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ABSTRACT

A technique for producing consistent colour composites from hyperspectral data is
presented. It is based on the intensity-hue-saturation (IHS) colour transform, a model
related to the human perception of colours. The method is simple and robust. The
ordinary moment (order zero) of the spectral distribution is assigned to the Intensity
component - the perceived luminance. The center of gravity of the distribution is used
for the Hue component - the dominant wavelength or colour. Finally, the fraction of the
total flux (Intensity) inside a window of a predefined width centered at the Hue (center
of gravity) is taken as the Saturation - the purity of the dominant wavelength. A
saturation measure derived from variance is also considered, providing a full moment-
based IHS transform. Each component is linearly stretched for contrast enhancement
and projected to the RGB colour space using the hexcone model. The method is
illustrated with a casi (Compact Airborne Spectrographic Imager) image. Further tests
are needed to evaluate the potentials of the method for diversified landscapes and
different sensor configurations.

1.0 INTRODUCTION

Colour products are one of the effective media used in remote sensing to display information. How
to use colour and its shades to present dominant and embedded information in a multiple band image is
a major issue for photointerpretation. Sensors are now available with an increasing number of spectral
bands and the display of the information content of such datasets is a major challenge. A good sampling
of existing visualization techniques for hyperspectral data can be found in Staenz et al. (1998). There
are two common approaches to display hyperspectral data through the RGB system in 2-D. The first one
is to perform a judicious choice of a 3-band subset. The selection can be based on a priori knowledge of
spectral properties, or based on statistical methods (e.g. Sheffield, 1985; Chavez et al.,1982). A second
approach consists in performing dimension reduction. The principal component (PC) analysis is
certainly the most widely used approach for such a purpose. Each approach has its advantages and
disadvantages. Band selection methods maintain the data integrity but the amount of information is
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limited to that contained in the selected bands. The PC approach takes advantage of the statistics of the
whole dataset but the results are highly scene-dependant. It gives rise to colour composites that are
sometimes difficult to interpret (e. g., vivid colours), and it does not preserve the data integrity (Harris et
al., 1990).

In this paper, a simple and robust method for synoptic visualization of information encapsulated in
hyperspectral data is presented. It consists of characterizing the global spectral distribution attributes to
fit the intensity-hue-saturation (IHS) frame. The method has been tested on a small dataset and the
results are compared with those derived from principal components.

2.0 METHOD

  The IHS colour transform has been widely used to display information in remote sensing (e. g.,
references cited in Harris et al., 1990; Pohl and Van Genderen, 1998). A major strength of the IHS
technique is the fact that this approach is related to the human perception of colours (Foley et al., 1990).
The hue corresponds to the dominant wavelength of the light seen, the saturation is the proportion of
pure light of the dominant wavelength, and the intensity represents the amount of light. This is a
functional definition and, thus, can be adapted to spectral distributions of arbitrary spectral range. In the
following, we employ the general label 'object' for the physical entity that gives rise to the measured
spectral distribution. For clarity, the sampling rate in the wavelength domain is assumed constant so that
the band number replaces the wavelength value in the formulae. However, all expressions can be easily
extended to the general case of arbitrary sampling (e.g., Rundquist and Di 1989).

Among many possibilities, the intensity of an object in an image can be charaterized by the
maximum value of the spectral distribution or by a measure that integrates the corresponding signal in
each band. To have greater immunity against noise and bad pixel values, the latter case is chosen for our
algorithm development. For a N-band spectral distribution, we define the intensity-related measure y of
an object by:
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where DNk is the pixel digital number DN value in band k, k=1,…, N. Normalization of equation (1) by
N (yN = y / N) results in the expression for the moment of order zero, or ordinary moment (Rundquist
and Di, 1989). The centre of gravity (CG) of a distribution is statistically close to its mean wavelength
and, therefore, is a good candidate for the hue. It is given by:
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This is referred to as the mean by Rundquist and Di (1989). It is equivalent to the ratio of the moment of
order one to the moment of order zero. Finally, any parameter that describes how the distribution peaks
around the hue can be used to measure the saturation level. The square root of the variance is obviously
one such measure and can be derived from moment analysis. The normalized variance (µ2) of order 2
(Staenz 1996) is given by:
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The signal inside a small set of bands centred at hue, divided by the signal in the entire spectra,
represents another intuitive and simple measure for saturation (f):
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where w is a range of bands. The IHS transform is fully moment driven and parameter-free if based on
equations (1), (2) and (3).

The hexacone model is employed to transform the IHS components to the RGB system (Foley et
al., 1990). Input data for that model are scaled according to 0<i<1, 0<s<1 and 0<h<360, where i, s, and
h are the intensity, saturation and hue variables respectively (see figure 13.34 of Foley et al., 1990).
Hereafter, we will denote the resulting output channels as r, g, b. An important property of the IHS
system is that each component can be manipulated independently (Gillepsie et al., 1986). To enhance
visual contrast, a linear stretch is applied prior to the IHS to the RGB transform. The final
transformations adopted in this work are:

i = (yN - yN min) / (yN max - yN min ),   (5)

h = (2/3) 360 [ 1 - (CG - CGmin) / (CGmax - CGmin) ],          (6)



sf = ( f - fmin ) / (fmax - fmin ), and (7a)

sµ2 = [ 1 - ( 2µ - 2µ min) / ( 2µ max - 2µ min ) ], (7b)

where the min and max indicate histogram bounds. In the present work, they correspond to plus or
minus 2.4 standard deviations from the average value calculated for each component. The hue equation
(6) is inverted and rescaled to fit two-third of the hexacone model range. This is done to avoid the
magenta colour in the RGB system. This inversion and rescaling process is esthetical in essence but
permit to match, in an intuitive manner, the human perception of colour. Effectively, as the dominant
wavelength of the objects varies from one extreme to the other, that is from shorter to longer
wavelengths, so it is for its displayed colours (blue to red). Scale inversion is also performed for
equation (7b) because the variance behaves in a reciprocal way with saturation: the lower is the variance
and the higher is the saturation, and conversely. No such inversion is needed for equation (7a).

3.0 PROCEDURES

A 256 x 256 pixels region of 24 bands has been extracted from a 72-band casi image cube acquired
in Labrador on July, 1996. The pixel size is 5 meters and the centre wavelength ranges from 414 nm to
953 nm, in step of about 23 nm. Although the sampling interval has a minor effect, it has nevertheless
been taken into account for the hue calculation (wavelength instead of band number domain). The DNs
are proportional to the radiance. The landscape is mainly composed of wood (hard/soft/mixed), water,
wetlands, rocks and lichen (mainly in open forests). The sampling interval was assumed constant for the
intensity and saturation calculation. The first three principal components were also derived to establish a
baseline for comparison. Conditions imposed by the software used for the PC analysis limits the number
of bands to less than 32. One band out of every three bands was selected from the original 72-band cube
for a total of 24 selected bands. Equations (5), (6) and (7) were applied on this 24 bands subset. The first
three principal components represent 76.5, 19.8 and 2 per cent of the total variance, respectively.

4.0 RESULT AND DISCUSSION

The i, h, and sf  components are displayed in Figure 1, along with the first three principal
components (PC1, PC2, PC3). Each image has been linearly stretched. Expression (7a) was used for the
saturation. This measure depends on a free parameter, w, that defines the set of bands centred at hue. A
too small number of bands in the set will give rise to a measure sensitive to noise effects. A too large
number of bands will make the measure insensitive to saturation effects. We choose a set with the
number of bands equals to a fifth of the spectral range (w=5 bands). Although there were differences
between the images produced by equations (7a) and (7b), they nevertheless generate very small visual
differences when projected into the RGB space. Visually, there are many similarities between the two



sets of images shown in Figure 1. The i and PC1 images in Figures 1a and 1b look very much the same,
this is supported by the high value of the correlation coefficient, ri,PC1=0.98. Although the values of the
h component have been inverted, its overall similarity with PC2 is also striking (rh,PC2 = -0.82)(Figures
1c and d). The s and PC3 components in Figures 1e and f are poorly correlated (rs,PC3 = - 0.16) and look
dissimilar. The saturation s is moderately correlated with the hue h, with rs,h = 0.78; it drops to 0.58 if s
is given by equation (7b). Note that i and h are weakly correlated, ri,h = 0.32. By design, no correlation
exists between any pair of the principal components. This comparison is not aimed at establishing a
relationship between principal components and i, h and s. Only a correlation between the intensity and
the first principal component is somehow expected since the major source of variation in a scene
corresponds to object brightness most of the time.

We found that, overall, the IHS to RGB colour transform compares well visually to a RGB
composite made from the first three principal components with PC1 in red, PC2 in green and PC3 in
blue (not shown). This reflects the high level of correlation between i and PC1, h and PC2, and the fact
that PC1 and PC2 represent 96.3 per cent of the total variance. However, as expected, the attributed
colours for the same landform differ by a wide margin. Another (expected) difference is the intensity
effect that generates a dark colour for low-radiance objects, e. g., water, which shows up in colour in the
PC composite. We found that the RGB composite based on PC may provide better colour contrast
between some landforms. For example, wetlands appear yellow while the surrounding is blue (mainly
forest). In the case of the RGB composite based on the IHS technique, the wetland areas are bright light
green compared to a dark green colour for the surrounding area. However, by adjusting the origin of the
hue, comparable high colour contrasts are obtained for the IHS-based RGB composite. This operation is
equivalent to re-directing the generated  r, g, b channels to a different combination of colour guns, e.g., r
in blue, g in red and b in green. Note that such a hue manipulation completely cancels out the 'esthetical'
effect introduced in equation (6) but the colour coding is still consistent.

Essentially, the proposed method relies on the first three moments of the distributions.
Rundquist and Di (1989) have shown that moment analysis applied on imaging spectrometer
data is a useful technique for data reduction. Staenz (1996) also demonstrated that, overall,
band reduction by moment analysis performs well for classification purposes. These results
have linkage to the fact that, theoretically and under certain conditions, moments determine
completely a distribution (Stuart and Ord, 1994). In this study, we used a few moments and as a
result only the overall spectral information is characterized. In the Staenz (1996) study, the
normalized concentrated moment apparently possesses higher discriminant power than CG (eq.
6). However, the coefficient of correlation between CG and the normalized concentrated
moment in our dataset is 0.986, indicating a very high level of redundancy between the two
measures. It is possible that improved results could be obtained by replacing the variance used
for the saturation variable by a higher order moment.



5.0 CONCLUSIONS

An IHS-based method has been introduced to display the global characteristics of spectral
distributions. The method is simple and robust. A small area that include different landforms such as
forest, water, wetlands, rocks and lichen has been used to assess the potential of the method from a 24-
band image. A comparison with the first three principal components that account for about 98 per cent
of the total variance, reveals the usefulness of the method proposed.

We like to stress that PC analysis is able to pick-up fine details while the i, h, s remains a technique
designed to catch the overall characteristics of a distribution (it is restricted to a few moments of a
distribution). The results presented here are preliminary and have been tested on a very small test area.
Further tests are needed to evaluate the full potential of the method for diversified landscapes as well as
for different sensor configurations (e. g., wavelength range).
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Figure 1a. Intensity Image Figure 1b. PC1 Image

Figure 1c. Hue Image Figure 1d. PC2 Image



Figure 1e. Saturation Image Figure 1f. PC3 Image

Figure 1. Intensity, Hue, and Saturation Images (1a, 1c, 1e) and Principal Component
Images: PC1, PC2 and PC3  (1b, 1d, 1f).
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