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Abstract 

In spite of its very large territory and the best Landsat archive in the world, so far Canada has made very 

limited use of Landsat data for land cover mapping purposes. The primary difficulty has been the 

prohibitive cost of information extraction, in addition to the earlier (and now overcome for Landsat 7 

ETM+ data) high costs of data purchase. The solution to this remaining obstacle lies in decreasing the 

cost of Landsat data processing and analysis while ensuring high quality of the extracted information. In 

this paper, we present an efficient and effective approach to mapping land cover of Canada from Landsat 

Thematic Mapper data (single- or multi-satellite). Its key feature is increased ratio of computer to human 

analysis, and automation for high data volume/large area processing. However, it is essential that the final 

product quality not suffer because of the stronger reliance on computer processing, thus the algorithm 

performance becomes critical. We describe the overall approach, discuss key challenges, explain the 

principles behind key algorithms developed to respond to the challenges, present evidence demonstrating 

the effectiveness of these algorithms in boreal landscape setting, and consider implementation issues.  

With a processing system developed to handle large numbers (tens to hundreds) of Landsat scenes which 

incorporates most of the algorithms discussed here, the stage is nearly set for large-scale processing 

leading to Landsat-based land cover classification product(s) for Canada. 

 

1. Introduction 

1.1 Background  

Land cover is arguably the most important characteristic of the land surface, from the environmental as 

well as societal perspectives. Most ecosystem processes strongly depend on, and in turn influence, land 

cover and its attributes. Similarly, land use is strongly conditioned by land cover. Since land cover varies 

in time and space, mapping approaches have been used in the past to obtain information on its distribution 

and spatial variation. With the advent of aerial photography this process has become more efficient, and 

methods for large area applications have been developed (e.g., Anderson et al., 1971). Although aerial 

photography has continued to be the medium of choice for specialized resource management applications 

such as forest inventories (e.g., Leckie and Gillis, 1995), for general land cover mapping its widespread 

use was dampened by the substantial cost of data acquisition and interpretation coupled with relatively 

slow rate of land cover change and the perceived low need for such information over large areas, 

especially outside of those directly occupied or exploited for human uses. 

 

The perception of the need for land cover information has changed with the recognition of the reality of 

global change. The accelerated changes in land cover and use in various parts of the world, the regional to 
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global nature of the key biogeochemical processes which depend strongly on land cover, and the 

realization that we must respond to these trends to preserve habitability of the Earth has brought about 

strong interest in land cover characteristics, its spatial distribution and temporal dynamics, and the 

relation of land cover to economic and social activities. Satellite observations have become the major 

means of obtaining data on these aspects of land cover. Although digital techniques for extracting land 

cover information have been explored since the late 1960s, the generation of maps over large areas had to 

await progress in (i) the collection of good quality and affordable data, (ii) processing methods that would 

produce data sets with sufficiently high quality (signal to noise ratio) to yield land cover information of 

interest, and (iii) adequate computing power (Cihlar, 2000).  

 

A combination of the above factors led to the use of �coarse� (thousands of meters) resolution satellite 

data as the initial thrust, with pixel sizes of 8 km to 1 km, globally or regionally (Loveland and Belward, 

1997; DeFries et al., 1998; Hanson et al., 2000; Loveland et al., 1995, 2000; Cihlar et al., 1997, 1999). 

However, it was realized that for many purposes, these maps do not provide sufficiently detailed 

information because land cover (and change) varies over short distances and this patchiness cannot be 

captured by coarse resolution data. Albeit to a much a lesser degree, mixed pixels remains a problem for 

higher resolution (~0.3 km) data from sensors such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS) and Global Land 

Imager (GLI). Thus, parallel interest has grown in the use of �medium� resolution (tens of meters) satellite 

data, especially since the late 1980s when both the methodologies and computing capabilities were well 

developed. Good examples of successful mapping activities are the US National Land Cover Data Set 

(NLCD; Vogelmann et al., 2001b) and Gap Analysis Project (GAP; Jennings, 1995) which have 

succeeded in assembling the necessary financial and human resources to map the conterminous US from 

Landsat Thematic Mapper (TM) data. In general, however, the widespread use of medium resolution data 

for land cover mapping has until recently been hampered by the high cost of satellite data.  

 

As a vast country with small and very unevenly distributed population, Canada has long been prime 

candidate for land cover mapping with satellite data. Realizing the importance of satellite measurements 

for national environmental applications, since 1972 the Canada Centre for Remote Sensing has 

maintained a program of systematic reception and archiving of Landsat Multispectral Scanner, Landsat 

TM, and SPOT haoute resolution visible (HRV) data over the Canadian landmass, and in the process 

established the most comprehensive archive of any country in the world. Nevertheless, these data have 

not yet been used systematically for land cover mapping at the national scale. The main impediments 

have been the cost of data and, since the mid-1990s, the cost of information extraction. In addition, until 
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recently insufficient attention has been paid to the analysis of the feasibility and key technical issues 

associated with such a project.  

 

With the cost of medium resolution satellite data no longer an obstacle and in view of inexpensive data 

Landsat TM sets available for Canada from several projects (e.g., the national Landsat 7 orthoimage 

project - http://maps.nrcan.gc.ca/main.html; the global Landsat TM coverage for 1990 (Dykstra et al., 

2000) and a similar one planned for 2000), the main remaining questions concern the type of product(s) 

required at the national scale and the appropriate information extraction methods. Regarding the latter, 

both accuracy/robustness and cost are of concern. In practical terms, reducing information extraction 

costs translates to increasing the computer analysis/human analysis ratio. Significant progress has been 

achieved over the last several years in improving the efficiency and robustness of the major analytical 

steps, and these improvements may be used to advantage in a national scale project.  

 

The intent of this paper is to examine the methodological feasibility of completing a land cover map of 

Canada from Landsat TM data. The following areas are examined: information and product(s) required 

for the main present applications; data processing and analysis scheme; key technical issues and candidate 

algorithms to resolve these; accuracy assessment considerations; and implementation aspects. 

 

1.2 Information needs 

Most of the applications considered below require land cover information in the form of a discrete set of 

characteristics associated with each parcel of land. In this case, the mapping legend will consist of a set of 

non-overlapping classes to which the individual pixels are assigned. This is the mapping issue addressed 

in this paper.   

 

Land cover and use assessment. Land cover is the key environmental information required for many 

management and research purposes. Resource planning and management decisions require knowledge of 

the current status of land cover and its changes with time. Such information is used for planning purposes, 

inventories, research studies, communication with the public, education, and for other purposes. In the 

context of sustainable development, land cover is an important indicator for assessment and reporting. 

The classification legend and level of detail vary depending on intended use, from few, fairly general 

classes to many, highly detailed cover types. For example, national reports to the UN Framework 

Convention on Climate Change are expected to contain data on afforestation, reforestation and 

deforestation, each of these terms being precisely defined (FCCC, 1999). Land cover is also the main 
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input into the mapping and monitoring of land use (Cihlar and Jansen, 2001), the primary environmental 

parameter for sustainable development. 

 

Carbon balance modeling and reporting.  

Carbon budget modeling is based on the ability to quantify controls on carbon assimilation, respiration 

and removal due to disturbance (e.g., Chen et al., 2000).  All three factors are related to the amount of 

carbon present in soil, decaying organic matter and live biomass.  Standing biomass can be estimated 

from crops and shrubs as well as forests up to a saturation point around 50 T/ha through the use of nadir 

optical reflectance and a priori knowledge of land cover (Fazakaz et al, 1999; Myneni et al, 2001; Van der 

Meer et al. 2001).  These estimates can often be refined if species or crop type maps are available.  Soil, 

necromass and litter carbon pools are typically estimated by inference related to land cover or species.   

 

Land cover information is required at different levels. The type and extent of woody vegetation, 

grassland, cropland, or shrubland may be inferred through classification of multi-date imagery together 

with surface plots of known cover type (Franco-Lopez et al., 2001). This land cover information, when 

enhanced using GIS databases to produce maps of land use, can be related to nutrient inputs and sources 

of atmospheric pollutants (Aber et al., 1997) and greenhouse gases  (e.g., Grewe et al., 2001) that may 

impact carbon assimilation. Information on species composition is important to quantify carbon uptake 

through photosynthesis.  Severe drought, storm damage, insect or disease induced foliage loss, forest 

burns and harvest may be evident as land cover changes (Cohen et al., 1998; Fraser et al., 2000). On 

longer time scales, remote sensing may serve to relate canopy closure to stand age and hence stand level 

assimilation rates. Similarly, the pattern of land cover in a region may serve as an index of functional 

diversity (Griffiths and Lee, 2000).  Finally, comparison of current and historical land cover may serve to 

indicate geographic shifts in functional vegetation complexes related to population or climate impacts 

(Chuvieco, 1999). 

 

Forest inventory. Forest inventories in Canada are updated in an approximately ten-year cycle (Gillis and 

Leckie, 1993).  Forest polygons stored in a geographic information system (GIS) are normally created 

from digitization of manually interpreted air photographs (Gillis and Leckie, 1993).  The forest 

management unit information stored in the GIS is based on a complex set of forest conditions. The criteria 

to delineate the forest management unit areas are the presence of homogeneity of forest characteristics 

such as species assemblages, stand density, crown closure, and development stage (Leckie and Gillis, 

1995). As the inventory is updated incrementally, the forest inventory information is typically collected in 

different years. The scale of photographs utilized by forest managers commonly ranges from 1:20,000 to 
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1:60,000, corresponding to an equivalent scale resulting from Landsat imagery of approximately 

1:250,000 (Wulder, 1998).  As a result, these different sources yield different inventory information.  The 

strengths of classifications developed from satellite remotely sensed data include large area coverage, 

timely nature of collection and distribution, access to data relating past conditions, and the ability to 

consistently apply classification techniques.  The landscape - level view is important to a range of 

stakeholders from forest managers to ecologists as the conditions evident at a particular location can be 

placed in a larger context.  The large area coverage and classification to a single vintage is also valuable 

for calibrating forest inventory data obtained from air photos.    

 

Biodiversity. Fine resolution satellite data are increasingly important in biodiversity research and 

conservation efforts (Kerr, 2001; Kerr et al., 2001). The best known such initiative is the Gap Analysis 

Program (GAP), currently underway throughout the United States (Scott, 1993; Scott et al, 1996; Crist, 

2000). The principle that drives GAP is simple: knowledge of the distribution and concentration of 

biodiversity is required to allow conservation efforts to be focused toward areas of highest risk. Since 

biodiversity data are rarely sufficiently comprehensive, detailed classifications are used to enable spatial 

extrapolation of in situ observations. To be effective, such extrapolation should be based on detailed 

information regarding the distribution of species. Landsat TM data, in conjunction with other spatial data, 

have sufficient resolution to map the relevant differences in cover and habitat, in some cases down to a 

species association level (e.g., Homer et al., 1997). The methods exploited in GAP range from visual 

interpretation to fully digital image processing methodologies supported by the collection of high spatial 

resolution video data (Slaymaker et al. 1996). To link this information to individual plant species, 

additional field data are required on the regional and local composition of plant associations. 

 

Water quality modeling. Land cover plays a key role in regulating the quality and quantity of surface 

water, especially regarding its suitability for direct human or industrial consumption. Surface water 

pollution is an issue in areas with intensive land use where opportunities for chemical contamination of 

surface water exist. In the last several years, methods have been developed to combine detailed land cover 

maps with other geospatial data types to model potential problems in surface water pollution (e.g., Fraser 

et al., 1998; Jones et al., 1997). Outputs of these procedures have been employed for watershed 

management (Heggem et al., 1999), and they are directly relevant to ground water pollution problems that 

are beginning to appear in densely populated areas of Canada with mixed land use. In this application, the 

required information concerns general land cover types (e.g., forest, cropland, urban) with more detail on 

forest conditions. Spatial resolution of 30 m is adequate, as it enables detection of narrow bands of 

vegetation along streams. In regions surrounding densely populated areas, detailed land cover data 
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can be crucial for modeling water quality impacts of pollutants such as those generated through 

industrialized agricultural activities. 

2. Overall approach and methodological issues 

The above information requirements indicate that the specific land cover information requirements vary 

among applications, from fairly general classes to specifically defined types and also from relatively few 

to many classes. FCCC reporting is an example where few but specifically defined classes with high 

accuracy are required, while biodiversity applications need detailed (species-specific if possible) 

information but are more tolerant of classification errors. Also, a single classification legend may satisfy 

many users but not all. The above factors suggest a potential need for several mapping products over the 

same geographic area. On the other hand, the relatively high costs, efficiencies of scale, and the 

possibility to share the mapping task argue for a single mapping exercise.  

 

Figure 1The proposed methodology addresses 

the above dilemma in two ways, by (i) 

dividing the sequence of operations into 

two stages and (ii) permitting the 

extraction of all land cover type 

information contained in the satellite 

data. The first stage is independent of 

the specific classification legend 

employed and can therefore be carried 

out through bulk processing. If in 

addition the processing algorithms can 

be automated, the costs for this phase of 

the mapping task will be relatively 

small. This stage contains (Figure 1) 

data calibration, atmospheric correction, 

ways to deal with clouds and other 

atmospheric contamination, and an 

initial classification resulting in a dense 

(super-clustered) data set, which may 

efficiently be labeled. The second stage 

is concerned primarily with �labeling� 

 

1. Sensor calibration

5. Regional radiometric mosaicking

2. Atmospheric correction

3. Haze, clouds, and shadows identification

4. Haze and shadow effects removal

6. Pre-classification
(superclustering)

7. Labelling a) 7. Labelling n)

8. Confidence and accuracy assessment, metadata

�

Figure 1. Overall data processing flowchart
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and associated operations, i.e. assigning spectrally distinct groupings of pixels to specific categories of the 

mapping legend. It is at this stage that the issue of one or more products can be dealt with, as discussed 

below. In this paper, we describe an approach that retains all or most of the land cover information 

available in the TM data, thus permitting the mapping of detailed classes. This methodology is thus fully 

applicable to mapping applications involving fewer classes, with appropriate simplifications leading to 

increased efficiency and reduced cost. It should also be noted that the procedure is fully applicable to data 

from other sensors with a comparable information content to Landsat TM. 

 

In principle, the required land cover information may be derived from satellite data in different ways. The 

most commonly used approach to date has been direct classification using various image analysis 

techniques; this approach is represented here by unsupervised classification and analyst�s labeling. A 

more recent strategy is to derive intermediate products more directly related to the observed spectral 

reflectance and then transform these into land cover according to the known properties of different land 

cover types. We have been developing a reflectance model-based solution as described below, but other 

algorithms have been used with multitemporal data (e.g., DeFries et al., 2000; Fernandes et al., 2002). 

Probably the fundamental methodological issue to be overcome in either case is that the desired number 

of land cover categories is higher than the number of independent observations (spectral bands), i.e. the 

problem is underconstrained. 

 

 A trade-off must be addressed in selecting the satellite scenes for national land cover mapping. On the 

one hand, a narrow acquisition window is desirable to minimize the temporal uncertainty in the thematic 

content. On the other hand, atmospheric conditions (i.e. cloud cover and haze) limit the probability of 

acquiring a �clear� scene at a given orbital pass. US experience with the North American Landscape 

Characterisation (NALC) and the Multi Resolution Land Characterisation (MRLC) programs (EPA, 

1993) indicates that an acquisition window encompassing at least 3 consecutive summer seasons 

(typically June 15 � August 31) is required to ensure that a complete coverage with a maximum allowable 

level of 15% cloud cover is achieved. For Canada, with the preferred 1 July � 31 August imaging period a 

temporal window of 3-5 years may be required to obtain images with <~10-20% cloud cover that are 

suitable for land cover mapping (see also Leckie, 1990). The mapping methodology must thus be able to 

cope with different dates of the source images, including images from different TM sensors. 

 

2.1 Sensor calibration and atmospheric corrections 

The first two processing steps (Figure 1) are fairly conventional and algorithms are available for routine 

use (Vogelmann et al., 2001a). A possible sensor- related issue is the intercalibration of data from 

 7

straby



different years or TM sensors. Thus, information on sensor degradation and on calibration differences 

among sensors is needed to obtain radiometrically uniform data sets (Masek et al., 2001). Based on recent 

work with Landsat 7 such information is, or is becoming, available (Teillet et al., 2001).   

 

For clear sky, algorithms have been developed that are capable of reliable radiometric corrections for 

Rayleigh and uniform Mie scattering. The main challenge is the spatially variable aerosol optical depth 

resulting in differential Mie scattering. Previously developed techniques (Teillet and Fedosejevs, 1995; 

Liang et al., 1997) all assume that these effects have low spatial frequencies and thus the variation within 

a scene may be estimated from a limited number of sites. However, such assumption is not valid for most 

clouds or for haze. Since these two effects are the strongest noise source in the Landsat data, other ways 

are needed to deal with them as described in the following section. 

 

In the procedure described here, radiometric mosaicking (step 5, Figure 1) ensures consistency among the 

component scenes. Since this step is required in any case, atmospheric corrections are, in principle, 

unnecessary if interactive labeling is employed in step 6 (Figure 1). However, they are desirable even if 

the scenes to be used have similar aerosol characteristics. The reason is that the atmospheric corrections 

properly account for differences in the solar zenith angle and possible differences in the spectral 

properties of individual channels (in case of different sensors). Accurate atmospheric corrections are very 

important if a model-based approach is employed in step 6. 

 

2.2 Within-scene haze detection and removal 

While extensive literature exists on atmospheric theory and potential correction, the number of studies 

that deal with the practicality of compensating for spatially varying haze is rather limited. During the 

extension of the Tasselled Cap (TC) transform to Landsat TM, Crist and Ciccone (1984) observed in 

visual inspection of the 4th component that its dominant response appeared to be to atmospheric haze. 

Subsequently, Richter (1996) used a simplified rendition of this component as the basis of an overall 

correction methodology but only applied it to a single TM sub-scene. Du et al. (2002) employed wavelet 

transform and multiple images of the same scene based on the observation that haze tends to obscure high 

spatial frequency variations in the recorded signal. Other approaches rely on locating �dark targets� over 

the scene and using these to estimate local aerosol optical depth. These points are then used as seeds to 

generate a low frequency �haze� mask that is oversampled at the pixel level (e.g., Liang et al., 1997).  

 

For high-volume processing at a national scale, a haze compensation methodology is essential and should 

have the following attributes. First, it should be image-based since ancillary atmospheric information 
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(aerosol type and optical depth) is very limited for Canada. Second, it should be robust, i.e. effective and 

consistently accurate for a broad range of haze conditions. Third, when attempting to remove the effect of 

haze it is sufficient to do relative compensation for varying levels of haze within a scene and not absolute 

�correction�, although in this case the corrected pixels will not be suitable for model-based application. 

 

Recent work at CCRS has led to the development of a Haze Optimized Transform (HOT) that provides 

superior performance in the detection of haze compared to the TC transform (Zhang et al., 2002). It is 

based on the fact that visible bands exhibit highly correlated response to a wide range of thematic classes 

under clear sky conditions but differing levels of radiometric sensitivity to haze. In practical application, 

the haze-free/clearest regions of a scene are visually identified and used to define a �clear line�, i.e. the 

correlated band response to thematic (land cover) variation. HOT then measures the orthogonal 

displacement, in the selected visible spectral space, of each pixel from this line using the following 

equations: 

    

            ,cossin 31 θθ BBHOT −=    

where B1 and B3 are the TM band 1 and band 3 gray levels respectively, and θ is the slope of the 

regression line in the band 1 vs. band 3 space. The value of θ is determined from a sample of highly 

correlated pixels (between B1 and B3) in the selected clear areas of a scene. The overlay of HOT values, 

computed for each pixel, then characterizes the spatial distribution of haze contamination.   

 

A HOT image mask alerts the user that certain pixels are contaminated even if this effect is not evident 

from a visual inspection of the scene. Furthermore, by comparing the trend of increasing histogram lower 

bound with increasing HOT values, radiometric adjustment levels can be estimated automatically for each 

visible band. In essence, the gray level adjustment for a pixel is the difference between the lower bound of 

its relevant histogram and the histogram for pixels in the reference clear area of the image. The success of 

the removal depends on the degree of the initial contamination. While all affected pixels are flagged, only 

low contamination can be corrected for (Guindon and Zhang, 2002).  

 

The HOT algorithm is flexible and has been found effective for Landsat MSS, TM and ETM sensors 

(Guindon and Zhang, 2002). Figure 2 illustrates an example adjustment of a partially obscured TM image 

of the Ottawa area. Zhang et al. (2002) provide detailed information on HOT characteristics and 

performance. 
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Hazy TM3 De-hazed TM3 Haze mask by HOT 

Figure 2. Example of the application of the Haze Optimized Transform. The left panel shows the 
input TM3 image, the central panel the haze overlay and the right panel the adjusted TM3 product.

 

 

2.3 Inter-scene radiometric normalization 

One of the most labour- intensive activities in land cover mapping is the class labeling process (step 6, 

Figure 1). It is therefore desirable to merge scenes into regional image mosaics and then to treat these 

mosaics as image entities rather than separately classify each scene. For example, NLCD employed non-

overlapping mosaics containing portions of 16-20 scenes (Vogelmann et al., 2001b). 

 

A key step in generating regional mosaics is the radiometric normalization of scenes to a common scale in 

order to achieve a �seamless� output. Typically, the clearest scene is visually selected as a reference and 

all other scenes are successively normalized to it as they are entered into the mosaic. Such radiometric 

�balancing� is typically achieved through linear regression analyses of gray level scattergrams for pixels 

in image overlap regions (i.e., scene to be entered into the mosaic and the current mosaic; Guindon, 

1997). This in turn leads to the definition of a single set of normalization coefficients that are then applied 

to all pixels of the incoming scene (e.g., Merson, 1981; Horii et al, 1984). The definition of this scaling 

can be adversely affected by spatially-varying haze, the presence of clouds, and temporal surface cover 

changes. While the area affected by haze can be identified with HOT and then eliminated from computing 

the normalization coefficients (see below), clouds and surface cover change are readily detectable as 

outliers in the scattergram of the overlapping area. Methods for the automatic detection of these pixels 

have been developed based on clustering (Guindon, 1997) and principal component approaches (Du et al., 

2001).  

 

A complication in the preparation of regional mosaics is the accumulation of errors from the addition of 

successive scenes to the mosaic, which depends on the order of scenes included in the mosaic (Guindon, 
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1997). To overcome this problem, Du et al. (2001) developed a radiometric normalization for image 

mosaics (RNIM), which permits an overall adjustment among the scenes included in the mosaic. The 

basic relationships are: 

 

);1(...)1()1()( )1( −×××=−×= − mgaingainmgainmgain
mA

mB

mA

Bm

σ
σ

σ
σ

  [1] 

);1()1(...)1()( )1( −+×−×××−= − moffsetmgaingainmoffset mA
mA

mB
Bm µ

σ
σ

µ  [2] 

where A and B refer to slave and master scenes, respectively; µ and σ are the mean and standard deviation 

for time-invariant targets/pixels in the overlapping area; and m refers to the mth scene in the mosaic. An 

important feature of RNIM is that an overall adjustment is made after computing all gains and offsets, by 

normalizing these to the lowest gain (thus setting all gain values to 1.0 or higher) and by setting the 

lowest offset (if negative) to 0. These steps ensure that no loss of information occurs in the mosaicking 

process, and their importance has been ascertained in a practical application (Beaubien et al., 1999; 

Beaubien et al., 2001). RNIM has other important features. First, it provides a quantitative measure of the 

success of the radiometric adjustment. Second, the order of entering the scenes in the mosaicking process 

does not matter in RNIM, as long as all the scenes to be mosaicked are available at the outset. Third, 

RNIM makes changing an individual scene in the mosaic very easy, because only its overlapping areas 

with the adjacent scenes need to be considered and the overall adjustment recomputed. Fourth, if a mosaic 

consists of a grid of images two passes are required, first normalizing along rows and then along columns, 

in the second pass considering each row as one image entity. Finally, while in principle all the RNIM 

steps can be automated, at the present analyst input is required at three stages: selection of images to be 

mosaicked, confirmation of the selected characteristic pixels (i.e., those upon which the computation of 

gain and offset are based), and visual quality control of the final output. 

 

Time invariance of reference targets in the overlapping area is a necessary condition for radiometric 

adjustment. In Canada, such surfaces exist in most images provided that they have been obtained in 

similar phenological periods and are cloud- and haze- free. In an effort to meet these conditions, the time 

window may have to be enlarged in specific cases. 

 

2.4 Classification 

Image classification has long been subject of remote sensing research. Two basic approaches, supervised 

and unsupervised, have been developed and even recent techniques fit into these categories (Cihlar, 
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2000). For general mapping of Canada�s landmass, unsupervised classification has been the tool of choice 

(Cihlar et al., 1998) because of the (poorly understood or unknown) diversity of spectral properties of 

land cover. Its greatest advantage is the opportunity to fully exploit the information content of satellite 

data, regardless of the geographic area or its surface characteristics, provided that the analyst has the 

knowledge required for labeling. From a detailed initial land cover map other products may be derived for 

specific purposes, e.g. for biodiversity modeling. Thus, unsupervised approaches have been preferred in 

large area mapping applications involving Landsat data (Cihlar, 2000).  

 

In addition to the labeling that relies on analyst�s expertise, exploratory research has been carried out on 

model-based labeling (Peddle et al., 2001). The main potential advantages of this method are reduced cost 

and increased efficiency of the classification process and a more effective way of dealing with 

phenological differences in the input data. The initial encouraging results suggest that with further 

research this approach may be a viable alternative to the analyst-based procedure; for this reason it is also 

briefly discussed below.  

2.4.1 Initial clustering: a hybrid procedure  

Classification is a process of generalization, where the initial entities are grouped into a small set of 

categories. Since the initial number of spectrally unique pixels is very high, a part of the clustering 

process may be carried out without losing any land cover type information. In Canada, procedures have 

been developed over the last several years that combine the strengths of computer processing and visual 

interpretation/analyst expertise (Cihlar et al., 1998; Beaubien et al., 1999; Latifovic et al., 1999; Cihlar et 

al., 2000). In a combined form briefly described below they have been used successfully to produce 

detailed land cover maps from TM data (Cihlar et al., 2002). While applicable to multidate data sources, 

the procedures focus on making maximum use of the spectral information from single-date images.  

 

The hybrid procedure (Figure 3) grew out of research in two classification techniques. Enhancement 

Classification Method (ECM; Beaubien et al., 1999) is based on years of experimenting with Landsat 

image enhancements (Beaubien, 1984, 1986, 1994). Its principal characteristic is the retention of most of 

the land cover type information present in the satellite data, so that when the classified image is visually 

compared with the original data (contrast-stretched using a formalised set of steps), the observer finds 

minimal (and justified) difference between the two. Each generalization step is quality controlled through 

a visual comparison with an enhanced original image, and any unacceptable generalizations are reversed. 

ECM requires considerable expertise by the analyst that is not easily learned. In contrast, Classification 

by Progressive Generalization (CPG; Cihlar et al., 1998) was developed to standardise and automate as 
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many as possible of the 

classification steps, and to use 

spatial distribution as an 

additional clustering criterion. 

CPG divides the procedure into 

two parts: automated computer 

processing, and interactive 

labelling. The automated 

processing consists of two 

phases. In the first phase the 

algorithm divides the 

multidimensional spectral space 

into a number (~8000 for a 

typical boreal scene) of 

spectrally very similar pixel 

groups. In the second phase it 

combines clusters using spectral 

similarity and spatial adjacency 

criteria until there are 

sufficiently few clusters (<~70) 

for labelling. The two CPG 

phases are independent, thus 

allowing combinations with 

other methodological approaches.  

Figure 3. Flowchart for the hybrid classification method 

Fuzzy K-Means clustering
-Distribution of initial clusters

-Iterative improvement in cluster center location
-Minimal distance clustering 

CPG automated merging
Spectral and spatial criteria

Minimal distance classification

Visual comparison and refinement if needed 

Preparation
(Data extraction and geo-referencing)

(Radiometric correction, removal)
Contrast stretch 

Reduction to
final number
of spectral 
classes  

Reduction to
final number
of thematic 
classes  

Initial cluster
set

Visual comparison and refinement if needed 

ECM 
Final merging and labeling
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In applying CPG, it was found that its performance could not consistently achieve the level of detail 

provided by ECM. Although significant improvements were obtained in the automated processing stream 

through constraining the clustering process by cluster size (Latifovic et al., 1999; Cihlar et al., 2000), it 

was determined that the high level of detail and consistency of ECM requires more substantive analyst 

involvement. It was also found (Cihlar et al., 2000) that a) the K-Means algorithm achieves results similar 

to the initial part of CPG, in addition to being easier to apply since it is part of commercial image 

software packages; and b) best results (i.e., most spectrally homogenous and spatially cohesive clusters) 

were obtained by combining fuzzy K-Means with CPG.  
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The main decision rule for cluster merging in CPG is given by E. 1x (Latifovic et al., 1999): 

 If (Ncurrent>Ncl,end) and (NPi<NPl) and (NPj<NPl) and (SDij≤SDmax) then merge. [3] 

 

where Ncurrent is the current number of clusters; Ncl,end is the number of desired clusters (determined from 

SDij table and SDmax value); NPi, NPj are the sizes of clusters i and j; SDmax is the maximum allowable SD 

for i, j to merge (Eq. 2x); NPl is threshold cluster size to consider a cluster for merging (Eq. 3); SDij is the 

spectral distance of centroids of clusters i and  j (Eq. 4x):  
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where: 

qk  is  number of digital levels per quantised level in the kth spectral dimension (Cihlar et al., 1998); 

NPa is the average cluster size in the input classified image (prior to cluster merging); 

Ncl,st is the number of clusters in the input classified image; 

Ci,k is the mean cluster DN value for spectral band k of cluster i, i≠j;  

Nk is the number of spectral bands.  

 

A combined approach presented below thus employs the most effective (in terms of accuracy and 

time/cost) features of all three procedures. The flowchart is shown in Figure 3. In practice, the initial 

number of clusters of 150 has been found sufficient, and a nominal seeding of initial clusters is used 

(Cihlar et al. (2000) employed PCI implementation of fuzzy K-Means described by Bezdek, 1973). CPG 

then merges clusters that are spectrally similar and spatially adjacent, using fixed or user-defined merging 

thresholds (refer to Latifovic et al. (1996) and Cihlar et al. (2000) for details). The ECM approach is used 

to check that no information was lost at each major stage (Figure 3), and to reintroduce omissions due to 

excessive clustering into the data to be classified (in effect breaking up clusters).  
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2.4.2 Labeling by analyst 

ECM is used in merging clusters and labelling, again in two steps. The initial merging is done without 

assigning definitive labels and by using within-image information only (i.e., photo interpretation-like 

approach). This further reduces the number of distinct clusters, typically to ~40-50. In the final labelling, 

knowledge of the area is most important since it permits the analyst to assign labels with limited ground 

data. Detailed air photos or comparable data are very helpful at this stage. The corrupted pixels (clouds, 

strong haze, etc.) are also dealt with at this stage. 

 

It should be noted that this combined classification procedure yields very detailed maps, by capturing all 

land cover information discernible on the original enhanced images in a controlled way. Where such level 

of detail is not required, the analyst�s time will be reduced (for checking intermediate steps and for 

labeling) and the procedure will be speeded up accordingly.  

 

2.4.3 Labeling through modeling  

A different approach to cluster labeling involves use of geometric optical reflectance models which 

provide direct associations between satellite image digital numbers and species-specific vegetation 

structure. These computer-based models provide a 3-dimensional mathematical representation of the 

natural environment as viewed by a remote sensing instrument (Li and Strahler, 1985). The Earth�s 

surface is modeled in terms of plant canopy structure (height, width, shape), plant distribution (density, 

spatial arrangement), understory or ground characteristics (i.e. what is visible between plant canopies � 

typically ground vegetation, secondary understory vegetation, soil, or snow), and shadows.  The full sun-

sensor-surface geometry that exists at the time of satellite image acquisition is also specified in the model. 

The required model inputs in forward mode describe plant canopy structure and distribution, from which 

the model computes reflectance values over specified wavelengths.  

 

The MFM-5 Scale model-based labeling approach now under development is shown in Figure 4. A 

critical step was the development of the Multiple-Forward-Mode (MFM) strategy (Peddle, 1999; Peddle 

et al., 2002a,b) to circumvent the need for direct model inversion. MFM obtains a series of forward-mode 

runs of a reflectance model to generate a Look-up Table (MFM-LUT). MFM-LUT contains a range of 

input combinations of vegetation structural parameters and the corresponding spectral reflectance for each 

combination. An improved reflectance model (5-Scale; Leblanc and Chen, 2000) was chosen for  use in 

the boreal environment (Cihlar et al., 1999). The required model inputs are component spectra (leaves, 

understory, etc., which are available from field measurements, modeling, or spectral libraries), ranges of 
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Figure 4. 
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Figure 4. Flowchart for the MFM-5-Scale method 
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vegetation structural parameters (specified as minimum and maximum values � exact values not 

required), and image acquisition date, time and view angle. Topographic information (slope, aspect) can 

also be specified. In labeling, MFM-LUT is searched for matches between actual satellite image values 

and the modeled reflectance values. It is possible to label clusters or individual pixels. The identified 

matches provide a land cover class label and also a set of structural descriptors suitable for biophysical 

parameter estimation (direct or derived). Algorithms have been developed to resolve ties among multiple 

matches, and also for model parameter retrieval if no exact matches are found (Peddle et al., 2002a). 

MFM has also been applied successfully to the derivation of forest structure in a change detection study 

in New Brunswick (Peddle et al., 2002b), and a series of tests in montane forests of the Canadian Rockies, 

in which a model- based terrain normalisation component has been incorporated into MFM for use in 

mountainous regions (Johnson et al., 2000).  

 

MFM-5-Scale was initially used to label forest clusters produced using the CPG method (Cihlar et al., 

1998). Three sets of hierarchical classes were processed for the BOREAS southern modeling sub-area 

(Landsat TM path 36/row 22) containing conifer/deciduous classes with and without four density sub-

classes, as well as a 12-class set of species specific and density classes. MFM-5-Scale results were 

compared with a standard maximum likelihood (ML) classification product, and validated against an 

independently produced land cover map from a provincial forest inventory for deriving classification 

accuracies over a large sample area (Peddle et al., 2002a). MFM-5-Scale cluster-labeling results were 

consistent over all three hierarchical levels, and slightly higher than ML for the most general classes (87% 

vs. 82%), but were 10% lower for the most detailed set of 12 classes (71% vs. 61%)%), while the 

individual per-pixel MFM-5-Scale accuracy was equivalent or higher than the ML and MFM cluster 

labeled accuracies in all tests.  

 

MFM-5-Scale was subsequently applied to the BOREAS Region and more complex classes, and 

compared to a BOREAS land cover classification in Figure 5 as well as to field data. Comparisons were 

done separately for 12 forestry classes and for all (28) land cover types. Field validation from 136 

BOREAS sites indicated an overall classification accuracy for the 12 forest classes of 91% for ECM and 

85% for MFM-5-Scale. Over a much larger sample (6000 randomly selected pixels), the two 

classifications showed 76% agreement (Peddle et al., 2001). A separate test involving low, medium and 

high density coniferous and deciduous classes showed 94% agreement between the MFM-5-Scale and 

ECM products (n=3730). In the accuracy comparison for 28 classes (12 forest species and density, 4 

mixed forest, 3 agricultural, and a variety of others - grassland, shrub, burns, etc.), the MFM-5-Scale and 

ECM agreed in 76% for a random sample of  13,046 pixels (Peddle et al., 2002c).  
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Figure 5. Application of the procedures described to land cover mapping of the BOREAS transect. 
From Beaubien et al. (2001). 

 

Based on experience to date, MFM-5-Scale represents a potentially attractive alternative to the more 

subjective land cover classification approaches. The main advantages of the model-based labeling are its 

potential for automation in using data from different years or seasons and at regional to continental scales; 

the capacity to provide both land cover classification and biophysical-structural information (e.g. LAI, 

biomass, productivity) in an objective and repeatable format with minimal or no subjective user 

intervention; easy use of different class structures, hierarchical stratification, cluster labeling or stand-

alone products; and provision of sub-pixel scale information for follow-on analyses. An important 

potential advantage is reusability of the LUT and its easy augmentation for new conditions, in effect 

providing a �permanent training data set�. Although this approach to date has been demonstrated to show 

potential, it still requires further development and testing that should focus particularly on (i) further 

analysis of multi-image, multi-date spectral inputs, (ii) testing in other forested areas in Canada (including 

those with significant topography), and (iii) further development for application to non-forested areas.  
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2.5 Accuracy and confidence assessment   

The use of other remote sensing data in combination with field observations is a typical approach to 

assessing accuracy of land cover maps (see Cihlar, 2000 for review). The sampling sites are selected with 

some sampling strategy and used to compare �classified� results with �truth�. Confusion matrices are the 

basic means from which accuracy assessment measures are derived. This approach, although important, 

has several limitations. First, it is expensive and therefore only a very small fraction of the product pixels 

can be realistically checked in this way. Second, a single confusion matrix will typically be generated and 

used to characterize large geographic regions that in themselves may exhibit significant variations in class 

mixes and hence user accuracies (e.g., Cihlar et al. 2002). Finally, confusion matrix analysis is a generic 

approach which models accuracy at the class level, and therefore does not account for accuracy 

implications associated with the classification methodology. These factors do not preclude the need for an 

accuracy assessment but they imply the need for complementary approaches.   

 

At northern latitudes, Landsat orbits overlap significantly from approximately 40% at the southern border 

to >80% in Canada�s Arctic (Wulder and Seemann, 2000). The overlapping images may be employed in 

classifying the same area, and the results used to assess the quality of the land cover map (Guindon and 

Edmonds, 2001, 2002). If entire scenes are classified (as opposed to a non-overlapping mosaic), adjacent 

scenes provide independent classifications and their levels of classification consistency can be used as an 

indicator of classification quality.  

 

�Confidence� can be quantified using the following simple example. Suppose overlapping classifications 

are available from scenes 1 and 2 and that in scene 1 there exists a cluster that has been labelled as A. The 

consistency of this cluster is defined as the fraction of pixels in the overlap region of the cluster in 

question that is also labelled as A in scene 2. In the case of cluster-based labeling, consistency and 

confidence can be assessed at the cluster level and interpreted as a confidence surrogate, thereby 

providing a more detailed description of relative accuracy than is currently available from conventional 

confusion matrices. These confidence measures can then be applied at the pixel level to generate a 

�confidence� overlay for the land cover product (Guindon and Edmonds, 2001, 2002).  

 

It should be noted that land cover mapping based on regional image mosaics does not preclude exploiting 

overlap consistency. Although redundant coverage has been eliminated in the mosaic, consistency 

analyses can still be undertaken by retroactively classifying the full input scenes. 
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3. Example and implications     

Figure 5 shows a land cover classification obtained using algorithms described in this paper, with the 

exception of HOT and the confidence assessment based on overlapping areas. The area covered by 7 

Landsat TM scenes includes the BOREAS transect in central Saskatchewan and Manitoba, and contains 

typical boreal land cover types. Thirty different categories were mapped in this area. Using field 

observations, the accuracy of this classification was determined to be 90.7% (Beaubien et al., 2001). 

These results, obtained by classifying the entire mosaic in one step, confirm the soundness of the overall 

procedure. 

 

Discussion in previous sections shows that a distinction can be made between �preprocessing� operations 

which may be carried out mostly in automated mode (with adequate quality control) and �labeling� which 

is a classification legend- specific, analyst- intensive procedure. This approach also enables dealing with a 

diversity of information requirements and potentially incompatible mapping legends, provided that no 

useful land cover information is lost at the preprocessing stage. In addition, it is evident that the relative 

roles of automated and analyst-driven approaches can be modified depending on the required number of 

classes (and their accuracy). 

 

For the preprocessing phase, we have described a set of algorithms which yield an intermediate image 

product of high quality. The algorithms were all implemented in research mode, and in some cases 

(hybrid clustering, consistency analysis in overlapping regions) for volume processing. In addition, a 

system was developed to handle large numbers (tens to hundreds) of Landsat scenes for classification 

(Guindon, 2002). Thus, although some further algorithm development and coding is needed, the stage is 

nearly set for large-scale processing leading to land cover classification product(s). 

 

More attention is needed to the transformation of spectral clusters into land cover maps and their 

validation. This presumes that  (i) the product requirements have been defined and the classification 

legend has been selected; (ii) the practical problems associated with labeling have been addressed, 

especially ways of dealing with spectrally ambiguous/nonspecific or locally corrupted data (clouds, haze); 

and (iii) accuracy assessment procedures have been addressed and funded. The broader the intended 

audience for this product, the more time and effort will be required to resolve these issues. However, 

initial answers to these issues may be given based on work to date. 

 

(i) Classification legend. From the national perspective it is essential that the result of the mapping be a 

country-wide consistent land cover product. This requires the choice of a classification legend that meets 
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most present or anticipated requirements. This may be a difficult choice since about 50 different 

classification schemes have been used (Richardson et al., 2001). In the project Satellite Information for 

the Landcover of Canada (SILC; Cihlar et al., 2001), we have successfully employed the National 

Vegetation Classification System (NVCS; FGDC, 1997; Grossman et al., 1998) proposed by the U.S. 

Federal Geographic Data Committee (FGDC) as an international standard. NVCS is a hierarchical scheme 

mostly based on vegetation characteristics, but at the most detailed levels it differentiates among species 

associations. In SILC, we have used its flexibility to retain some detailed classes that may be discerned in 

spectral satellite data, and to combine classes mapped with coarse or fine resolution data into one 

consistent scheme (Cihlar et al., 2002). NVCS has also been examined by other Canadian agencies (e.g., 

Baldwin, 2000; Ponomarenko and Alvo, 2001) and its overall suitability for Canadian conditions has been 

assessed. Among added advantages of NVCS are its official status and widespread use in the US, thus 

facilitating consistent continental applications; and compatibility with other international schemes, 

notably that of UNESCO from which it originated (UNESCO, 1973) and FAO (Di Gregorio and Jansen, 

2000).   

 

Although a single classification such as NVCS may encompass the range of land cover conditions, in 

Canada, it does not automatically follow that such a legend will meet all the user needs. Forest land is an 

example. In Canada, forest stewardship rests largely with the provinces and their requirements must 

therefore be considered.  The Canadian Council of Forest Ministers, in conjunction with the National 

Forest Inventory (NFI) of the Canadian Forest Service have adopted a vegetation resources inventory 

appropriate for Canada�s forests, with an accompanying classification legend (Wulder and Nelson, 2001). 

Similarly, FCCC reporting requires information on three precisely defined cover types (IPCC, 1999).    

The overall classification approach described here (Figure 1) offers two potential solutions to this 

dilemma, (i) a combined classification legend and (ii) separate labeling streams. Regarding (i), from the 

above discussion it may be concluded that NVCS is a suitable classification legend for a Landsat-based 

land cover map of Canada. Because of its flexibility and hierarchical nature, it may be amenable to 

changes which will satisfy the needs of all major product users. This could be accomplished by (a) 

establishing correspondence between classes from different classification legends or (b) by adding new 

categories to NVCS. The second option is to be preferred since it avoids the potentially difficult problem 

of mismatches between class thresholds in the different classification schemes.  

 

Where approach (i) does not lead to resolution, solution (ii) may be used to provide unlimited flexibility 

in the choice of classification legend. The difference between (i) and (ii) is basically a trade-off between 

the mapping costs (from added labeling streams, accuracy assessment, and product support) and benefits 
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(from a more optimized classification legend). If different legends are used but each within a certain 

region/biome, there is an additional issue of the compatibility of these within the national framework. In 

other words, the different legends would need to be consistent at a level of generalization that meets the 

needs of users interested in data across the entire landmass. In any case, these complexities imply that the 

suitability of the NVCS (or its modification) for the intended thematic applications should be assessed, 

and the feasibility of its adjustment evaluated. The fact that NVCS describes basic vegetation 

characteristics lends some confidence that option (i) will work but in any case, exploratory studies are 

necessary.  

 

(ii) Labeling issues. In terms of impact, labeling is one of the key steps affecting the accuracy of the final 

product. Experience in SILC and in large US mapping projects (e.g., Vogelmann et al., 2001b) indicates 

that a significant portion of the spectral clusters may be labeled on the basis of their image appearance, 

provided that the analyst has the necessary training and practical knowledge of the region under 

consideration. However, there are also important classes with overlapping clusters which cannot be 

satisfactorily differentiated within single-date satellite images. They include urban areas, some wetlands, 

and some crop types. Such confusions are usually resolved through a combination of multi-date images, 

ancillary information, increased amount of field data, or relaxed information requirements (e.g., fewer 

thematic categories). The degree of confusion is difficult to determine a priori as it may also depend on 

the acquisition date and the geographic area of interest. The solutions are thus developed on an ad-hoc 

basis as the specific problems emerge. An intrinsic limitation in Canada is the lack of detailed ancillary 

data sets, e.g. for wetlands. 

 

Highly dynamic areas such as agricultural regions present a particular challenge since inter-scene 

radiometric consistency can be affected by crop rotation and growth practices. While a qualitatively (i.e., 

visually) satisfactory image mosaic can be achieved, seasonal differences may nevertheless be present. 

This can be dealt with in the labeling process, by partitioning the mosaic into segments and labeling the 

temporally dynamic clusters separately within each segment. 

 

Additional research is needed on the model- based labeling. The work so far indicates good success in 

forests, but other cover types offer significant challenges. For example, boreal wetlands are spectrally 

highly heterogeneous, as are urban and agricultural areas. This may be dealt with directly by associating 

LUT entries with observed reflectances, or indirectly by first estimating biophysical parameters (e.g., leaf 

area, fraction of ground cover) and then constructing a classification legend suited to the application (e.g., 

GOFC Design Team, 1999). 
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 (iii) Accuracy assessment. A quantitative confidence assessment based on overlapping areas should 

clearly be a fundamental component of accuracy assessment, and should be included as a separate layer 

with pixel- specific content. Classification consistency as quantified above can serve as suitable surrogate 

measure of accuracy. Beyond that, the amount of available resources and the consequences of map errors 

will dictate the approach among the existing techniques to be used (e.g., Congalton, 1991, 1996). Since 

the amount of resources and consequences of map errors are also related, resolution of these issues 

requires involvement of the product users. 

 

4. Summary   

A nationally consistent map portraying the distribution of land cover with a fairly high spatial resolution 

(~30 m) is a relatively recent but urgent requirement for various scientific, policy and reporting purposes. 

We have identified five such areas but others will emerge as the product is developed and becomes 

available. At the present time, the high cost of completing such a product is the main impediment.  

 

Based on research carried out at the Canada Centre for Remote Sensing and the Canadian Forest Service 

over the last five years, we describe a methodology that will make optimum use of satellite data, be 

responsive to differences in user needs, and minimize the costs of the mapping program at the national 

scale. It divides the task into two phases, computer processing (which can be largely automated) and 

labeling followed by accuracy assessment (an analyst- intensive operation with appropriate computer 

support). The innovative features of the methodology are haze identification and correction, radiometric 

normalization over large areas, optimized spectral clustering, quantitative confidence assessment based on 

image overlaps, and judicious involvement of the analyst at key stages of the computer processing. Most 

of the innovations were used in preparing a regional mosaic over the BOREAS study area (Figure 5) 

which was shown to be an accurate land cover product. We also describe a model- based classification 

scheme under development that has several significant advantages over the traditional, analyst�s based 

labeling and offers a promise for large area applications within a few years. 

 

Besides identifying financial and human resources required to carry out such a national mapping program, 

an issue concerned with mapping legends remains to be addressed. Specifically, comparative tests and 

assessment are required to determine if the NVCS-based mapping legend can accommodate the different 

needs or, alternatively, if different legends are necessary and the approach to ensuring national 

consistency. These tests require collaboration among scientists representing the various user communities 
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and should be conducted as a matter of priority. Since the question of compatibility of classification 

legends and map products is a generic mapping issue, results of these tests may be relevant beyond land 

cover. 
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