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ABSTRACT

Although land cover mapping is one of the earliest applications of remote sensing technology,
routine mapping over large areas has been under consideration only relatively recently. This
change has resulted from new information requirements as well as from new developments in

remote sensing science and technology. In the near future, new data types will become available
that will enable marked progress to be made in land cover mapping over large areas at a range of

spatial resolutions. This paper is concerned with land cover mapping strategies based on ‘coarse’
and ‘fine’ resolution satellite data as well as their combinations. The status of land cover mapping
is discussed in relation to requirements, data sources, and analysis methodologies including pixel

or scene compositing, radiometric corrections, classification, and accuracy assessment. The
overview sets the stage for identifying research priorities in data preprocessing and classification

in relation to the forthcoming improvements in data sources as well as new requirements for land
cover information.
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1. INTRODUCTION AND OBJECTIVE

Land cover, i.e. the composition and characteristics of the land surface elements, is key
environmental information. It is important for many scientific, resource management, and policy

purposes and for a range of human activities. It is an important determinant of land use and thus
of value of land to the society. Land cover varies at a range of spatial scales from local to global,
and at temporal frequencies of days to millennia. As the need for environmental planning and

management became important, an accompanying call for land cover information emerged in
parallel.

Land cover mapping is a product of the development of remote sensing, initially through aerial
photography (Colwell, 1960). This is because ‘viewing’ large areas repeatedly is necessary for

acquiring information about land cover. For the same reason, land cover mapping has been
perhaps the most widely studied problem employing satellite data, beginning with Landsat 1.

However, most of the studies using ‘fine’ resolution data (i.e., <~50-100 m) were methodological
in nature, exploring various information extraction techniques and applying these over limited
areas. Applications over large areas were hampered by the lack of suitable technology, an absence

of a user community with a strong need for such information, a lack of appropriate analysis
methodologies, and the cost of data. Thus, at the global level, land cover data sets compiled from

ground surveys or various national sources (Mathews, 1983; Olson et al., 1983) were for a
number of years the major source of information.

Partly in view of the above obstacles (data volume, cost,..), since the late 1980s an increased
attention has been given to the use of coarse resolution optical data, represented primarily by

NOAA Advanced Very High Resolution Radiometer (AVHRR) images. These were initially
available at the 8 km resolution and later, through the initiative of the International Geosphere-

Biosphere Programme (IGBP; Townshend et al., 1994) and a project involving many AVHRR
receiving stations (Eidenshink and Faundeen, 1994), at the nominal resolution of 1 km for all land
areas of the globe. Through these efforts, first satellite-based global land cover maps have already

been produced (DeFries and Townshend, 1994; DeFries et al., 1998; Loveland et al., 1999;
Hansen et al., 1998).

For coarse as well as fine resolution data, the above limiting factors are changing at the present
time. The emergence of global environmental issues addressed by IGBP(1990), the Framework

Convention for Climate Change, the Kyoto Protocol, the Biodiversity Convention, global
observing systems (GCOS, 1997) and other international policy instruments have brought with it

a new, critical requirement for land cover information at many scales, from landscape to global.
Computer speed is no longer an obstacle to processing large volumes of data by a small team. The
cost of data has been gradually decreasing (especially data for research purposes), and will
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change fundamentally with the expected launch of Landsat 7. The launch of new satellite sensors

such as Landsat 7 (http://landsat.gsfc.nasa.gov/), SPOT 4 VEGETATION (VGT; Saint, 1992),
Moderate Resolution Imaging Spectroradiometer (MODIS; Salomonson et al, 1989; Running et

al., 1994; Barnes et al., 1998), Medium Resolution Imaging Spectrometer (MERIS;
http://envisat.estec.esa.nl/), and Global Imager (GLI;
http://hdsn.eoc.nasda.go.jp/guide/guide/satellite/sendata/gli_e.html) with a systematic global

acquisition strategy will inaugurate a new era in land remote sensing, during which (i) high
quality data sets will be available globally for land cover mapping applications, and (ii) the

remote sensing research community will be expected to deliver sound methodologies for
generating land cover information products (as well as the first series of such products).

For the above reasons, the turn of the century is a milestone in land cover mapping, and the future
will be unlike the past. It is thus appropriate to take a more detached view of the issues involved,

main problem areas, and important research directions for the next several years. This paper
focuses on the methodologies for generating land cover information products over large areas.
The significance of the methodologies is self-evident, and their impact on the quality of the final

products will be decisive. The paper considers the end-to-end process in preparing land cover
maps, and the types of algorithms and information extraction procedures. The discussion is

limited to land cover mapping, i.e. periodic determination of land cover distribution over the
entire area of interest (as opposed to land cover change); and to the use of multispectral optical

data, the part of the electromagnetic spectrum found most useful for land cover mapping in
research to date.

2. DIMENSIONS OF THE LAND COVER MAPPING PROBLEM

There are several important considerations which determine the characteristics of the resulting
land cover information.

1. Purpose. Land cover information is obtained for numerous scientific, policy, planning, or
management purposes. Within each of these areas, a wide range of needs exists. For example,
specific models of vegetation-atmosphere interactions require different types of land cover

information (e.g., Sellers et al., 1996, Dickinson et al., 1986). Similarly, productivity models
(Liu et al., 1997), hydrological models (Wigmosta et al., 1994), forest inventories

(Magnussen, 1997), land use inventories and planning  as well as other biophysical resource
inventories (Jennings, 1995), and  many other activities require land cover information.

2. Thematic content. The information may be needed for few cover types (e.g., forest -

nonforest); for all cover types and at same (or varying) levels of detail; tailored to specific
model requirements; or as continuous variables (e.g., % coniferous forest). The thematic

content also has strong effect on the frequency of land cover mapping.
3. Scale. Over large areas, land cover information may be required locally (at specific sites, 100

-103 km2), at the regional scale (104-106 km2), or continental to global scales (10>6 km2).
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4. Data . The quality of the remote sensing data, and their availability, limit the type and

accuracy of the information that may be extracted.
5. Processing and analysis algorithms. The characteristics of algorithms employed at the

various processing stages are of critical importance, as discussed in more detail below.

The purpose and thematic content help define the classes that must be differentiated in the land

cover product, i.e. the mapping legend. Scale, together with the legend, determine the remote
sensing data source appropriate to the mapping problem. Data and algorithms employed constrain

the information that may be present in the final products. To limit the discussion that follows, it is
assumed that the purpose of the land cover mapping is to produce information at regional to
global scales (>~105 km2) and for all cover types present (although not necessarily at the same

level of thematic detail; e.g., a map could have more detailed classes for forest and less detailed
for other types).

Since land cover changes over time the temporal resolution is a critical consideration in choosing
the appropriate data type. Figure 1 portrays the relationships between spatial resolution, temporal

resolution, and satellite data sources. The broken line identifies the principal domain of interest to
large area land cover mapping employing satellite data. Such mapping is not required for very

small areas or very frequently (i.e., the lower left part of the graph). Thus, the domain of interest
spans the range between two extremes: ‘coarse’ resolution at frequent time intervals (lower right

part of the plot), and ‘fine’ resolution at long intervals (upper left). It should be noted that the
labels ‘coarse’ and ‘fine’ are relative and that each covers a range of resolutions; for example,
‘coarse’ is appropriate for AVHRR 8 km data but not for MODIS 250 m data. The terms are used

in this paper for brevity to categorize a sensor but the qualification must be kept firmly in mind.

The range between the above extremes is a continuum accessible through satellite remote sensing
techniques. Theoretically, the entire range could be covered using satellite data from the lower
left corner of the range, i.e. data obtained very frequently and at a high spatial resolution.

However, this is a practical impossibility at the present, and a cost-ineffective solution at any time
because land cover does not change rapidly enough in all places. Thus, a more realistic approach

is to consider the range as consisting of discrete components.

Region A (Figure 1) represents mapping with frequently obtained coarse resolution data. With

these, it is possible to prepare higher level data sets through pixel compositing procedures
(Holben, 1986), thus allowing global land cover maps to be produced at short intervals. In region

B, fine resolution data are obtained relatively infrequently. Therefore, given in addition the
unavoidable cloud contamination and seasonal phenological effects, data sets suitable for land
cover analysis can be compiled only over longer time periods. A coverage of large areas is thus

produced through ‘scene compositing’, i.e. by mosaicking the individual images. Region C can
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utilize land cover products generated by methods in A or B. So far, the approach has been to

employ A for mapping and B for training and/or validation (e.g., DeFries et al., 1998; Cihlar and
Beaubien, 1998; Hansen et al., 1998). Region D presents the greatest challenge, requiring

frequent coverage at fine resolution. While this is not now realistically possible over large areas,
it should be feasible to synergistically combine data and products from parts A and B, thus
obtaining effectively the same information; this is discussed in more detail in section 3.3. Figure

1 also shows the approximate positions of some important satellite sensors.

So far, satellite-based large area mapping has been mostly done in region A (Figure 1) because of
the availability of data and the manageable computational demands. Land cover maps at 8 km
resolution or coarser were prepared from AVHRR GAC data  (DeFries and Townshend, 1994;

DeFries et al., 1998). Maps for landscape regions (e.g., Steayert et al., 1997; Cihlar et al., 1997;
Laporte et al., 1998) or larger areas (Loveland et al., 1991, 1995; Cihlar and Beaubien, 1998)

have been produced in recent years with 1 km AVHRR data. With the availability of the global
AVHRR 1 km data set (Eidenshink and Faundeen, 1994), intensive activities led to global
products at the same resolution (Loveland and Belward, 1997; Loveland et al., 1999; Hansen et

al., 1998). So far, region A maps have been produced infrequently. However, the same techniques
can be used to generate land cover maps at shorter time intervals, as short as the minimum

compositing period resulting in a usable data set. - For region B, the work so far has been limited
mostly to studies over small areas, such as a Landsat scene or less. Among the exceptions is the

US GAP program (Jennings, 1995) through which maps over entire states have been produced
(Homer et al., 1997; Driese et al., 1997); humid tropical deforestation studies; and other
experimental products prepared through scene compositing (Guindon, 1995; Homer et al., 1997;

Beaubien et al., 1998; Vogelmann et al., 1998). Apart from some methodological studies (e.g.,
Moody and Woodcock, 1996; Cihlar et al., 1998d), little work has been done regarding region D.

3. ANALYSIS METHODS

In principle, land cover mapping from satellite data is straight-forward and consists of four steps:

data acquisition, preprocessing, analysis/classification, and product generation and
documentation. However, details of these steps differ fundamentally between regions A and B of

Figure 1. In A, the acquisition is frequent (every  one or very few days), and preprocessing
includes image compositing by choosing individual pixels from a period of several days, typically
5-10. Consequently, one can obtain a nominally cloud-free product for every compositing period

but at the cost of increased image noise. In part B, images are obtained so infrequently (e.g., >2
weeks) that the pixel compositing approach is not viable and scene compositing must be

employed instead. These differences have a strong impact on the preprocessing and classification
techniques.
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3.1 Preprocessing

The objective of this step is to prepare the data in a format from which accurate land cover
information can be extracted. In principle, it entails geometric and radiometric corrections (Figure

2). Geometric corrections will not be discussed here as they have been worked out for both coarse
(e.g., Emery et al., 1989; Cracknell and Paithoonwattanakij, 1989; Roberston et al., 1992;
Nishihama et al., 1997) and fine (Friedmann, 1981) resolution satellite data.

3.1.1 Coarse resolution data

In the past, some classification projects employing coarse resolution data were carried out with

single-date, relatively cloud-free images (e.g., Pokrant, 1991; Beaubien and Simard, 1993).
However, this approach is fundamentally limited because the probability of cloud-free scenes
decreases as the area covered by one scene increases. It is thus very difficult to obtain useful

images for land cover mapping, especially if the eligible time interval is short. Furthermore, such
images contain systematic errors due to atmospheric effects (as a function of the path length) as

well as monotonically changing spatial resolution for most coarse resolution sensors. Their
classification is therefore difficult and requires interactive fine-tuning for each input scene used,
as well as post-classification operations to reconcile differences between adjacent scenes and thus

ensure consistency across the mapped area. For these reasons, research in recent years
emphasized the use of image composites.

In a compositing process, the image product is prepared so as to contain, as much as possible,

information about the land surface itself. Since a large fraction of the pixels typically contains
clouds, the main objective of the procedure is to select the most cloud-free measurement from
those available for a given pixel of the composite image. At the present, the selection is most

often based on the maximum value of the Normalized Difference Vegetation Index (NDVI;
Holben, 1986). Advantages of the NDVI criterion include high sensitivity to atmospheric

contamination, ease of computation and wide acceptance in previous studies, thus creating a de
facto standard. Others have shown that maximum NDVI composites contain artefacts caused by
the behaviour of the NDVI itself (e.g., Goward et al., 1991; Cihlar et. al., 1994a,b; Qi and Kerr,

1994). Nevertheless, the alternatives proposed so far have their own disadvantages; and
furthermore, the main drawback, i.e. a tendency to select pixels with forward-scattering

geometry, can be overcome through bidirectional reflectance corrections (e.g., Li et al., 1996;
Cihlar et al., 1997b; Leroy, 1994; Ba et al., 1997). This is not to say that the compositing problem
has been solved (section 4.1).

The pixel compositing approach yields nominally cloud-free composites every several days, thus

providing a potentially large data set for land cover classification. However, in this form the data
are far from adequate for such a purpose. This is because the composites have built-in noise from
the varying satellite sensing geometry and from residual clouds or variable atmospheric properties
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(water vapour, aerosols, ozone). These effects are normally present between adjacent composite

pixels and can lead to large radiometric differences for the same land cover type, thus causing
classification errors. They also have a strong impact on the consistency of satellite data, both

within and among years. For example, Cihlar et al. (1998b) found that depending on the
measurement of interest (AVHRR channel 1, 2 or NDVI) and land cover type, the most important
correction is the removal of contaminated pixels, atmospheric correction, or correction for

bidirectional reflectance effects caused by differences in the source-target-sensor geometry. Thus,
further preprocessing operations are necessary.

The degree of corrections following compositing varies among investigations. Atmospheric
corrections are frequently carried out (e.g., James and Kalluri, 1994; Eidenshink and Faundeen,

1994; Cihlar et al., 1997b), although nominal/climatological values of some critical parameters
are typically used or their effect is ignored (e.g., aerosol). While the nominal corrections account

for systematic effects such as Rayleigh scattering, they are incapable of discerning pixel-specific
atmospheric contamination caused by translucent or small (subpixel) clouds, haze, or snow
patches. These effects are difficult to detect because present satellite data have insufficient

spectral information (thus limiting cloud detection options based on spectral, pixel-based criteria)
and because the use of spatial context is even more limited due to the inherent heterogeneity of

land cover (especially with decreasing pixel size). Other possibilities thus need to be pursued
(Gutman et al., 1994). Use of the temporal dimension is one option (Viovy et al., 1992; Los et al.,

1994; Sellers et al. ,1994; Cihlar and Howarth, 1994). Sellers et al. (1994) used the NDVI
temporal trajectory to flag contaminated pixels, and Cihlar (1996) extended this approach in
CECANT (Cloud Elimination from Composites using Albedo and NDVI Trend). Since the

detection is NDVI-based, it can identify the above sources of noise because they tend to decrease
the measured NDVI (compared to the ‘expected value’ for that pixel and compositing period).

CECANT requires that data for the entire growing season be available so that the NDVI curve
can be modelled. However, it is also applicable to new (current year) data provided that
comparable full-season data are available for a previous year and some degradation of

performance can be traded for timeliness (Cihlar et al., 1998e).

Bidirectional corrections are possible but not frequently implemented so far because of the
perceived complexity of the problem. Furthermore, bidirectional corrections require satellite
measurements at different viewing geometries with the surface conditions remaining constant to

maximize the accuracy of the inversion procedure (e.g., Barnsley et al., 1994). Such
measurements are generally not available, and this approach may become practically feasible

only after the launch of EOS when the bidirectional space is sampled simultaneously by MODIS
and MISR (Martonchik et al., 1998). As another option, it is possible to correct satellite data to a
standard viewing geometry (Gutman, 1994; Sellers et al., 1994). This option requires the

knowledge of which model to apply to each pixel to be corrected. Typically, the models are
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derived for individual cover types, and land cover thus becomes a pre-requisite to using this

approach. The procedure might become somewhat circular, except that the bidirectional
dependence does not appear highly cover type-specific and few types need to be differentiated

(Wu et al., 1995). Furthermore, the coefficients for these functions need not be known a priori but
may be derived from the data set itself (Cihlar et al., 1997b; Chen and Cihlar, 1997). This means
that a simple land cover classification (e.g., an existing one or one based on NDVI only which is

less sensitive to bidirectional effects) can be used in the correction of satellite data, the latter to be
used for a more detailed differentiation of the various cover types or conditions.

3.1.2 Fine resolution data

In the past, most land cover studies employing high resolution data were carried out with single

images (hereafter called ‘scenes’), parts of scenes, or an assembly of such scenes from different
areas. In these cases, radiometric consistency was not an issue because the classification could be

optimized individually for each scene. When classifying a scene composite (i.e., mosaic of
scenes), the situation is more complicated. In principle, two options are possible (Figure 2). First
(case I), one can classify each scene separately and subsequently reconcile the classes across the

mosaic. Another approach (case II) is to assemble a mosaic of scenes for the entire area, establish
radiometric uniformity across the mosaic, and then classify it as one entity.

In case I, each scene is treated as a separate data set to be classified, using ancillary data that are

appropriate for the classification procedure employed. It is thus slow and labour-intensive. The
reconciliation of classification across the boundaries between adjacent scenes can be difficult and
may require changes in the classification(s) or labeling to be carried out within individual scenes.

Even with these measures, discontinuities between scenes are not necessarily removed if
significant radiometric differences were present at the outset. Thus, even with much intervention

by the analyst, post-classification reconciliation does not guarantee success. On the other hand,
procedure I is highly flexible and can cope with various limitations of the input data. It has thus
been used extensively in the past and good results have been reported (Pokrant, 1991; Driese et

al., 1997).

Because of the infrequent satellite revisits, the compositing of fine resolution data over large
areas (case II) employs entire scenes, as opposed to individual pixels in the coarse resolution data.
Thus, although radiometric noise is still present, it takes on different forms. First, atmospheric

contamination is less limiting because only mostly cloud- and haze-free scenes (preferably <10%)
are used for this purpose. Second, bidirectional problems are much less severe, particularly in the

case of nadir-looking sensors with a narrow field of view such as the Landsat Thematic Mapper
or SPOT HRV in nadir mode. Solar zenith angle corrections are thus the main ones to consider.
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Substantial amount of research has been carried out in the area of radiometric equalization across

scene composites. Typically, the algorithms utilize overlaps between adjacent scenes to establish
the correction factors. The corrections have been done interactively (e.g., Beaubien et al., 1998)

or can be automated (Chavez, 1988, 1989; Schott et al., 1988; Elvidge et al., 1995; Yuan and
Elvidge, 1996; Atzberger, 1996; Guindon, 1997). However, reconciling adjacent scenes may not
be sufficient in larger scene composites. This is because the residual errors accumulate in a

different manner, depending on the order of scenes to be corrected (Guindon, 1997). Also, the
sequence of corrections is not likely to achieve closure if done unidirectionally, i.e. radiometric

values for one cover type may differ between the first and the last scene included in the
composite. Therefore, an overall adjustment within the scene composite is preferable, in which
the inconsistencies and radiometric differences are balanced to an overall optimum. This is

conceptually similar to block adjustment employed in photogrammetry, and can be implemented
for scene compositing purposes (e.g., PCI, 1998; Guindon, 1995). With such adjustments, the

radiometric errors are minimized across the composite, based on the magnitude of the differences
detected in the overlapping areas. These differences can conveniently be detected using overlaps
with adjacent scenes or orbits. Because of the scale relationships between scene size and the size

of atmospheric high pressure areas, adjacent scenes along the orbit often have similar cloud
contamination.

Even in radiometrically corrected scene composites, some noise will remain. The most important

sources are local atmospheric effects such as haze, smoke, or cumulus clouds in an otherwise
clear-sky scene. Small but potentially significant bidirectional reflectance effects may also be
present (Staenz et al., 1984). For example, Guindon (1997) observed differences of 1-5 digital

levels between forescatter and backscatter directions in Landsat MSS scenes; such differences
could lead to classification discontinuities between adjacent scenes. These residual effects must

be dealt with in the classification process.

In addition to purely radiometric noise, the uniformity is also affected by phenological differences

among scenes that are more difficult to address. Potential solutions include enlarging the window
during which acceptable data are acquired, usually by adding years from which data may be used;

using data from other, similar sensors; or attempting a ‘phenological correction’ based on
seasonal trajectories established for similar targets. Such corrections would be required prior to
scene compositing.

The use of scenes from various sensors in a composite has not been explored so far. In principle,

it requires preprocessing the data from the added sensor to resemble the initial one, both spatially
and spectrally. Spatial resolution presumes resampling to the same pixel size, a routine operation.
Spectral adjustment is conceptually more difficult, and its feasibility will depend on the

differences between the two sensors and the spectral characteristics of the targets in the imaged
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scene. The solution is easiest when the added sensor has more than one spectral band where the

initial sensor has only one (e.g., Li and Leighton, 1992). The inverse situation has no satisfactory
solution, and may render the added data set unsuitable.

It should be noted that the last two options (phenological correction and compositing scenes from
various sensors) will also add radiometric noise of their own. Some form of between-scene

reconciliation is therefore likely to be required in many cases. This, and the inevitable residual
noise in the scene composite suggest that while case II application may be the preferred solution,

in practice it may often have to be supplemented by case I to obtain quality land cover maps.

3.2 Classification

Land cover information that can be gleaned from satellite images are the spectral and spatial

attributes of individual cover types. There are some differences between the coarse and fine
resolution data, mainly in the relative importance of these two kinds of attributes. Because of the

reduced resolution, the spectral dimension is the most important source of cover type information
in coarse resolution images. For fine resolution data, the relative importance of the spatial
dimension is higher, although the spectral content still dominates in most cases. In the following

discussion, no distinction is therefore made between the two data types.

Numerical techniques for satellite image classification have a long tradition, dating back to at
least the early 1970s. Two types of approaches have evolved and, in spite of recent developments,

have remained as the basic options. They differ in the assumptions made about the knowledge of
the scene to be classified. In supervised classification, a priori knowledge of all cover types to be
mapped within the classified scene is assumed. This knowledge is used to define signatures of the

classes of interest, to be applied to the entire scene. In unsupervised classification, no prior
information about the land cover types or their distribution is required. Unsupervised

classification methods divide the scene into more or less pure spectral clusters, typically
constrained by pre-defined parameters characterizing the statistical properties of these clusters
and the relationships among adjacent clusters. The assignment of land cover labels to individual

spectral clusters is made subsequently on the basis of ground information, obtained in the
locations indicated by the resulting clusters. In recent years, numerous variants of these two basic

classification methods have been developed. These include decision trees (Hansen et al., 1996);
neural networks (Carpenter et al., 1997; Bischof and Leonardins, 1998; Foody et al., 1997; Yool,
1998), fuzzy classification (Foody, 1996, 1998; Mannan et al., 1998), and mixture modeling (van

der Meer, 1995) for supervised classification; and classification by progressive generalization
(Cihlar et al., 1998a), classification through enhancement (Beaubien et al., 1998), and post-

processing adjustments (Lark, 1995a,b) for unsupervised techniques.
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It seems evident that when one knows what classes are desired and where they occur (at least as a

sample), supervised classification strategies are preferable. However, over large areas the
distribution of classes is not known a priori. This is compounded by the spatial trends in spectral

signatures, resulting in the well-known signature extension problem. These complexities render
sample selection very difficult and often arbitrary. Thus, where spatial distribution information is
not available, e.g. when mapping a large area previously not well known, unsupervised

classification is arguably the better strategy (e.g., Achard and Estreguil, 1995; Cihlar and
Beaubien, 1998), although a supervised method has also been used in such case (Hansen et al.,

1998). Unsupervised classification provides a more comprehensive information on the spectral
characteristics of the area, presents spectrally pure clusters for the labelling step, and gives the
opportunity to the analyst to group similar clusters into a smaller number of land cover classes.

Perhaps the major problem with unsupervised classification is the effect of controlled parameters
(e.g., number of clusters, allowable dispersion around a cluster mean) as for the same data set,

changes in these can produce different final clusters. A recent way of circumventing this
limitation has been to produce a large number of clusters, typically 100-400 (Kelly and White,
1993; Driese et al., 1997; Homer et al., 1997; Cihlar and Beaubien, 1998; Cihlar et al., 1998a;

Vogelmann et al., 1998). The large number of clusters is then reduced by well-defined merging
steps. The merging procedure can be based on statistical measures (i.e., again unsupervised), or

can be carried out interactively by the analyst (e.g., Figure 3). Given the large number of clusters
in relation to the small number of resulting land cover types, the impact of control parameters on

the final product is diminished in this case. - Another important limitation of unsupervised
classification is the potential mismatch between spectral clusters and thematic classes. The
hyperclustering approach also mitigates this problem but additional steps may be necessary (Lark,

1995b). Independent ground information is required by supervised or unsupervised method. The
important advantage of the latter is that the concerns about the location and representativeness of

the ground data are much reduced because the clusters are homogenous by definition.

While most classification strategies have focused on the use of the spectral dimension, the spatial

domain also contains important information, especially in fine resolution data. Although
numerous algorithms have been developed to quantify spatial relations within images such as

texture (Gong et al., 1992), segment homogeneity (Kartikeyan et al., 1998 and references therein)
and various others, the spatial dimension has not been used effectively in image classification so
far. Spatial measures can be employed in supervised or unsupervised classification as additional

channels, in unsupervised classification for cluster merging, as a pre-classifying step resulting in
homogenous patches (per-field classifiers), and in other ways. Given the contribution that spatial

attributes can make to land cover classification, their increased use is most desirable. Recent
interest in an effective use of spatial and spectral information (Shimabukuro et al., 1997;
Kartikeyan et al., 1998) is therefore encouraging.
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An important consideration in land cover classification is consistency and reproducibility. That is,

the same result should be obtained by various analysts given the same input data or ideally, even
different input data over the same area. In practice, this means that as much as possible of the

analysis should be done with objective, analyst-independent procedures. On the other hand, the
analyst cannot be entirely excluded from the process because any classification is a human
construct, imposing an artificial scheme on the natural world. One way of dealing with this

dichotomy is to separate the tasks into distinct phases. For example, Cihlar et al. (1998a)
described ‘classification by progressive generalization’, a non-iterative unsupervised

classification procedure in which the selection of training samples, classification and initial
merging of clusters are automated and thus fully reproducible (Figure 3). In the last stage
preceding labelling, the analyst is presented with suggestions for merging the remaining clusters

but the decision is his/hers. The suggested merging is based on both spectral and spatial relations
between the remaining cluster pairs. In this way, the number of clusters can be reduced to a few

dozen (typically 70-120 in boreal ecosystems) without the need for ground information.

3.3 Map frequently and at high spatial resolution?

Region D in Figure 1 represents land cover mapping applications at high spatial resolution and
short time intervals. Over large areas, such applications are rare if any, at the present time. High

resolution satellite data are routinely employed over large areas, e.g. for annual crop assessment
(de Boissezon et al., 1993), but in a sampling mode. The minimum required temporal frequency

for land cover mapping at present appears to be about 5 years (Ahern et al., 1998; GCOS, 1997).
Nevertheless, it is desirable to know about the changes in land cover composition, though not the
location of these changes for policy purposes, to satisfy reporting requirements, to assess the

impact of management measures, or for other reasons. Thus, the question arises: can requirements
in D be met by a combination of full coarse resolution coverage and a sample of high resolution

data? Importantly, such an approach could also meet some of the high resolution coverage (region
B in Figure 1) but at a considerably lower cost.

Numerous studies have demonstrated the effectiveness of combining coarse and fine resolution
images in estimating the area of one class, e.g. forests (Mayaux and Lambin, 1995, 1997; DeFries

et al., 1997; Mayaux et al., 1998). When dealing with many classes, the methodological
considerations are more complex (Walsh and Burk, 1993; Moody and Woodcock, 1996). Given a
coarse resolution land cover map for an area (domain), it may be used to stratify the domain into

units with a similar composition, then sample these with high resolution data. The challenge is in
finding appropriate stratification and sampling framework that uses the domain coverage

effectively. Cihlar et al. (1998c) proposed a methodology based on a domain coverage by coarse
resolution data and a potential sample of high resolution images (full frame), as specified by the
path/row grid for high resolution sensors such as Landsat Thematic Mapper (NASA, 1982). With
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these two inputs, one can determine land cover composition for both the domain and each

potential image/sample unit, and thus quantify the similarity between the two. Cihlar et al.
(1998c) chose Euclidean distance for composition and contagion index (O’Neill et al., 1988) for

fragmentation but various other measures are possible. They then postulated that the optimum
sample is one which most closely approximates the composition of the domain land cover. In this
scheme, the high resolution sample images are selected, one at a time, on the basis of their ability

to bring the composition of the sample close to that of the domain. In testing the effectiveness of
this scheme to assess the proportions of land cover types over an 136,432 km2 area, Cihlar et al.

(1998d) found that this selection method converges rapidly on the actual area of individual land
classes. The selected sample was 1.5 to 2.1 times more effective in reducing the relative error
than a random sample of the same size, allowing to obtain a comparable (higher) precision at a

lower (the same) cost. It should be noted that once the composition of the coarse resolution land
cover classes is determined in this manner, the approximate spatial distribution of individual

classes at fine resolution is also known since it can be expressed as fraction of each coarse
resolution pixel; thus, a map for the region D (Figure 1) can also be produced, although it will not
have the pixel-specific accuracy at the fine spatial resolution.

3.4 Accuracy assessment

No land cover classification project would be complete without an accuracy assessment. It may

well be that concern about the accuracy of land cover maps did not exist before the advent of
satellite-based methods and photo interpretation-based maps were assumed 100% accurate (this is

still often the case, e.g. in forest inventories). The need for accuracy assessment initially arose as
part of algorithm development, and it was extended into an important tool for users of land cover
products. Many papers have been written on the methods of accuracy assessment, and various

accuracy measures have been defined (e.g., Hord and Brooner, 1976; Thomas and Allcock, 1984;
Rosenfield and Fitzpatrick-Lins, 1986; Congalton, 1991; Hammond and Verbyla, 1996; Edwards

et al., 1998). At this point, the principles of accuracy assessment are well known. The ideal
requirements are based on the sampling theory but practical considerations regarding access,
resources, etc. constrain the ‘desirable’. There are also methodological difficulties with respect to

spatial resolution, mixed pixels in coarse resolution satellite data being of special relevance. At
the coarse resolution, many pixels contain a mixture of cover types even in a fairly general

classification scheme such as land vs. water, thus creating a difficulty in deciding on the
correctness of the assigned label. An obvious approach is to assign the pixel to the single largest
cover type within the pixel (e.g., Cihlar et al., 1996; Hansen et al., 1998). This can be

accomplished with the aid of fine resolution maps where these are available. However, it is
questionable when the dominant land cover type covers much less than 50% of the pixel.

Furthermore, since the high resolution maps have errors (as do maps obtained through airborne
techniques such as aerial photographs, airborne video, etc.), a definitive accuracy assessment
needs to contain ‘ground truth’ as part of the sampling design (e.g., Magnussen, 1997).
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In addition to purely methodological considerations, accuracy assessment tends to be strongly
constrained by the resources available. The acquisition of verification data can be expensive,

especially if a statistical design is rigorously followed, access is difficult, etc. Within these
constraints, however, creative solutions are possible. For example, Kalkhan et al. (1998)
described the combined use of air photo interpretation and a sample of ground data to assess the

accuracy of Landsat-derived proportions of land cover types, with 200 samples at the first stage
and  only 25 among these described in the field. To complicate the matters further, ground truth

may not necessarily be correct either; its errors can be due to incorrectly specified location, very
small land cover patches being used, the inability of the surveyor to see a larger area of the
surface, inconsistencies in labeling, etc. Thus, in practice, accuracy assessment is likely to remain

a matter of compromise between the ideal and the affordable, or “A balance between what is
statistically sound and what is practically attainable must be found...” (Congalton, 1996, p. 124).

4. RESEARCH NEEDS AND OPPORTUNITIES

In general, the needs and opportunities are related to the present and upcoming information

requirements over large areas, and the expected evolution in the relevant data and technological
tools. In all these areas, land cover mapping applications will receive a strong boost due to:

increased demand for information because of concerns about climate change and sustainable
development; several new sensors designed with land cover mapping as an important application;

and the continuing rapid growth in computing technology.

4.1 Preprocessing

Assuming that the range of land cover mapping requirements is represented by all four areas A-D

(Figure 1), the focus needs to be maintained on improving the methods for optimally using data
from new coarse and fine resolution sensors. For coarse resolution sensors, this means improved

methods for image corrections, especially atmospheric, sensing geometry and pixel
contamination. The objective should be to produce a cloud-free composite image which has
radiometric properties of a single-date, fixed geometry image obtained during the same period.

The availability of high quality, calibrated data from MODIS, MERIS, VGT and GLI will make
major improvements possible. This goal cannot be fully achieved for most sensors because of the

changing spatial resolution with the viewing angle, although in some cases (e.g., SPOT VGT;
Saint, 1992) the resolution is view angle-independent. Innovative ways must be found to define
and implement robust, accurate and automated algorithms for the generation of superior

composite products. Newly available tools are calibrated data; improved spectral coverage (new
as well as sharpened bands); and the considerable progress made in recent years in defining

algorithms for atmospheric parameters extraction, bidirectional corrections, etc. Although the
ultimate solution is an accurate detection of contaminated pixels and retention of all remaining
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ones with the associated angular information, compositing will be a necessary preprocessing step

for land cover classification in the foreseeable future. Further work on compositing algorithms
thus appears warranted, with the currently ubiquitous maximum NDVI criterion used as the basis

for comparison.

In the case of fine resolution sensors, the main preprocessing need is for accurate and robust

scene compositing. This implies accurate sensor calibration and atmospheric corrections,
although these measures alone are not sufficient. Local atmospheric effects (thin clouds, haze,

smoke), subtle bidirectional effects, or small phenological changes may yield to algorithmic
solutions but they pose a significant challenge. Much more research is needed on the preparation
of large-area scene composites, to work out the theoretical and practical problems of dealing with

residual atmospheric, phenological and other types of noise. Research is also required on
compositing images from different sensors, with the objective of producing mosaics of the same

consistency as from one sensor. Once these techniques are developed sufficiently well to be
automated, it should be possible to produce ‘virtual scene composites’, on the basis of which the
user could routinely order data set(s) covering the geographic area of interest over the specified

compositing period(s). Of course, if any of the above radiometric differences within the
composite are not resolved at the preprocessing stage, they must be dealt with during

classification.

4.2 Classification

Cihlar et al (1998a) proposed that classification algorithms should ideally satisfy the following
requirements: accuracy; reproducibility by others given the same input data; robustness (not
sensitive to small changes in the input data); ability to fully exploit the information content of the

data; applicability uniformly over the whole domain of interest; and objectiveness (not dependent
on the analyst’s decisions). Many present digital image classification methods do not meet these

criteria, and none meets them completely. Yet, such criteria are fundamental to a scientifically-
based methodology. Some of the implications are briefly discussed below.

The interest and innovation in image classification methods has continued in recent years, as has
the ‘creative tension’ between supervised and unsupervised approaches and their variants. This

will undoubtedly continue, and it is a healthy and beneficial process which should lead to better
algorithms. Work is needed especially in mitigating the limitations of the two basic approaches,
supervised and unsupervised, stemming from the fundamental assumptions (Chuvieco and

Congalton,  1988; Bauer et al., 1994; Lillesand, 1996).

Although initially digital spectral values were the main input for classification, various types of
data have been considered more recently, either during classification (DeFries et al., 1995) or at
the labelling stage (Brown et al., 1993). This will be a continuing requirement, especially as the
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number of spectral bands increases and new bands may prove to carry unique information content

(e.g., Eva et al., 1998).

There is a strong need to make better use of spatial information. After all, useful land cover maps
were produced from this attribute alone before the advent of colour photography and digital
classification. In addition to texture (which is easily computed but not necessarily an informative

attribute), more attention needs to be given to other measures such as pattern, shape, and context
(Rabben, 1960). Another problem is in optimally and synergistically combining spectral and

spatial elements, using one to improve the quantity and quality of land cover information
obtained from the other.

A special challenge in image classification is to isolate, and minimize if possible, the role of the
analyst in the classification. This is important because reproducibility is a fundamental

requirement for any method or product. When the analyst’s input is distributed throughout the
classification procedure, the result is not reproducible. On the other hand, as long as discrete (thus
artificial to some degree) classification legends continue to be used, the analyst’s role cannot be

eliminated because the class distinctions do not necessarily correspond to equivalent distinctions
in reality. However, it is possible to assign a more precise role to the analyst, and to limit his

input to specific portions of the classification procedure. This will improve the reproducibility of
the entire process, and will highlight the impact of the analyst’s decisions. A range of options are

possible here. For example, in fuzzy classification approaches, the analyst’s role can be reduced
to defining the acceptable fractional composition of each class in terms of individual components.

A further step in reducing the subjective component in classifications is to first prepare specific
biophysical products with continuous variables. For example, Running et al. (1995) proposed that

three variables (permanence of above ground live biomass, leaf area index, leaf longevity)
characterize vegetated land cover. If such separate products can be derived from satellite data,
individual users can construct an optimized classification legend for all the land cover types or

conditions present in the area to meet their specific objective. This does not eliminate need for
classifications but renders the whole process more useful because of a better fit of the

classification with specific user needs. The challenges here stem from the fact that ‘land cover’
can imply various characteristics, not all easily translated into biophysical variables that can be
derived from satellite data (e.g., the hydrological regime). Nevertheless, this area needs to be

pursued because of the potential gains in the utility of satellite-derived information products. The
work done so far on two or few classes (e.g., Iverson et al., 1994; Zhu and Evans, 1994; DeFries

et al., 1997) needs to be extended to multiple cover types. Data from other sensors, such as
satellite radars or lidars (Dubayah et al., 1997) should be useful in developing the fields of
continuous variables.



17

Although for scene composites (Region B, Figure 1) the desirable approach is classifying the

entire mosaic as one entity, it is very likely that data limitations will make this impossible in
many cases. Local adjustments will thus be needed to achieve optimum results. The locations of

these should be evident based on input image quality, but algorithms will be required to make this
process reproducible and consistent.

Further research is needed on the synergistic use of data from coarse and fine resolution sensors
to span the entire range of requirements represented in Figure 1. Region D is the most demanding,

with high spatial and temporal resolutions. It is also an area where large progress can be expected,
with the resolution of new sensors around 300 m.

5. CONCLUDING REMARKS

In the last 5-10 years, land cover mapping from satellites has come of age. Although the research

on various issues regarding data preprocessing, classification and accuracy assessment has
continued, new and unique data land cover products have been generated which could not be
produced by earlier techniques. This is only a start, however. Many of the technical limitations

hampering further improvements in land cover mapping will be removed in the next few years,
especially in the quality of satellite data (improved calibration, spatial and spectral resolution,

spectral coverage, geolocation accuracy) and the computing capability, founded on the
accumulated knowledge and experience in the use of digital analysis methods. Thus, earth

observations have the potential to respond to the growing and urgent demand for timely and
accurate land cover information over large areas. The fulfilment of the promise will require
strong, ongoing research activities as well as new initiatives in the production of land cover maps.

The research agenda needs to address the best ways of taking advantage of the new capabilities
and, importantly, the ways of resolving problems identified during the production of the land

cover maps.
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Figure 1. Land cover mapping requirements expressed in spatial and temporal
resolutions. The acronyms represent current or future satellite sensors at both
fine and coarse resolutions; VHR represents future very high resolution sensors,
now being prepared for launch by several private companies.
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Figure 3. Flowchart for Classification by Progressive Generalization (CPG; Cihlar et al., 1998a).
In this unsupervised classification, steps 1-8 can be carried out in an automated mode but steps
9-10 require analyst’s input. CPG assumes that any of the initial spectral values might represent
a significant land cover class; the task is therefore to optimally group these values into a small
number of final clusters. Steps 1-3 reduce the number of spectral combinations, without visually
degrading the input image; steps 4-5 identify important clusters; and steps 7-9 allow merging of
increasingly dissimilar clusters using spectral and spatial similarity measures.
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