
Preprint/Prétirage 

A COMPARISON OF CLUSTERING STRATEGIES FOR UNSUPERVISED 
CLASSIFICATION 

 
 
 
 
 
 

 
 
 

Josef Cihlar1, Rasim Latifovic1, Jean Beaubien2 

1) Canada Centre for Remote Sensing, Ottawa, Canada 
2) Canadian Forest Service, Ste-Foy, Quebec 

 
 
 
 
 

Submitted to: 
Canadian Journal of Remote Sensing 

 
Date: October 22, 1999 
Revised: February, 2000 

 
 
 
Corresponding author:  
 
Josef Cihlar 
Canada Centre for Remote Sensing 
588 Both Str. 
Ottawa, ON 
K1A 0Y7 
josef.cihlar@ccrs.nrcan.gc.ca 
      
ABSTRACT 

A frequently employed image classification strategy is to produce a large number of spectral clusters. 

However, only a relatively small number of clusters is preferred for labelling, to minimise both analyst 

effort and the amount of independent information that must be obtained. In this study, we have compared 

various unsupervised classification algorithms in terms of their ability to define spectrally homogenous 

and spatially compact clusters. After an initial evaluation of several algorithms, we have focused on two 

that employ different strategies for locating cluster means: an iterative approach represented by fuzzy K-

means (FKM), and a sequential one as used in the Classification by Progressive Generalisation (CPG). 



We have also tested a combination of these two techniques. In the initial tests we found that among the 

iterative algorithms, FKM yielded more spectrally homogenous clusters than others. We then compared 

initial clusters derived with FKM and CPG in three summer Landsat TM data sets representing different 

land cover types and patterns from various ecoregions of Canada. After classifying the data to 50 clusters, 

the average spectral homogeneity was generally (but not always) better for FKM clusters, while average 

spatial compactness was always higher in CPG. The magnitude of the spectral and spatial differences 

varied between images. We also found that a combined approach, in which a large number of clusters (80 

in this case) is produced by FKM and then merged using CPG, yielded the most consistent clusters among 

images in terms of both spectral homogeneity and spatial cohesiveness. While the spectral and spatial 

cluster differences were not large (~10%), they are considered significant in the context of land cover 

mapping. Although the performance was not compared for a smaller number of clusters, given the 

principles in the two methods it is expected that the combined approach would perform better for fewer 

clusters. However, even 50 clusters are sufficiently few to be efficiently labelled using ancillary data. The 

suitability of this procedure for a particular data set can be readily established using the equations 

provided. 

 

 

1.0 INTRODUCTION 

Digital classification of multispectral satellite images is commonly used to obtain information on land 

cover (Cihlar, 2000). In land cover classification, the goal is generally to obtain relatively few classes 

(~10-30). However, a large number of combinations of spectral values from individual bands is typically 

found in the images. The aim of classification techniques is thus to reduce the large number of individual 

combination to a small number of classes. Basically, this approach leads to a classification of pixels, 

while the objective of land cover classification is an identification of patches/polygons with homogenous 

land cover characteristics. 

 

The classification algorithms developed since 1970s emphasise efficient use of spectral characteristics of 

remotely sensed data for two reasons. First, the ability to make accurate spectral measurements is a strong 

advantage of multispectral sensors onboard satellites or aircraft. Second, digital processing is well suited 

to analysing spectral properties of individual pixels but poorly able to analyse spatial properties of an 

image. The initial digital classification algorithms and associated hardware had many limitations, and 

consequently visual interpretation of enhanced images was a superior method for land cover mapping for 

a number of years (e.g., Beaubien, 1986). However, at the present time with an automated approach it is 
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possible to extract at least as much as or more information from digital images than an experienced 

analyst can obtain through visual image interpretation.  

 

Among the various classification approaches, unsupervised image classification methods are designed to 

make the best possible use of the overall spectral content of an image, with the important condition that 

these remain as thematically uniform as possible. Two basic strategies have evolved, iterative and 

sequential. In an iterative procedure such as K-Means or ISODATA (Tou and Gonzalez, 1974), an initial 

number of desired clusters is selected, and the centroid locations are then moved around until a 

statistically optimal fit is obtained. In a sequential algorithm such as Classification by Progressive 

Generalisation (CPG; Cihlar et al., 1998), the large number of spectral combinations is gradually reduced 

through a series of steps using various proximity measures.  

 

To ensure that no important information is lost at the outset, the initial unsupervised classification is often 

prepared with a large number of clusters, typically 100-400 for a Landsat TM scene (Homer et al., 1997; 

Driese et al., 1997; Vogelmann et al., 1998; Cihlar et al., 1998; Beaubien et al., 1999). However, the 

thematic content cannot be evaluated until the number of clusters is relatively small so that they can be 

placed into the desired classification legend. Thus, given the large difference between the many spectral 

clusters and the few land cover classes (~10-30) the question of cluster merging inevitably arises. The 

spectral merging approach works well up to a point at which the spectrally closest clusters are 

thematically different, i.e. belong to different classes of the classification legend. If the number of clusters 

at that point remains large it may even be difficult to ascertain which clusters should not be merged 

further. This could be because the spatial distributions of the clusters and their relation to land cover are 

difficult to perceive or because the independent information (ground truth) is not sufficiently detailed. At 

this stage, the spectral information in the image can be considered to have been used to the full extent. 

However, there remains the possibility of using spatial similarity criteria. Traditionally, image 

characteristics such as pattern, texture, shadows etc. provided the basis for land cover mapping through 

photo interpretation (Colwell, 1960; Rabben, 1960). The interpretation was done to identify land cover 

polygons, not individual pixels.  

 

In this paper, we evaluate the quality of spectral clusters produced by the sequential and iterative 

clustering methods. The aim is to obtain spectral clusters that retain as much as possible of the detailed 

information on vegetation composition (species, density, age, understory) and other surface properties 

that was present in the original satellite data. We also describe and test a new way of combining spectral 

and spatial proximity measures in the cluster merging process. This technique can be implemented 
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automatically and is guided only by parameters controlling the classification algorithm. Following an 

initial comparison of four unsupervised classification procedures, we concentrate on a comparison of two 

strategies; classification into a pre-specified number of clusters using iterative procedures, and a 

sequential (uni-directional) merging based on spectral and spatial distance criteria.  

 

 

2.0 METHODOLOGY 

2.1 DATA 

We selected three Landsat TM scenes that represent different land cover types and patterns from various 

ecological regions of Canada (Table 1).  

Prior to classification tests, bands 3, 4 and 5 of the image were contrast-stretched (see  detailed 

description in Beaubien et al., 1999). The contrast strech limits were defined using typical scene elements 

with extreme radiances: dark (water) and bright (broadleaf forest in TM band 4, non-vegetated areas in 

bands 3, 5). No atmospheric corrections were performed, but this does not affect the results of a relative 

comparison. The same input data were used for each algorithm.  

 

2.2 CLASSIFICATION ALGORITHMS 

The three images were classified using three unsupervised classification algorithms: K-Means and 

ISODATA (Tou and Gonzales, 1974); fuzzy K-Mean (Bezdek, 1973); and CPGcs   (Latifovic et al., 

1999); only selected image/algorithm combinations were tested. Table 2 contains the parameters and 

thresholds for each algorithm. 

 

 

2.2.1 K-MEANS CLASSIFIER  

In K-Means, a sequence of iteration starts with an initial set  (Tou and Gonzales, 1974). At each 

iteration t  all pixels  are assigned to one of the clusters as defined by nearest neighbour 

principle. A new centre for a cluster is computed as follows:    
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The result of the K-Means clustering is influenced by the number of cluster centres specified, the choice 

of the initial cluster centres, the order in which the samples are taken, and the geometrical properties of 

the data.  

 

In this analysis we used PCI’s implementation of K-Mean clustering methodology (KCLUS ;PCI, 1999) 

using the parameters in Table 2. In the PCI implementation, the algorithm locates the initial cluster 

centres diagonally along the n-dimensional histogram. 

 

2.2.2 FUZZY K-MEANS (FKM) 

The fuzzy K-Means algorithm (Bezdek, 1973) is based on the minimisation of the following objective 

function, with respect to U, a fuzzy K-partition of the data set, and to V, a set of K prototypes:  
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where Xj is the j-th pixel, Ci is the centroid of the i-th cluster, uij is the degree of membership of Xj in the i-

th cluster, d(Xj,Ci) is the Euclidean distance between Xj and Ci, N is the number of data points, Ncl,end is the 

number of clusters specified (Table 2). The parameter q is the weighting exponent for uij and controls the 

"fuzziness" of the resulting cluster. The PCI implementation (FUZCLUS; PCI, 1999) of fuzzy K-mean 

clustering methodology was used to produce the classified images. In this case, q=2 and the initial cluster 

centres are located diagonally along the n-dimensional histogram. 

 

2.2.3 ISODATA  

The ISODATA algorithm is similar in principle to the K-Means procedure in the sense that cluster centres 

are iteratively determined (Tou and Gonzales, 1974).  However, ISODATA represents a fairly 

comprehensive set of additional procedures that have been incorporated into an iterative scheme. The 

ISODATA procedure consists of the following steps: set up processing parameters; distribute the N 

samples among the present cluster centres; discard sample subsets with fewer than θn members; update 

each cluster centre; compute the average distance of samples in clusters domain; compute the overall 

average distance of the sample from their respective cluster centre; find the standard deviation vector; 

find maximum component of standard deviation vector; split clusters; and merge clusters. 

 

2.2.4 CLASSIFICATION BY PROGRESSIVE GENERALIZATION (CPG) 

CPG is an unsupervised classification approach which finds means for representative spectral clusters in 

the data set, assigns every pixel to a cluster, and sequentially combines similar clusters until the remaining 
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clusters can be assigned thematic labels (Cihlar et al., 1998). Latifovic et al. (1999) showed that the 

sequential cluster merging is more effective if based on spectral proximity constrained by cluster size. 

This approach is adopted in this paper and is briefly summarised below.  

 

CPG merging procedure  

The main decision rule for cluster merging in CPG constrained by cluster size is (Latifovic et al., 1999): 

 

 If (Ncurrent>Ncl,end) and (NPi<NPl) and (NPj<NPl) and (SDij≤SDmax) then merge. (1) 

 

where Ncurrent is the current number of clusters; Ncl,end is the number of desired clusters (determined from 

SDij table and SDmax value); NPi, NPj are the sizes of clusters i and j; SDmax is the maximum allowable SD 

for i, j to merge (Eq. 2); NPl is threshold cluster size to consider a cluster for merging (Eq. 3); SDij is the 

spectral distance of centroids of clusters i and  j (Eq. 4):  
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where: 

qk  is  number of digital levels per quantised level in the kth spectral dimension (Cihlar et al., 1998); 

NPa is the average cluster size in the input classified image (prior to cluster merging); 

Ncl,st is the number of clusters in the input classified image;

Ci,k is the mean cluster DN value for spectral band k of cluster i, i≠j;  

Nk is the number of spectral bands.  

 

Note that Ncl,end and SDmax could also be specified by the analyst but the above equations allow automating 

the process.  

 

 5



Use of spatial distribution in the CPG merging process 

Spectral similarity SD and spatial coefficient IC are used to decide whether clusters i and j should be 

merged to create homogenous land cover polygons, with low SDij and high ICij values indicating that i 

and j are close both spectrally and spatially. Given the many spectral clusters and the frequently mixed 

pixels in images of land at most spatial resolutions, at least some of the clusters will represent gradients 

within cover types, i.e. within land cover polygons. These spectral clusters should therefore be merged 

first. 
 

To consider the spatial attributes of the clusters in merging, spatial adjacency between clusters i, j, SAi,j, is 

defined as: 

 

i

ii
ii NP

NA
SA = ,        (6a) 

),( ji

ij
ij NPNPMin

NA
SA = ,      (6b) 

 

where NP is the number of pixels in i or j, and NA is the number of times a pixel from the first cluster in 

the subscript is adjacent to a pixel in the second one. The smaller NP value is used in the denominator 

because of the preference for merging smaller clusters with large ones. SA thus refers to the probability of 

adjacent pixels belonging to the cluster(s) of interest. For one cluster, SAii can be considered as a measure 

of clumping and is akin to the contagion index (O’Neill et al, 1988). Spatial coefficient IC is then defined 

as the ratio of intermixing over clumping: 
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While SD and IC could be used separately, this creates the problem of their relative importance and 

weight. Therefore, it is preferable to combine the two measures. One possible way starts with determining 

SD and IC of a given cluster in relation to all other clusters. Given the premise that some clusters 

represent gradients between cover types, clusters within the same cover type should be spatially and 

spectrally closer compared to those from other cover types. A plot of SDa,j vs. ICa,j for cluster a in relation 

to other clusters j should therefore have a consistent shape, decreasing IC (Eq.7) as SD increases (clusters 

becoming more different). We have found that an exponential relationship  
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IC=b*SDd         (8) 

 

fits best to most clusters, especially for clusters that are spectrally  similar (only clusters close than SDmax 

are used to find parameters b and d). An example is shown in Figure 1. The r2 value for the curves was 

found to vary between 0.65 and 0.95, for Landsat-derived clusters representing boreal ecosystems. Points 

on the curve show clusters that show an ‘average’ spectral and spatial distance from cluster a. Points 

above (below) the curve represent clusters that are unexpectedly spatially close to (far from) a. Thus, for 

merging with a, spectrally similar clusters j (SDaj ≤ 3SDmax used here) which are above the curve should 

be given first consideration. .  

 

To combine IC with SD, one can find a location on the best-fit curve (Figure 1) which represents the 

particular combination (SDa,j, ICa,j). This location will be between two extreme points on the curve 

corresponding to a) y=ICa,j (i.e., the weight of SDa,j is zero) and b) x=SDa,j (weight of ICa,j is zero). When 

considering both equally (case c), the point should lie between the two extremes, projected from (SDa,j, 

ICa,j). Note that conventional spectral merging without spatial considerations corresponds to case b). Case 

a) emphasises spatial adjacency; this could lead to contiguous polygons containing spectrally dissimilar 

cover types. Case c) locates an intermediate position that would be expected given the spatial relationship 

of a and j in the image and giving equal weight to each; the numerical solution is: 
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where SDa,j,corr is the new spectral distance between a and j. 

 

To apply the CPG algorithm, the normal procedure (steps 1-6, Cihlar et al., 1998) was followed that 

yields a large number of initial clusters (Table 2) after minimum distance classification. Next, the above 

relations (Eq. 6-9) were employed to correct spectral distances among clusters, and then the clusters were 

submitted to the decision rule in Eq. 1. Since CPG does not require that the number of clusters be pre-

specified, the program was modified to stop merging at the number of clusters desired for comparison 

with other algorithms.  
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2.2.5 FKM-CPG 

For the purpose of comparison between the merging algorithms, FKM was used to produce classification 

with 80 clusters, and then Eq. 1 and 4-9 were employed to merge these to 50 clusters. 

2.5 ANALYSIS  

The analysis was carried out assuming that land cover classes have consistent spectral signatures and 

secondly, that the resulting land cover polygons should contain as many contiguous pixels as possible, all 

else being equal. This implies that the spectral clusters should have small within-cluster variability and 

that individual pixels should have many neighbours belonging to the same cluster. Statistical parameters 

used to assess cluster homogeneity thus include average standard deviation σi (per spectral band k or 

across the bands, Eq. 10), average within-cluster spectral distance Di (Eq.11), the spatial coefficient IC 

(Eq. 7) and the average value of Di (simple or weighted by cluster size, Eq. 12): 
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where j is the pixel, i is cluster number, k is spectral band, Nk is number of spectral bands, Nc is the 

number of clusters, and NPi  is the number of pixels in cluster i . 

 

3.0 RESULTS and DISCUSSION 

Figure 2 presents a comparison of clusters from the four classification algorithms after pixels in the scene 

15-29 were grouped into 50 clusters. Two measures are shown: the average value of the within-cluster 

standard deviations (Eq.10) in all three bands, and the average of  spectral distance of pixels within 

clusters from the cluster centre Di. The following observations can be made. First, FKM yielded clusters 

with the lowest standard deviations and the smallest dispersion about cluster centres . CPG was the 

closest among the remaining algorithms, and for some measures no appreciable difference with FKM 

could be discerned. K-Means and ISODATA were consistently worse in terms of the purity of spectral 
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clusters. Consequently, subsequent analysis dealt only with FKM and CPG, both because of the results in 

Figure 1 and given that these represent different strategies to the generation of spectral clusters. 

 

Figure 3 shows some aspects of the spectral space for FKM and CPG, with circle diameter proportional to 

cluster size (Figure 3a, 3b) or cluster standard deviation (3c, 3d). Overall, the general characteristics were 

similar for the two classification methods. The large clusters corresponded to histogram peaks in the two 

spectral bands (Figure 3a, 3b). However, CPG retained some relatively small clusters away from the peak 

(3b), while the distribution for FKM was more uniform (3a). The average cluster standard deviation was 

also very similar for the two classification algorithms (Figure 3c, 3d), with ranges 5.0-20.2 for CPG and 

6.0-20.5 for FKM. The more spectrally dispersed clusters were in the margins of the distributions in all 

spectral bands, although this trend was not uniform as some clusters near the histogram peaks also had 

higher standard deviations (3c, 3d). The trends  shown in Figure 3a-3d were also found in the remaining 

spectral combinations (not shown). 

 

Figure 4 compares spectral clusters produced by three classification techniques on various images. In all 

bands, cluster homogeneity varies from scene to scene. The variability among scenes was as high as, or 

higher than, the variability due to the classification algorithm. Nevertheless, two consistent trends are 

evident. First, the differences were small when the results of the three scenes are averaged for each 

spectral band, and neither algorithm is clearly superior. Second, the combined approach employing FKM 

and the spatial merging component of CPG (Eq. 7) produced the most consistent results overall and the 

smallest variability among individual images. In other words, in this approach the spectral homogeneity 

was the most uniform among images and spectral bands. The average values were also the lowest, 

indicating that the combination of spectral optimisation to a larger number of clusters (FKM), combined 

with spatial measures in further clustering, helps optimise the clustering process. 

 

The variations of the average within-cluster spectral distance are shown in Figure 5a and 6a- 6c. The 

variation among scenes was again generally higher than that due to the classification algorithm. Another 

consistent trend was the substantially lower values for spectral distances weighted by cluster size (Eq. 

12), which is due to the disproportionate effect of small clusters. With one exception (scene 15-29), the 
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combined FKM-CPG approach yielded spectrally tighter clusters than either approach separately. This is 

evident especially when cluster-size weighting is used (Figure 5a). For the same results, the average 

spatial adjacency index IC is shown in Figure 5b. A higher IC value indicates more spatially clumped 

clusters. As expected, CPG clusters were consistently more cohesive than those produced by FKM. This 

was also true when comparing the number of distinct patches of pixels belonging to one cluster; for 

example, the difference was 4.2 % (2.3x105 patches) for 15-29. In addition, clusters resulting from a 

combined use of the two methods were similar to those from CPG alone, and in one case (image 15-29) 

substantially better. Overall, the FKM-CPG approach again gave the best result (Figure 5b). The above 

results are also supported by an analysis of cluster characteristics based on the Bhattacharya distance 

measure of separability (as implemented in PCI, 1999). 

 

The differences in IC distributions for various numbers of clusters are illustrated in Figure 5c for image 

37-22. In general, CPG tends to produce more spatially compact clusters with higher IC values. However, 

the difference between the two varied with the number of clusters and was not consistent, especially at the 

higher IC values.  

 

The overall better performance of the FKM-CPG approach might be expected, for two reasons. First, 

FKM should in general yield more spectrally pure clusters because the cluster means are optimised for an 

overall best fit to the distribution of the data; for an initially large number of clusters, this adjustment can 

be done so that individual pixels are very close to cluster means. In contrast, CPG cluster means are 

initially established on the basis of the number of pixels with similar spectral values, and are not adjusted 

through iteration (Cihlar et al., 1998). On the other hand, CPG explicitly takes into account spatial 

relations between clusters, both in identifying the initial cluster means and during the cluster merging 

(Latifovic et al., 1999; Eq. 4-9 above). Thus, the FKM-CPG combination should produce clusters that are 

relatively pure yet spatially compact. 

 

Based on Figure 2, FKM was selected as the representative iterative clustering algorithm for further tests. 

However, as evident from Figures 3-4, results may vary among scenes. It is therefore possible that K-

Means or ISODATA could also provide suitable clusters for the merging process. 

The differences among the three approaches were not large, about 10% depending on the measure and the 

data used. Nevertheless, they may be considered sufficient to justify use of the combined approach. This 
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is because in land cover mapping, the objective is to identify patches with homogenous land cover 

characteristics, and patches smaller than a ‘minimum mapping unit’ are ignored. Thus, in amps prepared 

through digital image analysis, post-processing operations are used to eliminate small patches from the 

final product, typically by assigning such pixels to neighbouring larger patches. It is thus desirable to 

minimise the number of such cases. In addition, the CPG approach can also be used to assist the analyst in 

making further merging or labelling decisions; i.e., the candidates for merging are identified, but the 

decision is left to the analyst. 

 

Land cover may be characterised by various attributes, not all of which are discernible using spectral 

reflectance or emission measurements. Classification methods such as neural networks (Carpenter et al., 

1997; Bischof and Leonardins, 1998) have been developed to permit use of dissimilar types of data in the 

classification process. In this case, unsupervised classification can provide one type of input, i.e. spectral 

characterisation of the land surface cover. Where the spectral content is diagnostic, land cover may be 

mapped from these data alone. Otherwise, use must be made of other types of information, and of 

techniques that can combine dissimilar data in consistent decision making rules. In these cases, 

unsupervised classification can provide the spectral dimension of the decision matrix. 

 

4. CONCLUSIONS 

Results of the comparison of the various unsupervised clustering algorithms showed that: 

 

1. The two different clustering strategies (iterative FKM and sequential CPG) produce similar patterns 

of cluster distribution within the spectral space.  

2. For either algorithm, the spectral quality of the resulting clusters tends to vary between scenes and 

between bands within a scene. While the spectral homogeneity of FKM clusters was generally 

higher, the differences were fairly small and not entirely consistent. As expected, the spatial 

cohesiveness was higher for CPG, but the differences were also relatively small at the 50 clusters – 

stage. 

3. The combined FKM-CPG approach produces more consistent results in terms of both spectral and 

spatial characteristics of the resulting clusters, thus providing the basis for more accurate land cover 

maps. 

 

Given the variety of land cover types and patterns included in this study, the results may be considered 

representative for temperate and boreal regions. A more general applicability hinges on the strength of 

the relationship described by Eq. 8 for a data set of interest. This relationship depends on the spatial 
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resolution of the input data in relation to the spatial and spectral land cover characteristics. Since its 

strength can be easily determined (Eq. 4, 6, 7, 9), the applicability of the FKM-CPG procedure can be 

readily established for a given input data set.  
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Table 1. Landsat TM scenes used in the tests  
Path - Row Date Location Main cover types Number of 

pixels 
Number of 
initial  
clusters in 
CPG 

13-27 14 Aug 
1996 

Quebec Forest, wetland, water 
bodies 

8.36*106 376 

15-29 2 Aug 1998 Ontario Cropland, 
broadleaf/mixed forest, 
built-up 

8.85*106 362 

37-22 21 Aug 
1992 

Saskatchewan Cropland, broadleaf and 
coniferous forest, 
wetland, water 

3.49*107 303 

 
 
 
 
 
Table 2. Control parameters used in the clustering methods 
Parameters ISODATA K-

Means 
Fuzzy K-

Means 
CPG 

Number of clusters desired 70 70 70  
Maximum number of cluster 75    
Minimum number of cluster 60    
Minimum large seed cluster     0.01 
Maximum neglected cluster    0.0002 
Minimum cluster size for merging     
Standard deviation 10    
Lumping parameter 1    
Maximum number of pairs of 
clusters which can be lumped 

5    

Number of iterations allowed 20 20 20  
Moving threshold 0.01 0.01 0.01  
Quantisation segment width    10 
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Figure 1. Plot of spectral distance SD against the spatial coefficient IC for one cluster. Only clusters 
sufficiently spectrally close to the cluster of interest are included in the computation.  
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Figure 2. Comparison of five cluster measures for three classification methods. Each data point 
represents an average value for the 50 clusters. Std and (w) stands for ‘standard deviation’ and ‘weighted 
by cluster size’, respectively. 
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Figure 3. Mean spectral values for clusters obtained by FKM (Figure 3a, 3c) and CPG (3b, 3d). The 
diameter of the circles is proportional to cluster size (3a, 3b) or average cluster standard deviation (3c, 
3d). 
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Figure 4. Average standard deviation spectral clusters obtained in different ways for three scenes. Each 
point represents an average of standard deviations for 50 clusters. The spectral bands are red (TM band 3, 
Figure 4a), near infrared (TM 4, Figure 4b), and shortwave infrared (TM5, Figure 4c). 
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Figure 5. Spectral and spatial measures of relations among clusters obtained by different images and 
classification methods, for 50 clusters. Figure 5a: Average spectral distance. Figure 5b: Average spatial 
coefficient. Figure 5c. Histogram of spatial coefficient values. Symbol (w) stands for ‘weighted by cluster 
size’. 
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Figure 6. Average spectral distance within clusters Dav obtained with different methods for three images. 
Each point represents an average of spectral distance for all pixels within a cluster. 
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