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SUMMARY 
 
 Spectral matching is one of several techniques that derives information which 
may be used to classify hyperspectral data.  In this paper an analysis technique is 
presented which supplements the typical spectral matching algorithms and facilitates the 
exploitation of the information they provide.  This technique may be used to adaptively 
set a threshold on the similarity measure and classify spectra.  This adaptive threshold 
may be set automatically, or the information from this analysis may be used to permit the 
manual selection of a threshold in a manner which is more intuitive than the direct 
specification of a similarity measure.  The technique adapts the threshold to each class 
and similarity measure combination. 
 

This technique is demonstrated by applying the Spectral Angle Mapper (SAM) to 
simulated and actual imaging spectrometer data.  The proposed technique does not 
provide additional information about the similarity of two spectra, but it does provide 
information which is valuable for deciding class membership. Test results using Compact 
Airborne Spectrograhic Imager (casi) data indicate that the adaptive threshold technique 
provides classification accuracy similar to that achieved using the interactive manual 
threshold scheme, provided that the training area is representative of the target variation. 
While analyzing the variability of a class, in the similarity space, it became obvious that 
analysis of the similarity measure for the entire scene has the potential of providing 
valuable information for classification purposes. 
 

1. INTRODUCTION 
 

Classification of hyperspectral data can be computationally very expensive but 
the increased signature detail also permits effective use of spectral matching techniques 
for classification purposes. These procedures typically compare a spectrum to a reference 
spectrum, using similarity measures to determine the level of similarity between the two 
spectra.  Although images of similarity values can be used on their own, many users 
select to set a threshold and use it to decide if a spectrum came from the same target type 
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as the reference spectrum came from.  This procedure of using matching techniques and 
thresholds emulates the functionality of classifiers with good performance and lower 
computational cost.  Eventhough, some users may become competent at selecting 
thresholds for particular applications (Kruse, 1988; Fan et al., 1997), it typically remains 
a difficult task. 

 
There are many spectral matching schemes, several of which have been 

implemented on the Imaging Spectrometer Data Analysis System (ISDAS) (Staenz et al., 
1998).  One of the more popular techniques is the Spectral Angle Mapper (SAM) (Kruse 
et al., 1993), which possesses the characteristic of being insensitive to scale differences 
between two spectra.  There are two common methods of obtaining reference spectra; 
one is from the imagery itself and the other is from a spectral library.  Usually the 
spectral matching procedure is provided with only the reference spectrum for a given 
class.  The proposed thresholding technique also requires information about the 
variability of the reference spectrum, which can be derived from a collection of spectra 
from the same target class.  This information of spectral variability is used to calculate an 
appropriate threshold value.  Even if the automatically determined threshold is not used, 
the information on class variability provides the user with a more intuitive parameter for 
selecting a threshold. 

 
Using spectral matching to perform classification can in general be described as a 

two-step process. First the n-dimensional data space is mapped to a 1-dimensional 
similarity space. Secondly, the decision of class membership is made based on this 
similarity value.  The technique proposed in this paper utilizes additional information 
which is not typically used by spectral matching techniques. 

 
There are other existing procedures which can perform classification, and have 

features that are similar to the one proposed in this paper, namely the Fisher linear 
discriminant, single-class classification,  and partial unmixing. A short review of these 
procedures are presented to provide a comparison of related analysis techniques.  
Subsequently, the new thresholding procedure for spectral matchers is presented, 
followed by results of applying this technique to simulated data sets and Compact 
Airborne Spectrographic Imager (casi) data (Anger et al., 1996). 

2. CLASSIFICATION TECHNIQUES 

2.1. Fisher Linear Discriminant 
 

The poor computational efficiency of classification algorithms applied to high 
dimensional spectral data, may be overcome by projecting the n-dimensional spectral 
data (feature space) onto a single dimension via a linear transformation column vector W 
of length n as follows: 

y W XT= , (1) 
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where X is the spectrum in the original feature space, represented as a column vector of 
length n, and y is a point in 1-dimension. The Fisher linear discriminant  is the projection 
W which provides the maximal separation of two classes (Duda et al., 1973). 
 This method allows for classification of the data using the traditional criteria of 
probability of membership.  However, the estimates of the probability of membership are 
performed in a 1-dimensional space rather than the n-dimensional space of the data.  The 
Fisher linear discriminant selects the n-D to 1-D linear transformation which has the 
maximum classification capabilities. 

2.2. Single-Class Classification (Single Hypothesis Test) 
 

In multi-class classification the objective is to determine to which of several 
classes a test object belongs. A single-class classifier as described in Fukunaga (1990) 
uses only the information about a single-class to determine if the test object (pixel) is a 
member of a specific class or not.  The class information is used to generate an estimate 
of the  probability of membership.  The estimate is compared to a predefined threshold 
and subsequently membership is decided. 

The single-class classifier may be summarized as mapping from n-dimensions 
(spectral space) to 1-dimension, followed by a decision of membership being determined 
by comparing the test object�s projection to some preset threshold. 

 

2.3. Partial Unmixing 
 
 Partial unmixing as described by Boardman et al. (1995) uses the spectrum of a 
single reference material and knowledge about the variability of the data within a scene 
to estimate the abundance of the reference material within each of the pixels.  A relative 
abundance measure provides more information than just the assignment of a target class 
to the pixel, although it may be used to perform such a classification.  This is similar to 
the situation in statistical classification where the probability of membership provides 
more information, but it is used to generate the determination of class.  Some researchers 
such as Endsley (1995) have tried to use probability of membership estimates to provide 
abundance measurements. 
 

2.4. Spectral Matching 
 
 Spectral matching techniques typically use a single reference spectrum to 
compare it to a test spectrum and provide a measure of the similarity between the two 
spectra.  Thus, the data is mapped from a n-dimensional space to a 1-dimensional 
similarity space. There are some spectral matching algorithms that vary from this 
description; specifically those which use more than just the information from the 
reference spectrum as in the Mean Squared Error Statistic (MSES) (Staenz et al., 1996) 
which uses the per band noise, and the Cross Correlogram Spectral Matcher (CCSM) 
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(van der Meer et al., 1997) which provides more than a single measure of the similarity 
of the spectra. 
 

There are several popular matching techniques in use, one of which is the SAM.  
This technique measures the angle subtended between the reference spectrum 

ϖ
X ref and 

the test spectrum 
ϖ
X  and is specified by (Kruse et al. 1993): 
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This and other similarity measures can be used to perform classification of unknown 
spectra.  The spectral matching techniques are very similar to statistical classification 
procedures, in so much as they both can be used to determine class membership and they 
both can operate in single-class and multi-class variants.  A multi-class spectral matching 
uses reference spectra from several classes and classification may be determined by 
choosing the class with the best similarity measure. A single-class spectral matching uses 
only a single reference spectra and class membership may be determined by comparing 
the calculated similarity measure to a threshold selected by the user. 
 

3. SEMI-AUTOMATIC THRESHOLD DETERMINATION 

3.1. Method 
As mentioned in the previous section, spectral matching techniques can take on 

forms similar to statisical classifiers.  However, statistical classifiers use knowledge of a 
representative class member (such as the class mean) and the class variability to 
determine class membership, while spectral matching techniques typically only use 
knowledge of a representative class member.  This technique of automatic threshold 
determination extends the similarity between spectral matching and statistical matching, 
by using knowledge of the class variability in spectral matching.  However, this 
technique varies from the statistical classifier in that the class is characterized in the 1-
dimensional similarity space and not the n-dimensional spectral space. 

 
Parametric classifiers assume the distribution of members, in a class, can be 

modelled, similarily this technique assumes that the similarity measures, for a class, can 
be modelled by a statistical distribution.  The implementation in ISDAS specifically 
assumes that similarity measures, such as the SAM or the Euclidian distance, are the 
result of summing a large number of independent terms. Thus, the distribution  of the 
terms derived from spectra from the same class will behave like a normal distribution for 
a sufficiently large number of terms.  

Within ISDAS, the class information is extracted from a user specified training 
set of pixels.  The first step in the analysis is to determine a reference spectra Xref for the 
class, which is defined as the mean spectrum of the training set.  The next step compares 

4 



the spectra in the training set to the mean spectrum, using the operator selected spectral 
matching techniqe, and obtains the similarity measures SX.  In the third step the mean, S , 
and the standard deviation, σ class , of these similarity measures are calculated and then 
used to describe the position and distribution of the class, in the similarity space. These 
four parameter can be summarized as: 
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In ISDAS, single-class classification is performed using the similarity measure, 
generated by a spectral matching technique to compare the class reference spectrum to a 
spectrum being tested, and using a cutoff threshold as the discriminant function.  A one-
tail test is used, since the other tail indicates a better match with the reference spectrum 
and, therefore, should not be rejected. The default threshold Tdef used in ISDAS is 
calculated as follows: 

T Sdef class= −3σ . (4) 

The user may also set the threshold interactively Tuser.  In the interactive setting of Tuser 
the user has two options. The first option is to use the information about the class 
distribution in similarity space and specify the threshold value as the number of standard 
deviations from the mean muser, as follows: 

classuseruser mST σ−= , (5) 

and the second options is to explicity set the value of the similarity measure Tuser directly.  
The ISDAS spectral matching tool has implemented both the single-class and the 

multi-class classification schemes. The latter approach uses the threshold as the minimum 
similarity requirement for classification, and performs the same functions that a rejection 
option does in a statistical classifier.  
 

3.2. Simulations 
The distribution of the similarity measure depends on many factors, so 

simulations were conducted to gain an understanding of the distribution behaviour.  In 
each simulation a set of spectra are generated where all the spectra belong to a single 
class.  To generate these spectra a reference spectrum Xref was defined. It was used as the 
mean spectrum of the class, then additional members from the class were generated about 
the reference spectrum.  A series of simulations were conducted where the properties of 
the class spectra were varied.  The first characteristic which was varied was the signal-to-
noise ratio (SNR) of the spectra, and the second was the number of spectral bands each 
spectra contained. 

The mean spectrum for the class was given a base value of 100 and had a 
multiple-period sine wave, with an amplitude of 50, added to it. The class vectors Xclass 
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were generated by adding a random Gaussian noise to each spectral band of the mean 
spectrum, where the noise distributions for each band were identical and independent.  
Thus, forming a hyper-sphere with a Normal radial density distribution about the mean 
spectrum which is described by: 

X X Xclass ref random signal= + ( )σ  (6) 

and 

T
signalnsignalsignalsignalrandom NNNX )],0(),...,,0(),,0([)( 21 σσσσ = , (7) 

where Ni(0,σsignal) are independent normal distributions with zero means and same 
standard deviation of σsignal of the i'th band.  Note, that all n spectral bands have the same 
standard deviation σsignal. 
 

The simulations used the spectral angle for the similarity measure.  The simulated 
class spectra were used to generate the distributions described in section 3.1 and the 
parameters Xref, S  and σ class  were calcuated.  The study generated and analyzed a set of 
simulated classes, where the classes were changed by varying the number of spectral 
bands, n, making up the spectrum, and the magnitude of the noise in each spectral band 
σsignal. 

Since the implementation of the thresholding technique assumes the data in the 
similarity space follows a known distribution, specifically a Normal distribution, the 
skew and kurtosis of the generated distributions were also calculated.  Figure 1 shows a 
typical distribution of spectral angles, which was generated from a population of 10,000 
spectra and a σsignal of 10 for spectra containing 100 bands. Note that the mean similarity 
measure (mean spectral angle) is offset from the zero, and that the skew and kurtosis are 
small which supports our assumption for the simulated class.  The thresholding technique 
uses the mean and standard deviation derived from a population, consisting of members 
from a single target type, to determine a cutoff spectral angle.  If the assumption of 
normality holds, then the error of omission is very small.  However, no estimate of co-
mission errors can be made, since the simulations are performed on a single-class at a 
time. 

 
The behaviour of the mean spectral angle and the variance are illustrated in 

Figures 2 and 3, respectively.  In these simulations the nature of the distributions are 
reported for the various sizes of the reference spectra (number of bands in the spectra) 
and various class cluster sizes (relative size of the data cloud created by the signal noise). 
These parameters were chosen since the relative sizes and the class cluster width and the 
number of bands in the reference spectrum determines the range covered in the spectral 
angle domain. It should be noted that as more bands are added to the simulated spectra, 
the length of the reference spectrum is effectively increased, since the average value of 
each band is constant.  Also as the size of the noise per band is increased, the size of the 
class cluster increases. The SNR per band is defined as 100 / σsignal. 
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3.3. Field Data 

 

Hyperspectral data used to evaluate and demonstrate this automatic thresholding 
technique, was collected with casi.  The sensor was flown over an agricultural setting in 
southern Manitoba, on July 25, 1996 during the peak biomass season.  The flight was 
conducted at an altitude of 2,745 m above sea level using the spectral data acquisition 
mode. This provided data consisting of 304 pixels per line and 96 contiguous, 6.8 nm 
wide, spectral bands per pixels, covering a wavelength range between 458 nm to 1004 
nm, with a ground resolution of 4 m x 4 m.  The only processing of the data was the 
calibration of the raw data to at-sensor radiance. 

 
The fields at the test site contained: sugarbeets, corn, wheat, barley, beans, canola, 

potato, sunflower, oats, peas, and alfalfa.  A couple of weeks prior to data collection 
some of the fields in the site area experienced blow-down, but had fully recovered by the 
time of data collection.  There had been heavy rain, during the week of the data 
collection.  This was particular harmful to the bean crops.  Standing water had obviously 
affected the bean crops earlier in the season as well. Some sections of bean fields were 
completely bare of beans and the regions around it were areas of dwarfed growth.  

 
The scene analyzed at this site contained four crop types: canola, beans, wheat, 

and barley.  The Modified Spectral Angle Mapper (MSAM) which like the other 
techniques implemented on ISDAS provides similarity measure values from 0 to 1, where 
1 indicates the best fit, was applied to the data set.  The definition of the MSAM is given 
by: 

π
SAMMSAM ⋅−= 21 . (8) 

For each of these crop types an area of the image was selected, and the pixels 
within this region were used as the training set for that crop class. These training sets 
were analyzed in the same manner as the simulated data, where the MSAM was 
calculated for each member of the training set with the training set mean spectrum being 
used as the class reference spectrum.  

 
The image in Figure 4 shows this agricultural study area. Also shown in the image 

is a yellow rectangle which indicates a region used as the training area for the canola 
crop. The pixels highlighted in red indicate those which have been classified as canola, 
using the MSAM spectral matching technique and the default threshold value. Note, that 
this training area is not one of the large or the small training areas discussed later in the 
paper, it is use only as typical example and to generate the histograms in Figures 5 and 6. 

 
Figure 5 is a frequency histogram of the MSAM values for the canola training set 

shown in Figure 4.  Figure 6 is a frequency histogram of the MSAM values when the 
canola reference spectrum is compared to the entire scene.  This histogram indicates the 
existence of at least 4 types of spectrally different target.  Since the spectra in the training 
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set are spatially close it is reasonable to believe that the training set does not represent the 
full variability of the class.  This is obvious by comparing Figures 5 and 6 where the 
training set�s has a narrower histogram than that of the entire canola population. In 
addition, the histogram in Figure 6 does not go to zero for MSAM values in the region of 
0.975, indicating that some members of at least one other class can not be unambiguously 
classified using the MSAM measure with only the canola reference.  

 
As the above example indicates, the nature of the training area reflects how well 

the spectral information of the class is represented.  To examine the importance of 
selecting training sets which accurately reflect a class, two sets of training areas where 
selected for two of the crop types.  One small training area and containing little 
information on the class variability and one large training area including the majority of 
the crop variability. 

 
Table 1 contains the results of analyzing the shape of the distributions of MSAM 

for small training sets of each class.  The table also contains the default threshold value 
(equation 4) calculated from the training sets.  Note how the mean MSAM and its 
standard deviation are class dependent. 

 
Consider the single class classification using the MSAM technique where a 

specific threshold of 0.99 was used.  Theoretically, this technique should not classify 
even half of the pixels correctly.  While a threshold value of 0.98 would result in good 
performance for canola, beans and barley but still perform poorly for wheat.  Lowering 
the threshold to 0.97 would correctly classify most of the wheat pixels but would likely 
result in large co-mission errors for canola, beans and barley. Optimal classification 
results will be achieved by adapting the threshold for each class. 

 
Single-class classification was performed for two of the crop types, canola and 

beans,  in the agricultural scene shown in Figure 4 and the results are summarized in 
Table 2.  Two types of training sets, a small and a large training region, were used for 
each of the two crop types.  The small regions are characterized by few pixels, but more 
importantly by the fact that the pixels were of the most vigorous and uniform portion of 
the field.  The large training regions include the most vigorous crop growth and some of 
the less vigorous growth.  Pixels of bare soil were excluded from the large training 
regions, but the average canopy closure in the large training sets would be lower than in 
the small training sets. 

 
The similarity measure used for the classification was the MSAM.  The single-

class classification was performed using six different threshold settings.  The first four 
settings were preset fixed values.  The fifth threshold used was the default adaptive 
threshold given in equation (4).  The last threshold was determined interactively, by 
manually adjusting the threshold value and observing which pixels had been classified.  
This final value used the operators judgement to select a threshold level which balanced 
the omission and co-mission errors.  This manual method is used as an estimate of the 
optimum performance of the spectral matching technique. 
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By comparing the performance of the adaptive and the manual threshold setting 
techniques, it is clear that as more of the class information is used in the training set that 
the adaptive technique approaches the performance limit.  In fact, the adaptive threshold 
out performed the operator when the large training area was used to classify beans.  It is 
also worth noting that the small training sets did not provide enough information about 
spectral variability for these agricultural targets. 

 
Figures 7 and 8 illustrate the differences in the populations for the small and large 

training set for canola.  The solid line indicates the distribution of all the pixels in the 
scene compared to the reference spectrum generated from the corresponding training set.  
These curves are very similar since the reference spectrum from the large and small 
training set are very similar.  However, the distribution of the MSAM values for pixels in 
the large training sets are significantly broader than the distribution for the small training 
set. The distribution of the MSAM values for pixels classified using the automatic 
threshold level demonstrates the same behaviour as the training set's distributions.  These 
plots contain much of the information that is presented in the confusion matrices.  
However, they provide the information in a manner that allows for a visual evaluation of 
the classifier performance.  It can be seen in Figure 8 that the distribution of selected 
pixels stops near the center of the value of the two populations which are shown in the 
entire scene distribution.  The distribution of selected pixels in Figure 7 obviously stops 
short of including the entire canola population. 

4. DISCUSSION 
  
 The proposed spectral matching technique assumes that the class distribution, in 
the similarity space, may be parameterized and the ISDAS implementation assumes it is 
Gaussian.  The shape measures from the simulations and casi data demonstrate that these 
assumptions are reasonable and practical.  This ability to characterize the class� 
distribution, in the similarity space, permits the spectral matching calculations to generate 
estimates of probability of membership.  Thus making single-class spectral matching a 
statistical classification procedure.  This procedure is similar to both single-class 
classification and the Fischer linear discriminant.  Here the estimate of the probability of 
membership is performed in a 1-dimensional similarity space, onto which the data has 
been mapped by the similarity measure. 
 

Unlike the Fisher linear discriminant, this technique is not limited to linear 
transformation.  Although it is most appropriate for similarity measures which involve 
the sum of many terms with little correlation between terms, such as the dot product of 
two spectra, and thus are more likely to demonstrate a Normal distribution. 

This adaptive threshold technique requires class specific information.  Such a 
priori knowledge of class distribution is not too difficult to obtain when analyzing scenes 
like the agricultural scene used in this study, but it could be a serious problem in an 
application such as mineral exploration. In applications where a priori knowledge is 
difficult to acquire, the knowledge may be obtainable from a spectral library.  Obtaining 
information about class distribution from a spectral library and the use of an adaptive 
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thresholding mechanism would improve the utility of spectral matching in applications 
like mineral exploration. 

 
Although the analysis  presented in this paper is focused on characterizing the 

class variability in the similarity space to make spectral matching a statistical classifier, it 
should be noted that the examination of frequency histograms such as the one in Figure 6 
may be of considerable value.  Analysis of the distribution of similarity values for the 
entire scene requires no specific knowledge of class distributions but provides additional 
information on selecting thresholds for classification.  Since this procedure only requires 
a reference spectrum it can be applied to all spectral matching cases where the threshold 
can not be adaptively determined using class information. 

 
The objective of the proposed technique is not to improve the information content 

of similarity measures but to provide an aid to the interpretation process.  Therefore, the 
classification accuracy inherent in any spectral matching procedure is not improved. 
However the selection of a classification threshold is facilitated.  This technique adapts to 
the nature of the data and provides a more intuitive interpretation of any threshold value 
when expressed as a multiple of σclass .  It has also led to the idea of utilizing the 
similarity measure distribution of the entire scene as a valuable source of information. 

5. CONCLUSIONS 
 
An adaptive threshold technique which is based on training area statistics has been 
presented for use in combination with spectral matching techniques to classify spectra. 
The technique has been demonstrated using the modified spactral angle mapper (MSAM) 
on simulated data and hyperspectral casi imagery collected over an agricultural site in 
Manitoba, Canada. 
• The applied threshold (mean reference spectrum minus three standard deviations) 

results in a similar classification accuracy as achieved with a manual setting of the 
threshold (e.g., 90.2 % versus 93.4% for canola), provided that the training area 
covers the within-class variation. 

• The performance of the adaptive threshold technique depends more strongly on the 
training area statistics than the manual approach.  However it out performs fixed 
threshold levels. 

• The analysis of the simulated and casi data indicated that the assumption of normal 
class distribution is reasonable and meets the requirements of the adaptive threshold 
technique. 

• The number of bands and the SNR affects the adaptive threshold such that the mean 
similarity measure increases mainly with increasing SNR while the standard 
deviation decreases with increasing number of bands and SNR. 

• The adaptive threshold can be determined from the image data themselves or can be 
obtained from a spectral library, provided that the required statistics is available. 

• The adaptive threshold technique provides an aid to the selection of a classification 
threshold, but this approach does not improve the classification accuracy inherent in 
any spectral matching procedure. 
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Figure 1: Sample distribution of spectral angle for spectra of a simulated class. 
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Figure 2: Simulation Results: The mean spectral angle, of the population distribution, versus the 

signal-to-noise ratio (SNR) added to the signal of the population. 
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Figure 3: Simulation Results: Standard deviation (STD) of spectral angle for a population versus 

the signal-to-noise (SNR) of the signal on the population spectrum.  
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Figure 4: Agricultural scene with canola training set identified by a yellow rectangle and pixels 
classified using the default threshold value identified by red pixels.  The RGB image was 
generated using bands centered at 676.3 nm for red, 540.5 nm for green, and 478.8 nm  
for blue.  
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Figure 5: Distribution of modified spectral angle mapper (MSAM) values generated from casi data 

for the canola training set in comparision with its own mean spectrum.  The training set 
is identified in Figure 4 by a yellow rectangle. 
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Figure 6: Distribution of modified spectral angle (MSAM) values generated by comparing canola�s 

mean spectrum to the entire agricultural scene of casi data.  The cluster of MSAM 
values closest to unity consists predominantly of spectra from the canola fields.  
Arrows indicate the peak of the four spectrally different populations. 
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Crop 
Type 

Mean 
MSAM 

STD * 
 MSAM **

Skew Kurtosis Threshold # Pixels 

Canola 0.9916 0.00236 -1.043 0.842 0.9846 799 
Wheat 0.9847 0.00419 -0.724 0.205 0.9721 432 
Beans 0.9898 0.00308 -1.168 2.246 0.9805 480 
Barley 0.9899 0.00323 -2.331 9.553 0.9801 308 

 
• STD = standard deviation 
• MSAM = modified spectral angle mapper 
 
 
 
 
Table 1: Results of analyzing shape of small training sets of four crop types.  The training sets 

consisted of the most vigorous grow in the fields. 
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Training ROI Threshold 

Value 
Percent 
Correct 

Omission  
Error (%) 

Co-mission 
Error (%) 

.995 6.3 93.7 0 

.990 38.3 6.17 0 

.980 85.6 14.4 .013 

.970 96.9 3.1 .95 
Automatic  (.9899) 39.1 60.9 0 

Small Canola 

Manual      (.9700) 96.9 3.1 .95 
.995 5.5 94.5 0 
.990 39.9 60.1 0 
.980 85.9 14.1 .017 
.970 96.2 3.8 2.1 

Automatic  (.9777) 90.2 9.8 .123 

Large Canola 

Manual      (.9730) 93.4 6.6 .95 
.995 3.1 96.9 0 
.990 22.7 77.3 0 
.980 52.9 47.1 .178 
.970 - - >10 

Automatic  (.9897) 23.8 76.2 0 

Small Bean 

Manual      (.9800) 52.9 47.1 .178 
.995 3.8 96.2 0 
.990 28.0 72.0 0 
.980 57.9 42.1 .302 
.970 - - > 10 

Automatic  (.9772) 62.3 37.7 1.61 

Large Bean 

Manual      (.9780) 60.9 39.1 1.34 
 

*ROI = region of interest. 
 
 
 
 
 

 
Table 2: Results of analyzing the training sets of two crop types, using two different sized training 

sets and six classification thresholds.  The two large training sets include more 
variability of crop vigor than the small training sets. 
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Distribution of MSAM for a Small Canola Training area
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Figure 7: Distribution of the similarity measure (MSAM) when compared to the reference 

spectrum derived from a small training sample of most vigorous canola growth. The 
automatic thresholding technique was used to determine the selected pixel group. 
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Distribution of MSAM values for Large Canola Training area
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Figure 8: Distribution of the similarity measure (MSAM) when compared to the reference 

spectrum derived from a large training sample of canola, consisting of a range of vigor. 
The automatic thresholding technique was used to determine the selected pixel group. 
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