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Abstract— Speckle filtering of SAR images that preserves
the spatial signal variability (texture and fine structures) re-
mains a challenge. Recently, research activity in this topic
has become very active until the appearence of many ”new”
filters. Filter performance assessment mainly based on vi-
sual interpretation, is not effective in revealing hidden lim-
itations of filters. Hence, there is an immediate need for
the development of rules which permit more effective as-
sessment. These rules could be also used as the basis for
the development of new filters. In this study, a protocol
which is based on the state of the art in speckle filtering
is introduced. Such protocol, which should not become an
obstacle for the advancement of research in speckle filter-
ing, might be updated according to the actual state of the
art in the field. Finally, the introduced protocol is used to
assess several well-known filters, and to develop a new multi-
resolution MMSE (i.e. Minimum Mean Square Error) which
is much more effective than the classical MMSE filters.

I. Introduction

Speckle filtering of SAR images while preserving the spa-
tial signal variability (texture and fine structures) still re-
mains a challenge. The nonstationary nature of the under-
lying signal makes adaptive filters more effective than the
spatially invariant filters used extensively in digital image
processing [4], [12]. The former filters adapt their process-
ing to the nonstationary scene signals by using a spatially
moving window of a fixed size. Two speckle-scene mod-
els are generally used: the multiplicative model, and the
product model. These models yield two families of filters
which might be distinguished: filters based on the mul-
tiplicative speckle model which do not use explicitly the
statistical distribution of the underlying scene such as the
Lee and Frost filters [4], [12], and the Bayesian filters [11],
[16] based on the product model which requires, in addi-
tion, an a priori statistical model for the underlying scene
signal. In practice, the two family filters are applied using
a moving window of a relatively small size (7x7 window is
the mostly used (see [12]) in order to provide a satisfactory
compromise between speckle reduction and preservation of
small structures within a tolerable computing time.

In the following, the objective of speckle filtering is con-
sidered. In Section III, speckle filtering of nonstationary
scene signals is discussed in the context of estimation the-
ory. It is shown that the scene reflectivity can only be
retrieved accurately for nonstationary scenes which are lo-
cally stationary. Signals which are not locally stationary
have to be filtered separately using a priori information.
In section IV, the speckle multiplicative noise model, the

product model, and the related scene models are analysed
with regards to signal nonstationarity. Speckle filtering of
locally stationary scenes is discussed in Section V, and the
necessity of the use of multi-resolution algorithms for accu-
rate estimation of filter parameters is brought out. Speckle
filtering of locally nonstationary scenes is then considered
in Section VI. This leads to the introduction of a protocol
for speckle filtering in section VII. Finally, the protocol is
used to assess theoretically the performance of some well
known filters, and to develop a new multi-resolution MMSE
filter which is more effective than the classical speckle fil-
ters based on the MMSE technique.

II. Objective of speckle filtering

The main objective of speckle filtering is to retrieve the
radiometric and spatial scene information ”R” from the ob-
served ”speckled” SAR measurement ”I”. ”R” is generally
the incoherent image of the original scene signal (i.e. scene
signal viewed with the incoherent transfer function of the
SAR system) [17], [11]. In certain cases, the signal to be re-
trieved ”R” might be the scene signal free from the viewing
system transfer function, and the delivered filtered output
is named the super resolution image [18]. Deconvolution
techniques might be used to reconstruct the scene signal.
Such techniques which tend to amplify the high spatial
frequency noise are not suitable for the inversion of SAR
images of small signal to noise ratios [3]. The scene signal
might also be retrieved using the Bayesian inverse problem
approach proposed in [1]. Such a technique is very sensitive
to the assumed a-priori models, and unrealistic behaviour
might be introduced due to an erroneous model [1].

III. Speckle filtering in the context of
estimation theory

In both the two cases mentioned above (i.e. incoherent
or super-resolution image), speckle filtering remains mainly
an estimation problem, and filter development should be
performed with respect to certain rules determined by
classical estimation theory. Given one realisation of the
stochastic process I(t) observed during a finite interval of
time, the estimation of the random process parameters can
lead to meaningful estimates only if I(t) is ergodic and sta-
tionary. Stationarity is required such that the time aver-
ages of each process converge to a finite limit. Ergodic-
ity is also required so that the different time averages of
each process converge to the same limit: the ensemble av-
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erage. The process parameters can then be estimated by
time (in the image domain spatially) averaging the process
over a finite interval of time. In the following, the pro-
cesses involved in the SAR image modelling are assumed
ergodic. Speckle filtering will be discussed in term of signal
sationarity-nonstationarity.

Because of the spatial variations of the scene signal, the
measured radar signal I(t) is not generally stationary, and
the estimations of the filter parameters (such as the mean
and coefficient of variation) lead to meaningless values.

In practice, stationarity in mean (the assumption that
the mean E(x) does not vary) may be relaxed: all that is
required is that E(x) does not change significantly within
the observation interval [10]. If such a condition is satis-
fied by the processes involved in the filtering equation, the
nonstationary processes can be considered locally station-
ary (named “stationary in increments” in [10]), and the
parameters required for speckle filtering can be estimated
over a moving window in which the processes involved are
stationary. This corresponds to the basic idea of the adap-
tive filtering. The adaptive filter parameters which are es-
timated locally within a moving window (in which the ob-
served and the scene signals are stationary), vary spatially
(with the window position) to cope with the observed and
scene signal variations.

IV. Speckle and scene models

A. Multiplicative model for speckle

Under the assumption that the terrain reflectivity R(t)
is slowly varying within the resolution cell (i.e. locally sta-
tionary within the resolution cell) [27], the multiplicative
model states that the observed intensity of the pixel located
at t=(x,y) is given by [4], [12]: I(t)=R(t).n(t). The speckle
random function n(t) is assumed to be stationary white
unit mean χ2 distributed. As we previously mentioned in
a study on speckle filtering of polarimetric data [24], the
stationarity assumption for speckle noise is suitable for the
following reasons:

• Speckle statistics are constant on the whole scene. They
can be accurately estimated, and need to be estimated once
for the whole scene.
• The algorithms for filtering of stationary noise are much
simpler to implement and less expensive in computing time
than the ones developed for nonstationary noise.
• Certain aspects of speckle related to the illuminated
scenes (such as the degree of polarization of the scattered
wave due [24]) should remain in the filtered image (for a
better characterisation of the scene).

B. Scene model for stationary speckle noise

For accurate estimation of signal parameters, the ob-
served signal should be locally stationary. Such condition
might be satisfied provided that R(t) is locally station-
ary (as speckle is stationary). The scene signal and the
observed signals are then both stationary in increments,
and signal parameters can be estimated accurately within
a moving window in which the signals are locally stationary

(and ergodic). For a nonstationary scene, signal parame-
ters vary from one window position to another. This leads
to parameter estimates which vary spatially with the win-
dow position in order to cope properly (and as such to have
a better capability of speckle filtering) with the spatial vari-
ations of the scene signal. One application of the stationary
in increments model is the nonstationary mean nonstation-
ary variance scene model (NMNV) of [11]. It assumes that
the scene (and consequently the observed) signals are lo-
cally stationary in mean and variance. This model might
be presented as as the basis of some well known filters such
as the Frost and Lee filters whose parameters are mainly
the local mean and coefficient of variation estimates.

C. Speckle-scene product model

The product model, also called the double stochastic
model, was used as the basis of the MAP Bayesian one-
level (Gaussian [11], and Gamma [15], [19]), and multi-
level([1]) filters. The product model was introduced in
([14], [8], [7]) to express the K-distribution, which fits well
ocean backscattering [6], as a function of the Gamma dis-
tribution whose statistics are easier to estimate [20], [9].
The spatially varying Rayleigh clutter distribution which
is conditioned on its gamma-distributed local mean leads
to unconditioned PDF which is K-distributed.

The product model is based on a technique developed for
characterising nonstationary functions (see [14] for exam-
ple). The first-order density function of the nonstationary
process is treated as a function of random key parame-
ters, and is presented in term of conditional probability
density function (pdf). The conditional pdf is averaged
over the parameter under consideration to yield an uncon-
ditional pdf which is stationary in the parameter of inte-
gration even though the original (conditional) pdf is not
stationary. An equivalent method was proposed in [21] to
transform a nonstationary correlation function to a sta-
tionary function named the spatially averaged correlation
function. This method was used in [26] to justify the use
of the adaptive coherence estimate for characterisation of
nonstationary coherence signals.

In contrast to the multiplicative model of (IV.A), the
product model of (IV.C) assumes that speckle, which is
still locally stationary within a resolution cell (i.e. the mul-
tiplicative model condition satisfied), is not stationary in
mean within the moving processing window. The mean
is supposed to vary from one pixel to another according
to a given distribution (Gamma for example). Using the
product model, the Bayesian filters transform the nonsta-
tionary speckled signal (I(t)) in a locally stationary signal
(K distribution of stationary mean and variance for exam-
ple) within the moving processing window. The parameter
estimation is applied in two levels: estimation at the pixel
level (for each pixel) of the mean of the χ2 speckle distribu-
tion, and estimation at the window level of the statistics of
the mean reflectivity (i.e. the averaged pixel means which
corresponds to the Gamma parameter). For meaningful
statistical description, the processing window should be
large enough to include many samples of the same speckle
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χ2 distribution (for the first-level estimation), and enough
samples of the various χ2 distribution (for the second-level
estimation). Therefore, the filtering window size should
be larger than the one which might be used under speckle
stationarity assumption of section (IV.A).

The result above concerning the classical product model
which is a double stochastic model, might be extended to
the multiply stochastic model described in [14], [23]. The
multiply stochastic is formed by averaging its mean over a
first-level distribution; the latter which might itself have a
mean that is subject to uncertainty is then averaged over
a second-level distribution of that mean. The process may
need to be continued, in principle, until the deepest-level
distribution has a mean and other statistical parameters
that are truly deterministic. The parameter averaging lead
to an unconditional pdf which is stationary in the smeared
parameters. The minimum window size required for ac-
curate estimation of these parameters increase with the
number of levels of averaging as the complexity of the un-
conditional pdf tends to rise rapidly with each additional
level.

At the deepest level, the a-priori information is described
with a process stationary in mean (or parameters smeared
other than the mean). Among the most used a-priori scene
models are the Markov Random fields which are expressed
in term of Gibbs Random fields under the local stationarity
condition [22]. For accurate estimation of the pdf param-
eters of such process, large neighbour in which the pro-
cess is stationary, are required. Segmentation and multi-
resolution techniques were used for example in [1], [28] to
form an image with separate entities in which the process is
stationary. If this not done properly, unrealistic behaviour
might be introduced in the filtered image.

V. Speckle filtering of stationary in increment
scenes

A. Adaptive filtering

Many digital filters were developed in the field of com-
munication theory to reduce the transmission channel noise
which was generally assumed to be white and additive
noise. Some of them were adapted to SAR images to filter
the multiplicative speckle noise under the adaptive form
which is shown to be suitable for stationary in increment
signals. The most well know are based on the Minimum
Mean Square Error (MMSE) [4], [12], [11], or the Bayesian
[11], [16], [1] techniques. These filters which were origi-
nally derived for stationary signals are adapted to slowly
varying nonstationary signals. The filters parameters are
performed within a moving window in which signals can
be assumed to be stationary and ergodic. The filter out-
put is a spatially varying (as a function of the processing
window position) scalar (or a vector) which corresponds to
an estimate of the nonstationary scene function.

In contrast to speckle filters based on the multiplicative
model, the filters based on the product (or the multiply
stochastic) model requires a priori models at each level
of averaging. Speckle filtering is mainly Bayesian model
fitting which optimizes the Maximum a posteriori (MAP)

criteria [11], [16], [1]. However, speckle filtering under the
multiply stochastic model (like for any inverse problem
method) is very sensitive to the assumed a-priori models,
and unrealistic behaviour might be introduced due to erro-
neous models [1]. Consequently, unless the a-priori models
fit well the reality, methods based on the simple multiplica-
tive model remains more effective, and more attractive as
they are expansive in computing time. A promising solu-
tion was proposed in [1] which consists in matching various
a-priori models to the scene under study at the expanse of
large computing time.

B. Multi-resolution adaptive filtering

The filter parameters are calculated using the observed
signal statistics within windows (generally of fixed size) in
which the signal is locally stationary. Certain parameters
like the second order statistics (the covariance function for
example) need large windows for an accurate estimation.
Filters based on the product model need larger windows
than the ones based on the simple multiplicative model
of section IV (A and C). Both models have to be applied
within a region where the observed and scene signal are lo-
cally stationary. As such, the processing window should be
of a limited size such as only a ”stationary” portion of the
illuminated target is covered. Tests of stationarity should
be applied on the observed signal to adapt the size and the
shape of processing window to signal nonstationarity. As
such, the estimation within the selected window of local
stationarity leads to accurate and meaningful parameter
estimates. This improves significantly the performance of
the classical filters which are blindly applied on a moving
window of a fixed size. An example is given in [5] con-
cerning the classical box (average) filter. The Hagg filter
which is a multi-resolution box filter is much more effective
than the classical box filter of a fixed size. One problem
with the Hagg filter is that is it only adapted to areas of
constant reflectivity (R(t) = constant). The filter, which
is not based on a solid method of signal estimation theory
(averaging of homogeneous region), is completely ineffec-
tive in textured areas (which might be locally stationary
but not necessarily locally homogeneous).

VI. Speckle filtering of locally nonstationary
scenes

Scene signals might be nonstationary even within a small
region. Nonstationarity might be due to the presence of
edges, curvilinear features, or point targets. If the scene
signal is varying rapidly within the resolution cell, the
multiplicative speckle model (and consequently the prod-
uct model) cannot even be used. Signal variations from
one resolution to another within any small neighbourhood
makes statistic estimation meaningless. The solution would
be to correlate the observed signal with a replica (noise-
free ideal signal) which models local scene nonstationarity.
Such correlation would improve the signal to the speckle
noise ratio, and as such would enhance the nonstationary
feature (the source of nonstationarity). The filter might
then adapt the shape of the window to the enhanced fea-
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ture, and as such use a sufficiently large number of inde-
pendent samples for an accurate estimation of the unspeck-
led feature signal. Since the underlying scene signal is not
known, various replicas might be tested and the one which
would enhance the best the scene feature might be selected.
Multi-resolution processing remains again the best way to
increase the signal to noise ratio of the replica-image corre-
lation. The multi-resolution technique first introduced for
SAR images in [25], significantly improves the performance
of the ratio edge detector in the presence of small edges,
and in areas of low contrast (see [25]).

VII. A protocol for speckle filtering

A. Presentation of the protocol

According to the discussion above, a set of rules (i.e. a
protocol) might be set for effective speckle reduction. Filter
conception should be done with respect to the protocol
presented in Figure 1. This means that any speckle filter
should include the following tools:
1. An algorithm which takes into account speckle statistics
for speckle reduction of locally stationary areas
2. An algorithm to detect neighbourhood which are not
locally stationary,
3. Replicas to match local non-stationarity
4. Algorithm for speckle filtering of locally non-stationary
areas as a function of the matched scene replica
5. Multi-resolution algorithms to fit the size and the shape
of the neighbour to signal stationarity

B. Applications of the protocol: filters assessment and de-
velopment

Such a protocol allows one to assess theoretically the per-
formance of any speckle filter. For example, the following
filters suffer of a number of weakness:
• The Hagg filter [5] employs a simple box algorithm for
speckle filtering of locally stationary areas. As such, tex-
ture cannot be preserved,
• The Kuan and Frost filters do not include tools to detect
nonstationarity,
• Application of the Bayesians filters with small windows
might lead to erroneous filter parameter estimates.
• Filters based on wavelets [2] can only preserve fine struc-
ture. They should be equipped with a speckle model based
algorithm for an effective speckle filtering within locally
stationary areas.

The protocol above was used to develop an MMSE multi-
resolution filter. Figures 2, 3, and 4 present the original
image (Radarsat fine mode 1-look), and the images filtered
with the MMSE filter over 7x7 window, and the multi-
resolution MMSE filter. The multi-resolution filter con-
verges to stable values for a 29x29 window size. Obviously,
the multi-resolution technique permit better preserving of
texture and fine structure with an effective speckle reduc-
tion within homogeneous areas.

Conclusion

Speckle filtering of nonstationary scenes can be per-
formed accurately if the scene signal is stationary in in-

crements. Scenes which are not locally stationary should
be filtered sepately using a priori replicas of the nonsta-
tionary scene feature. The protocol of speckle filtering in-
troduced in this study might be used to assess theoretically
the performance of speckle filters. This protocol was used
by the author as the basis for the development of a new
multi-resolution MMSE filter which is much more effective
than the classical MMSE filters. The same multi-resolution
technique used here to improve the MMSE filter might be
also exploited to improve the performance of many exist-
ing filters such as the Frost [4], Lee [13], and MAP Gamma
([16], [19]) filters.

Fig. 1. Flow chart
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