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SUMMARY

This paper demonstrates the impact of band characteristics on spectral unmixing of

Compact Airborne Spectrographic Imager (casi) reflectance data acquired in the visible

near-infrared spectral range over the Copper Cliff mine tailings site near Sudbury

(Ontario, Canada).  Spectral unmixing is used to monitor the rehabilitation status.  For

this purpose, the bands were reduced systematically from 65 to 33, 17, 8 and 4 bands

using the original casi bandwidth of 8.7 nm full width at half maximum (FWHM).  An

interpolated data set using a cubic spline was derived from the 65-band casi spectra to

study the effect of the bandwidth. The bandwidth at FWHM was varied between 8.5 nm

and 76.5 nm in increments of 8.5 nm for six selected band positions across the casi

wavelength range.  High spatial resolution Ikonos 2 multispectral sensor image data with

less bands and larger bandwidths than casi were simulated in order to investigate the

combined effect of number of bands and bandwidth.  These data cubes were unmixed

with a constrained linear approach involving the endmembers green vegetation, lime,

oxidized tailings, and two different water types.  A comparison of the unmixing results

indicates a mean absolute difference of up to 0.02 (standard deviation: ± 0.05) between

the endmember fractions of the simulated data versus the 65-band benchmark data if the

bands are selected according to physical spectral properties.  The errors are much larger if

the bands are not positioned properly.  In general, the unmixing of the simulated data,

including the four broad-band Ikonos simulation case, produced similar results as with
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the full 65-band casi as long as the bands are positioned with respect to physical spectral

properties.  Such a result, especially for the broad-band simulations, was achieved mainly
because the endmembers are spectrally very distinct and do not show subtle differences.

RÉSUMÉ

Cette étude démontre l'importance de la position, du nombre, et de la largeur des bandes

spectrales sur les résultats de déconvolution spectrale des données de réflectance du

Compact Airborne Spectrographic Imager (casi). Les données ont été acquises dans le

visible et le proche infrarouge pour le site de rejets miniers de la mine Copper Cliff près

de Sudbury (Ontario, Canada). Afin d'étudier l'effet du nombre de bandes spectrales, les

données casi ont été réduites de façon systématique de 65 à 33, 17, 8 et 4 bandes en

maintenant la largeur de bande initiale de 8,7 nm à mi-hauteur. Pour étudier l'effet de la

largeur des bandes, une série de données interpolées par une fonction cubique a été créée

à partir des spectres des données originales casi de 65 bandes. Une image de six bandes

spectrales pré-sélectionnées a été produite pour chaque largeur de bande à mi-hauteur

variant entre 8,5 nm et 76,5 nm avec un intervalle de 8,5 nm. Les données multispectrales

à haute résolution spatiale Ikonos 2 (comportant des fenêtres spectrales plus larges et

moins nombreuses que casi) ont été simulées afin d'étudier l'effet combiné du nombre et

de la largeur de bande. Une déconvolution spectrale linéaire a été appliquée sur les

données à partir de la signature spectrale de 5 composantes élémentaires : végétation,

chaux, rejets miniers oxydés, et deux types de surfaces d'eau. Les résultats montrent une

différence absolue moyenne allant jusqu'à 0,02  (écart-type: ± 0,05) entre les fractions des

composantes élémentaires des données simulées et celles provenant de la série de

données originales casi de 65 bandes lorsque que les bandes spectrales sont sélectionnées

selon des propriétés physiques et spectrales. La différence absolue moyenne est beaucoup

plus élevée lorsque les bandes sont positionnées de façon aléatoire. En  général, la

déconvolution spectrale des données simulées produit des résultats semblables à ceux

obtenus avec la série de données originale casi de 65 bandes dans la mesure où la

position des bandes spectrales est déterminée d’après des propriétés physiques et

spectrales. De tels résultats, entre autre ceux de la simulation de bandes larges, sont
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réalisables en grande partie parce que les composantes élémentaires ont des signatures

spectrales très distinctes.

1. INTRODUCTION

Canadian liability for acid mine drainage is in the order of $2 billion to $5 billion

depending on the technique used to dispose of and treat the acidic waste (Feasby and

Jones, 1994).  In the Sudbury area alone, Inco Ltd. spends an annual $5 million to reclaim

property (Inco, 1998). Given these enormous costs, monitoring techniques are needed to

evaluate their efficiency for reclamation of mine tailings sites, e.g., revegetation

(Hossner, 1988).  Recent work indicated that remote sensing, especially imaging

spectrometry, has the potential to play a significant role in this area (Ferrier, 1999; Shang

et al., 1999 ; Mueller et al., 1997; Farrand and Harsanyi, 1997 ; Swayze et al., 1996;

Singhroy, 1996).  In previous studies, Lévesque et al. (1997 and 1999) demonstrated the

vegetation monitoring capability of the Compact Airborne Spectrographic Imager (casi)

over the Copper Cliff mine tailings area near Sudbury, Ontario, Canada.  If long term

monitoring is required airborne surveys can become quite expensive. The question is

whether one can achieve similar results using Ikonos 2 and other forthcoming high spatial

resolution satellites such as Orbview3 and Quickbird (ASPRS, 1996 ;  Space Imaging,

1999). Table 1 summarizes the basic instument charactersitics of these sensors.  The

spatial resolution of these sensors is similar to that of  the casi data acquired over the

Copper Cliff mine tailings site (2.5 m by 4.3 m). However,  these sensors have fewer

spectral bands and their bands are wider than those of the casi visible-near infra-red

(VNIR) hyperspectral data sets used for this study.

This paper investigates the effect of varying bandwidth and number of bands on the

ability to monitor mine tailings revegetation over a site near Sudbury using a  spectral

unmixing approach.   In addition,  the four Ikonos 2 bands and related bandwidths were

simulated in order to evaluate their potential monitoring capability. Since Orbview3 and

Quickbird have basically the same spectral configuration as Ikonos 2 the results obtained

for Ikonos 2 are assumed to be applicable to these sensors also.  The casi data set used for
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the study presented in this paper was collected in 72 bands in 1996.  The data analysis

was carried out on the Imaging Spectrometer Data Analysis System (ISDAS) of the

Canada Centre for Remote Sensing (Staenz et al., 1998).

2. IMAGE DATA USED

The image data was collected with a casi instrument in spectral mode on August 24, 1996

over the Copper Cliff mine tailings site near Sudbury, Ontario, Canada. The data set

includes 72 contiguous, 8.7 nm wide, spectral bands covering a wavelength range in the

VNIR from 407 nm to 944 nm (Anger et al., 1996). The instrument was flown at an

altitude of 1905 m resulting in a pixel size of 2.5 m in the across track direction and 4.3

m in the along track direction.  Table 2 summarizes the casi sensor configuration

parameters.  Only wavelengths between 429 nm and 913 nm (65 bands) were used from

the casi data set because of the poor data quality of the first three bands as well as the last

four bands.  This is mainly due to the drop-off of the responsivity of the silicon detector

at both ends of the casi wavelength range.

3. ANALYSIS APPROACH

Analysis of the casi data included removal of the most significant aircraft motion effect, surface

reflectance retrieval, band simulation analysis, constrained linear spectral unmixing, and

comparison of the resulting fraction images achieved with the various simulated data sets versus

the one retrieved from the full casi data set.  The data processing scheme is outlined in Figure 1.

3. 1 Pre-Processing

In order to correct for the most significant aircraft motion effect, the aircraft roll was

calculated using the navigation data to calculate lateral pixel shifts for each line.  These

shifts were then applied to the entire image cubes on a line-by-line basis.
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In the next pre-processing stage, surface reflectances were computed from calibrated (at-

sensor radiance) data.  The procedure applied to the data uses a five dimensional look-up

table (LUT) approach with tunable breakpoints to provide additive and multiplicative

coefficients for removal of scattering and absorption effects (Staenz and Williams, 1997).

The LUT variables are:  wavelength, pixel position, atmospheric water vapour, aerosol

optical depth, and terrain elevation.  This procedure has the advantage of reducing

significantly the number of radiative transfer (RT) code runs thereby saving the time that

would be required to run such a code on a pixel-by-pixel basis.

For the LUT generation for the different data sets, the MODTRAN3 radiative transfer

code was run for the input parameters as listed in Table 3 for a low-level (5 %) and high-

level flat reflectance spectrum (60%).  This produces a LUT for each reflectance level.

These LUTs were produced for five pixel locations equally spaced across the swath,

including nadir and swath edges, and for single values of aerosol optical depth (horizontal

visibility), terrain elevation, and water vapour contents.  The final step involved in the

LUT generation is the convolution of the model output radiances with the relative

spectral response profiles of the sensor. casi’s response profiles were approximated by a

trapezoidal-shaped line spread function.

For the retrieval of the surface reflectance, the LUTs were adjusted only for the pixel

position using a bi-linear interpolation routine (Press et al., 1992) since single values for

the other LUT parameters were used for the entire cube. The water vapour content was

determined by applying the atmospheric correction process iteratively to sample scene

spectra, while adjusting this atmospheric parameter, and selecting the value which best

removed the water vapour absorption features on average. The surface reflectance of each

pixel could then be computed as described in Staenz and Williams (1997). Sample

reflectance spectra are displayed in Figure 2.

An assessment of the retrieved spectra revealed only minor irregularities in the

reflectance data that may have originated in the sensor, or that may have resulted from
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the approximations made in the atmospheric modelling and the selection of parameters.

These minor band-to-band errors were not corrected.

3.2 Band Simulations

The number of bands was reduced by skipping every other band of the 65-band data cube

resulting in a 33-band data set.  This procedure was repeated to produce data sets

containing 17, 8, and 4 bands, respectively. This systematic way to pick the bands,

especially concerning the data sets with 8 and 4 bands (Table 4), is not ideal from a

physical point-of-view. The bands are not properly positioned for the application focused

on in this study.  In order to overcome these difficulties, six casi bands were selected

based on the spectral characteristics of vegetation for inclusion in the analysis (Staenz,

1996). This data is referred to in the paper as the geobotany data set. Band positions of

this data set are listed in Table 4.

In order to test the effect of varying the bandwidth on the unmixing results, the original

casi data were fit with a cubic spline and interpolated to a specific wavelength grid (Press

et al., 1992).  The grid size is determined by dividing the spectral response profile of the

bands to be simulated into 20 intervals.  This approach is appropriate since subtle spectral

changes do not occur for the target type considered in this study.  The interpolated data is

assumed to be the underlying data set for the subsequent simulations.  The interpolated

values were then convolved to Gaussian spectral response profiles with full width at half

maximum (FWHM) bandwidths, ranging from 8.5 nm to 76.5 nm in increments of 8.5

nm.  The profiles were centred at the six band positions of the geobotany data set as listed

in Table 4.

In order to consider a more realistic case with a few well selected broad bands, the

spectral band characteristics of the four-band instrument onboard Ikonos 2 were

simulated with the same technique as described in the previous paragraph from the casi

65-band data sets using Gaussian spectral response profiles.  The centre wavelengths and
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associated bandwidths are summarized in Table 4.  The fourth band centred at 830 nm

with a bandwidth of 140 nm FWHM could not be simulated properly with casi since the

65-band data set with an upper wavelength limit of 913 nm does not entirely cover the

right tail of the response profile.  Therefore, a narrower bandwidth of 83 nm FWHM was

used to approximate the fourth Ikonos band. To ensure that our results are compatible

with real Ikonos 2 data, the off nadir viewing direction should be limited to less that 15°

(casi data set =  ± 18°) when acquiring the data.

3.3 Spectral Unmixing

Constrained linear spectral unmixing was performed on all the simulated casi data cubes

using an algorithm implemented in ISDAS (Szeredi et al., 1999 ; Boardman, 1989 and

1990).  The method decomposes the image spectra S
�

in terms of endmember spectra iS
�

:
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if and if  is the fraction of endmember i contributing to the image

spectrum S
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, N is the total number of endmembers, and r is the error term.  The result of

the unmixing procedure is a set of N fraction images that show the fractional abundance

of the endmembers.  Endmember spectra were selected from the 65-band image cube

using the first three principal components (PCs) which account for 77%, 21% and 1% of

the variability, respectively.  Endmembers are the purest pixel spectra in the data set and

are often located at the extremities of the scatter plot which results when the spectral data

are plotted in PC space.  Five endmembers were selected from the 65-band data as shown

in Figure 3.  These endmembers were identified as lime, green vegetation, oxidized

tailings, water 1, and water 2 using field reference information in combination with

ground-based spectral measurements collected with a GER3700 field spectroradiometer.
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Water 2 is distinct from water 1 because of it’s high content of sewage,  tailings, and

lime.  The spectra of these endmembers are displayed in Figure 4.  According to the PC

scatter plots, the same five endmembers were identified for the different simulated data

cubes.  The endmembers for the different simulations were then generated from the

endmembers of the 65-band data the same way as the simulated data sets discussed in the

previous section.

3.4 Assessment of Results

The fraction images retrieved with the spectral unmixing procedure from the simulated

data sets were then compared to those extracted from the 65-band data.  The absolute

values of the differences between the fractions found using the 65-band data and that

found using the sub sampled multispectral data sets, were computed on a pixel-by-pixel

basis for each endmember.  Subsequently, the mean and standard deviation of these

absolute differences were calculated.

4. RESULTS

As an example of the output of the constrained unmixing, the fraction images of

vegetation, lime, and oxidized tailings retrieved from the 65-band data cube are shown in

Figure 5 together with a colour composite providing an overview of the study site.  The

upper part of Figure 5a is the inactive tailings where most of the revegetation work is

being done.  Some of the typical areas of the tailings are identified in the colour

composite and depicted in the adjacent photographs.  The three endmembers shown are

those most important for tailings rehabilitation purposes.  The fractions vary between 0

and 1 with blue representing a low value and red a high value.  The lower part of Figure

5a is an active tailings area where fresh tailings are being deposited.
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An examination of the error images associated with spectral unmixing (Eq.1) of the 65-

band data revealed no significant errors and hence, one can be confident all major

endmembers have been found and the endmembers span the data space.  In addition, the

unmixing results have been validated in the field as reported by Staenz et al. (1999).

Therefore, the fraction images derived from this data cube represent an ideal reference for

this study.

4.1 Band Reduction

Figure 6 shows the effect of decreasing the number of casi bands on the spectral

unmixing results. The mean absolute differences remain under 0.02 (standard

deviation: ± 0.03) for all the endmembers using 33, 17, and 8 bands.  When considering

four bands the overall mean absolute difference increases but remains below 0.04

( ± 0.05) for green vegetation and lime and below 0.05 ( ± 0.06) for oxidized tailings,

respectively.  These errors decrease to the same level as for the 33, 17, and 8 band cases

when the bands are selected according to physical spectral properties as is the case for the

6-band geobotany data set.  The two water endmembers consistently display a higher

mean absolute difference than the other endmembers.  This can be understood from Eq.

1.  The water endmember spectra, 1wS
�

 and 2wS
�

, are relatively dark, hence the spectral

magnitudes 1wS
�

and 2wS
�

 are small compared to the other endmembers.  Due to this fact

the fractions 1wf and 2wf  can vary by a relatively large amount without changing

significantly the sum spectrum in Eq. 1.  The constrained unmixing takes advantage of

this fact and hence the fractions 1wf and 2wf  vary more than the fractions of the other

endmembers.
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4.2 Varying Bandwidth

The comparison between the fractions retrieved from the 65-band data and the data sets

of different bandwidth simulated from the geobotany image cube revealed mean absolute

differences below 0.008 ( ± 0.021) for the vegetation, lime, and oxidized tailings

endmembers.  The maximum mean absolute difference values occured at the 8.5 nm

bandwidth.  A similar trend was found for the endmembers water 1 and water 2 but with

a higher mean absolute difference of up to 0.021 ( ± 0.051).  The standard deviation of the

absolute difference decreases for all endmembers as the bandwidth increases since the

local variations (in wavelength) in the spectrum are smoothed over. This results in less

fractional variations and a smaller standard deviation.  As an example, Figure 7 shows the

mean and standard deviation of the absolute difference for the green vegetation and water

1 endmembers.

4.3 Ikonos Simulation

In Figure 8 the mean absolute difference is shown for each endmember for the Ikonos 2

simulation unmixing results against the 65-band unmixing results.  Unlike for the four-

band case used in Figure 6, the four Ikonos 2 bands display lower mean absolute

differences. This was expected since the four Ikonos bands are better positioned to

enhance differences between spectra. The mean absolute difference for all endmembers

do not exceed 0.014 ( ± 0.07).  As pointed out before, the two water endmembers,

followed by the oxidized tailings, the green vegetation and the lime endmembers, show

an inverse relationship between their spectral reflectance magnitude and their mean

absolute difference.  Similarly, the standard deviation of the mean absolute difference is

related to the magnitude of the endmember spectra which indicates that more variation is

expected when using low reflectance endmembers such as water 1 and water 2.
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As an example, the spatial representation of the Ikonos simulation analysis is presented in

Figure 9 for the green vegetation endmember.  Figures 9a and b depict the fractions

retrieved from the 65-band and the simulated Ikonos data , respectively. The absolute

difference map of these fraction images is shown in Figure 9c.  The bluish portion of the

difference map indicates lower differences while the red parts show higher differences.

98.8 % of the data are in the absolute difference range of 0.00 to 0.05.

5. DISCUSSION

Although the results indicate generally a reasonable agreement between the endmember

fraction images retrieved from the simulated data sets versus the 65-band data, several

points have to be considered.

The separation and identification of endmembers becomes more difficult if one moves

from hyperspectral data towards multispectral broad-band data.  The limited spectral

resolution combined with a limited number of bands makes it difficult to separate

spectrally subtle differences in endmember spectra and, subsequently, can be expected to

lead generally to poor unmixing results.  However, since the endmembers in this study

are spectrally very different, the unmixing of the simulated broad-band Ikonos 2 data

produced fractions similar to those resulting from unmixing of the casi 65-band data.

This result is consistent with the results of the bandwidth simulation analysis using well-

defined band positions for the application under consideration.  However, the unmixing

results are strongly affected if the bands are not positioned properly for a given

application as shown in Figure 6 with the band reduction analysis.
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The endmembers for a specific simulated data set were computed the same way as the

image data set itself, e.g., for the Ikonos simulation the endmember spectra of the 65-

band data were convolved to the Ikonos four-band characteristics. In order to evaluate the

impact of this approach on the fraction images, the endmembers were also extracted from

the simulated data sets themselves. The latter procedure is usually the preferred approach

since scaling issues between image data and endmembers of ground (library) spectra can

be avoided.  However, if spectra from a library are used as endmembers, then the band

characteristics of the sensor under consideration have to be simulated from those spectra.

No significant differences were found between fractions retrieved with endmembers

selected from the simulated data sets directly and via the 65-band data.

The unmixing procedure requires N–1 bands to unmix N endmembers. With five

endmembers retrieved from the data sets under consideration, the number of bands was

limited to four in this study.  Complicated scenes containing more endmembers might

need more bands to perform unmixing than provided by the forthcoming high spatial

resolution sensors such as onboard Ikonos 2. Accordingly, the unmixing procedure

cannot be applied in such cases using this type of sensor. Other methods such as

traditional classification approaches (e.g. maximum likelihood) could be used, but they

are not able to provide the same detailed target information as spectral unmixing.

6. CONCLUSIONS

The influence of spectral band characteristics (number of bands, bandwidth) on spectral

unmixing have been investigated for monitoring the rehabilitation status of mine tailings.

For this purpose, different band sets, including the four-band multispectral sensor

onboard Ikonos 2, have been simulated from hyperspectral VNIR 65-band casi surface

reflectance data.  The resulting endmember fractions for green vegetation, lime, oxidized

tailings, water 1, and water 2, retrieved from the simulated data sets, have been compared

against those obtained from the 65-band data.
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The unmixing results obtained for the different endmembers by decreasing the number of

bands produces mean absolute differences that do not exceed 0.02 (standard deviation:

± 0.03) for 33-band, 17-band and 8-band data sets.  The 4-band data set yields larger

differences, up to 0.14 ( ± 0.22).  However, Ikonos 2 simulation indicates that a mean

absolute difference of 0.014 is achievable if the bands are selected according to physical

spectral properties.  The largest mean absolute differences between the fraction images

occur for water 1 and water 2. This is also true for the bandwidth simulation study.  It

revealed mean absolute differences of a magnitude similar to those resulting from the

band reduction study with the exception of the 4-band simulation.  In this case, the mean

absolute difference is significantly lower for the bandwidth cases, about 7 to 10 times

depending on the endmember.  Furthermore, the bandwidth simulation results indicate

that as bandwidth increases, the standard deviation of the mean absolute difference

decreases.

The study shows that especially for the non-water endmembers, which are most

important for revegetation monitoring, similar unmixing results were obtained using the

simulated data as retrieved with casi hyperspectral data as long as the bands are

positioned according to physical spectral properties.  This is even true for the four broad-

band Ikonos 2 simulation.  However, for sensors with similar band characteristics as

Ikonos 2, the results cannot be readily transferred to more complicated scenes and hence,

containing more endmembers than the scene used in this study.   This is due to the

required minimum number of bands, N-1, for unmixing N endmembers. It is also more

difficult to identify endmembers, especially when subtle differences occur, if only a few

spectral bands are available. Nevertheless, the study demonstrated that high spatial broad-

band sensors such as Ikonos 2 and Quickbird have the potential for monitoring mine

tailings rehabilitation using spectral unmixing.
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Table 1 :  Spectral band configuration and spatial resolution for the Quickbird,
Orbview3 and Ikonos sensors.

Sensor Ikonos2 Quickbird Orbview3
Company Space Imaging Earthwatch Orbital Sciences
Spectral 450 - 520 450 - 520 450 - 520
bands 520 - 600 520 - 600 520 - 600
(nm) 630 - 690 630 - 690 625 - 695

760 - 900 760 - 890 760 - 900
Spatial

resolution 4 m 4 m 4 m
*) as of September 1999

Table 2:  casi sensor configurations.

Spectral coverage 407-944 nm
Number of bands 72
Spectral sampling interval 7.6 nm
Bandwidth at FWHM* 8.7 nm
Sensor altitude above ground 1905 m
Ground resolution:  across track 2.5 m
                                along track 4.3 m
Swath 406 pixels
*) FWHM: Full Width at Half Maximum
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Table 3: Input parameters for MODTRAN3 code runs.

Atmospheric model Mid-latitude Summer
Aerosol model Continental
Date of overflight August 24, 1996
Solar zenith angle 31.5º
Solar azimuth angle 176º
Sensor zenith angle variable
Sensor azimuth angle variable
Terrain elevation 0.3 km
Sensor altitude above sea level 2.21 km
Water vapour content 2.35 g/cm2

Ozone column as per model
CO2 mixing ratio as per model
Horizontal visibility 50 km

Table 4:  Spectral characteristics of the simulated data sets.

Data Set Centre Wavelength (nm) Bandwidth (nm)
at FWHM

8-band 458.7, 518.2, 578.2,
638.6, 699.3, 760.28,
821.4, 882.7

8.7

4-band 503.2, 608.3, 714.5, 821.4 8.7
Geobotany (6 bands) 480.9, 548.1, 608.3,

676.5, 745.0, 829.1
8.5 to 76.5

in increments of 8.5
Ikonos 2 485, 560, 660, 830 80, 80, 60, 140
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Figure 1:  Data processing scheme (SRP = Spectral Response Profile).
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Figure 2: casi surface reflectance spectra retrieved from single pixels.
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Figure 3:  Scatter plots of principal component (PC) 1 versus PC2 and PC3 versus
PC2 of the casi 65-band data.
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Figure 4: Endmember spectra retrieved from the 65-band casi data set.
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Figure 5: Colour composite and associated pictures showing (a) an overview of the
tailings area with fraction images of the three endmembers (b) green
vegetation, (c) lime, and (d) oxidized tailings. The colour composite
retrieved from the casi 65-band data set was generated with bands 19
(540 nm) in the blue, 37 (676 nm) in the green, and 45 (737 nm) in the
red, respectively.
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Figure 6: Mean absolute difference between the 65-band unmixing results
(endmember fractions) and unmixing results of the band reduction
analysis.
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Figure 7: Mean and standard deviation of the absolute difference of the green
vegetation and water 1 endmember fractions derived from the 65-band
casi data and the different bandwidth simulations using the geobotany
(6-band) data cube.
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Figure 8: Mean absolute difference between the 65-band unmixing results and
the Ikonos 2 simulation unmixing results for each endmember.
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Figure 9: Fraction images retrieved from (a) the 65-band casi data and
(b) the simulated Ikonos 2 data with (c) associated absolute
difference image over the Copper Cliff mine tailings area in
Sudbury.
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