. 7. The
results of each block are reasonably smooth except
when the azimuth gradient is large (compare Fig. 7
with Fig. 3).

We then applied the global �tting strategy of Fig. 6
with the bad blocks removed according to their az-
imuth gradient. More and more blocks are removed
until the deviations from the �t of the remaining
block estimates are less than a selected threshold (70
blocks of 728 were removed). For this scene, we rec-
ognized than the water areas had a Doppler bias (see
below), and we also removed these from the global
estimation. The following linear/quadratic �t was
performed:

FDC = �1 + �2 a+ �3 r + �4 r
2 Hz (1)

where a is the azimuth block number centred on
row 21.5 and r is the range block number centred
on column 14.5. The �t coe�cients are:

� = [ 1415:3 8:4 34:4 � 0:07 ] (2)



and the result is shown in Fig. 8. Fig. 9 shows the de-
viations of each of the blocks from the �tted surface.
Examining the 66 \good" blocks near the middle of
Anticosti Island, the bias between the �tted surface
and the 66 blocks is 0.006 Hz, and the rms deviation
is 7.3 Hz. In the top 4 rows (112 blocks covering the
northern mainland area), the bias between the �tted
surface and the 66 blocks is -0.03 Hz, and the rms
deviation is 12.7 Hz.

Note that the deviations shown in Fig. 9 do not di-
rectly relate to the error in the global �t. However,
if the functional form of the �t is correct (i.e. the lin-
ear and quadratic terms are correct), and the block
estimates are uncorrelated and unbiased, then the
standard deviation of the global �t would be 1=

p
N ,

when N blocks are used in the �t. Using this line
of reasoning, we can say the small block deviations
observed suggest that the global �t is likely good to
5 Hz or better over the land area.

An interesting observation is that there is a small
bias of 35 Hz in the river area south-west of the is-
land, which could be attributed to a current of 1.5
m/s. A smaller bias of 18 Hz exists in the water area
in the centre right of the scene, presumably where
the current is less. Other investigations [14, 2] sug-
gest this is reasonable.
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6 Conclusions

In this paper, we have worked on the problem of
bad DOPCEN estimates in RADARSAT-1 scenes.
These occur most often when the radar passes over
prolonged scene features where there is a prominent
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Figure 8: Quadratic surface �tted to good block es-
timates.

change in radiometry, as often happens on land/sea
boundaries.

We have taken the approach of �nding out what
scene features upset the estimators most, and de-
signing a global estimation scheme which excludes
areas of the scene which cause bad estimates. The
key to success of the algorithm is to work with as
large an area as possible, and to choose a quality cri-
teria which reliably identi�es the bad blocks. There
may also be a requirement to use adaptive methods
where local altitude [15] or currents [2] may exist.

The algorithm is ideally suited to ScanSAR data,
because of the large area available to the estimator.
The large area increases the probability that bad ar-
eas can be avoided by the estimator. Also, ScanSAR
has particularly demanding DOPCEN accuracy re-
quirements, and we have shown that the global �t
estimator shows the promise of meeting the ScanSAR
estimation requirements of 5 Hz.
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