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Abstract

This is the first of two papers which explore the combined use of coarse and fine resolution data

in land cover studies. It describes the development and evaluation of an objective procedure to

select representative sample of tiles of high resolution images that complements a coarse

resolution coverage of an entire region of interest. The second paper explores the use of the

procedure for an accurate estimation of cover type composition at the regional scale. The

Purposive Selection Algorithm (PSA) assumes that a relationship exists between land cover

compositions at the two spatial scales. It selects one tile at a time, seeking the sample which most

closely resembles the composition of the coarse resolution map. Two selection criteria were

used, fraction of cover types and contagion index. PSA was evaluated using two land cover maps

for a 288kmx165km area in central Saskatchewan, Canada derived from Landsat Thematic

Mapper images (30m pixels) and Advanced Very High Resolution Radiometer (AVHRR, 1000m

pixels), each divided into 64 tiles. The performance of an intermediate sensor (480m pixels) was

assessed by resampling the TM map. When using cover type composition alone, It was found that

the procedure rapidly converges on a representative set of tiles with land cover composition very

similar to the full coverage. The match between the domain and sample cover type fractions was

very close, with errors less than 0.002% once about 1/5 to 1/3 of the tiles were selected and no

discernible bias in the selected sample. Compared to the TM whole area coverage, samples

selected with AVHRR classification were as representative as those obtained using the TM map.

The performance of samples selected by a combination of cover composition and contagion

index responded to the characteristics of individual tiles in terms of the selection criteria. A

rigorous application of the algorithm with spatial heterogeneity measures such as the contagion

index is computationally very demanding. It is concluded that PSA provides an efficient and

effective tool to select a representative sample for land cover studies in which both large area

coverage and local detail are desired.
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Introduction

The interest in land cover analysis at regional to global scales has grown dramatically in the last

decade, stimulated by global environmental change and by improved mapping tools. The

International Geosphere - Biosphere Program (IGBP) identified a strong need for regional and

global land cover information (Townshend et al., 1994) to serve a variety of IGBP projects.

Earlier work in using NOAA AVHRR data for mapping land cover (e.g., Loveland et. al., 1991)

led to the execution of a global 1 km data land cover mapping initiative formulated in response to

the IGBP and other requirements (Eidenshink and Faundeen, 1994). Various regional studies

have also been undertaken, as were methodological studies to improve land cover information

extraction procedures over large areas (e.g., Defries and Townshend, 1994; Belward, 1996;

Cihlar et al., 1996). As a result, quality land cover data sets over large terrestrial areas are

emerging, and they will become reality with improved data sources such as provided by the

MODIS instrument (Salomonson, 1988) and planned new activities, e.g., the Global Observation

of Forest Cover project (Ahern et al., 1998).

Maps showing large areas as a virtual �snapshot� in time are a fundamentally new type of earth

science information, not available until the recent advent of the appropriate remote sensing

technology and analytical know-how. Nevertheless, they do not provide all the land cover

information needed for detailed analysis, primarily because of the limitation by the spatial

resolution. Even with the planned sensors operating in the 200-300m range, the resolution will

not be sufficient for analysis and process studies at the local (stand or patch) scale. Experience

from the Boreal Ecosystem-Atmosphere Study (BOREAS; Sellers et al., 1995), the GAP

Analysis Project (Jennings, 1995) and similar investigations makes it clear that a resolution of

10-30m (such as provided by the Landsat Thematic Mapper, TM and the SPOT High Resolution

Visible, HRV) is optimum for studies of ecological and other landscape processes. However, at

this stage it is not feasible to implement a sustained continental or global mapping program

which would provide consistent, time-specific (e.g., within one year) land cover data sets over

large areas and at such high resolution. The limitations are of a practical nature, particularly the

absence of suitable automated information extraction technology and financial resources.
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The premise of this study is that it should be feasible to employ high and low resolution data in

an optimum fashion to characterize land cover at the large (regional or continental) scale through

a judicious combination of coarse and fine resolution data. In this case, the coarse resolution data

would cover the entire domain of interest, while only a sample would be provided by the fine

resolution data. Such samples are useful for studies of land cover composition, in the design of

terrestrial sampling networks, and for the planning of large-scale experiments. The principle of

sampling for land cover analysis is well established (e.g., Belward, 1996; Walsh and Burk,

1993). A key question is the sample selection strategy. Random sampling is statistically

appealing because of the applicability of the classical statistical procedures. However, it is not

generally an efficient approach. For this reason, other sampling designs such as stratified

random, systematic grid and others (Cochran, 1963) may be preferred for land cover analysis.

However, the sampling problem is complicated by the nature of fine resolution satellite data.

Since the data are acquired as orbits and later subdivided the sampling unit is an image with a

fixed size (e.g., a 185x185 km for a Landsat scene), not a single pixel. For reasons of costs and

efficiency of using the acquired data, it is much preferable to select scenes that will make the

greatest contribution to the characterization of land cover over the entire domain and at fine

resolution.

The purpose of this paper is to outline an objective method for selecting a sample of fine

resolution images for land cover analysis using a coarse resolution coverage of the entire area of

interest, and to test the performance of the method. A companion paper explores the use of this

methodology to estimate land cover composition over a region in central Canada.

Selection methodology

The proposed method is intended to select subareas to be imaged at high resolution, using a

coarse resolution map of an entire area. For example, the area may be mapped using AVHRR 1

km data, and the sample provided by Landsat images (full scenes or ¼ scenes).

For the global land surface or any part thereof (termed �domain� hereafter) one can readily obtain

(i) complete coverage of images with coarse resolution data (e.g., 1 km) and (ii) the data

acquisition framework (called �tiles� below) describing the potential coverage with fine

resolution data. For Landsat, the tiles are specified by the World Reference System (NASA,
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1982) path and row lattice (or quarter scenes within the images which are the smallest Landsat

data granules); other satellite fine resolution imaging sensors use similar reference systems.

Given that land cover composition is available in map form at the domain level one can also

compute land cover composition for each tile, using the coarse resolution data. It is then

postulated that a representative sample of the domain is that ensemble of tiles that together

provide the same domain-level information as when the entire domain is mapped. The specific

meaning of �information� depends on the goals of land cover analysis but could include total area

of land cover by type, spatial distribution of individual cover types, relative spatial distribution of

several cover types, and others. In developing the algorithm and its testing in the companion

paper, we concentrated on composition by land cover type, and to a lesser extent on spatial

distribution. However, in general the algorithm may need to be adjusted with respect to the

objective of the sampling.

Two descriptors of land cover are used below to describe composition and distribution,

respectively. For composition, we employed the Euclidean distance ED between the cover

fractions at the domain and tile levels, respectively:

( )�
=

−=
n

i
ijidjd ffED

1

2
,,, , [1]

where fj,i = fraction of the area covered by cover type i in tile j (dimensionless), d represents the

domain, and n is the number of classes.

In addition to an overall land cover composition, the patchiness of land cover at various spatial

scales may also be important (Johnson et al., 1999). To describe the spatial distribution we

selected the Contagion Index CI proposed by O�Neill et. al. (1988), as modified by Li and

Reynolds (1993):
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where Pk,m is the probability that a pixel of land cover type k is found adjacent to a pixel of type

m, and n is the number of land cover types in tile j. CI thus quantifies the likelihood that two
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adjacent randomly selected pixels in the map belong to cover types k and m, based on the fraction

of these types within the map and their spatial distribution. The reason for selecting CI was to

characterize the degree of local intermixing of cover types. This index has been widely used in

other studies (Turner, 1990; Graham et al., 1991; Gustafson and Parker, 1994).

Given the two descriptors, a selection algorithm can be defined for application to a domain map.

It consists of the following steps (see Figure 1):

A. Preparation

1. Divide the domain land cover map into the desired tiles, and identify the extent of each tile on

the domain map.

2. Determine f(d,i) and f(j,i) for the domain d and all tiles j. Also compute CI for each tile and for

the domain using Eq. [2]. Put the results into �source list� which contains the candidate tiles.

3. Compute the Euclidean distance (Eq.[1]) between the composition of the domain and each tile.

 

 B. First tile

4. Select the first tile as that with minimum Euclidean distance ED(d,j).

 

 C. Second and subsequent tiles

5. For each tile j not yet selected, compute EDd,s (i.e., the distance between the domain and the

sample tiles selected so far) and EDd,s+j (which would result if j were added to the sample). The

change in ED is then determined as:

|,| ,, jsdsdj EDEDC +−= [3]

where Cj is the change that would result from adding tile j, and s+j is a hypothetical sample that

includes tiles already selected and tile j. The absolute value is used because the difference could

become temporarily negative.

6. Compute the relative change for each not-yet-selected tile as:
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where Cmax is the maximum C value among all the remaining tiles (including tile j).

7. Identify as �candidate tiles� those for which RC(j)≤Thr where threshold Thr≥0 is a user-

defined value to provide a window of opportunity for the contagion index in the selection. Note

that if Thr=0, the selection is based on ED only.

8. Among the candidate tiles that meet the Thr criterion select the tile that has the closest CI to

the domain CI.

9. Return to Step 5 unless all tiles are selected.

Thus, the algorithm seeks to select the minimum set of tiles which most effectively represent the

domain; for brevity, it is referred to below as PSA (purposive selection algorithm).

The PSA algorithm produces a plot of selection step vs. ED based on which the sample can be

selected. This is described in the following sections.

Data and analysis procedure

The general approach to evaluating PSA was to prepare a domain coverage with coarse and fine

resolution data; to test PSA with coarse resolution data, and to evaluate the results with fine

resolution data considered as �the truth�. For this reason, three land cover maps of the domain

were prepared: coarse resolution (AVHRR-derived); fine resolution (TM-derived); and medium

resolution, obtained by generalizing the fine resolution map to simulate future satellite data

types, specifically MODIS.

Input Data

A land cover classification of a part of the BOREAS Region (Sellers et al., 1995) was used to

test the PSA methodology.  The area includes various boreal forest cover types in the northern

part, cropland and grassland cover in the south. It is contained within two Landsat Thematic
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Mapper (TM) scenes (Table 1). The TM scenes were classified using the Enhancement-

Classification Method (ECM; Beaubien et al., 1999). The essence of ECM is to optimally

enhance the input data, compress these without losing significant land cover information (as

judged by a knowledgeable interpreter), and label the clusters after nearest neighbour

classification using ancillary information.

Prior to the classification, the two scenes were radiometrically normalized using the overlapping

area and time-invariant targets as determined through visual interpretation. The resulting clusters

were assigned to various classes of the classification legend (Table 2). A qualitative evaluation

of the accuracy of the classification was made through a comparison with colour infrared,

stereoscopic aerial photographs obtained in the summer of 1994 along transects over parts of the

BOREAS Region.

The AVHRR data to be classified (Table 1) were processed for the entire 1995 growing season

(refer to Cihlar et al. (1997a) for details of the AVHRR processing). The classification was

performed for all of Canada (Cihlar and Beaubien, 1998). ECM was also employed in this case,

using the same basic steps but the resulting clusters were labeled using Landsat transparencies or

prints from various parts of Canada. A qualitative assessment of the accuracy of the classification

was carried out by a comparison of the classified AVHRR image with approximately 100

Landsat scenes, the latter being interpreted visually in the process. As a cross-check on the

AVHRR � derived map it may be noted that in comparison to the independently obtained TM

map, the average absolute difference (DAB, Eq. [6]) for the domain was 0.03% and the relative

difference (DRE, Eq. [7]) 1.6%.

Computation of f and CI

The TM-derived map (9600x5504, 30 m pixels) was divided into 64 tiles (Figure 7), each

consisting of 1200x688pixels. Secondly, the TM classification was transformed into an

equivalent coarser classification by assigning the most frequent cover type within a 16x16 pixels

window to all 30m pixels in that window. From this map, another set of 64 tiles was created and

is referred to as P-MODIS. While the 30 m pixel size was retained in P-MODIS for analytical

purposes, each tile was in fact equivalent to 75x43, 480mx480m pixels. The third domain

coverage was provided by AVHRR. The AVHRR-derived map (1000m pixels) was registered to
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the TM map, and a 30m pixel AVHRR coverage was created by nearest-neighbour resampling.

The tiles in all three data sets were co-registered.

For each tile and domain, values of f, ED, and CI were computed. For CI the FRAGSTATS

implementation of Li and Reynolds (1993) formula was used (McGarigal and Marks, 1993). A

weighted absolute difference (WAD) between the domain and the sample was computed for

various samples s as:
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where NP is the number of pixels, n is the number of classes, and i refers to individual classes.

In addition to various combinations of data sets and Thr values, an additional test was made, a

Random selection in which the tiles were chosen at random (without replacement), using Thr=0.

The differences between the domain and selected sample were quantified using mean values for

the absolute (DAB) and relative (DRE) difference between the domain and the sample:
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Results and discussion

Figure 2 shows the effect of tile selection for three data sets (TM, P-MODIS, AVHRR) using

Thr=0. Two measures express the difference between whole area and the selected tiles, ED (Eq.

[1]) and WAD (Eq.[5]). In all cases, the difference diminishes rapidly at first and then very

gradually until most tiles are selected. The difference became quite small after about 1/6 (for

WAD) to 1/3 (ED) of the tiles were selected, depending on data set and measure. It was smallest

for the TM set and largest for the AVHRR. This is likely because the small scale variability was

retained in case of TM, thus improving the representation of class proportions at the tile level.

For AVHRR, the local variability was reduced and the tile consisted of fewer pixels, thus

requiring additional tiles to obtain a broader, more representative sample. The  P-MODIS result

was intermediate between the two. The rate of convergence of the sample to the domain would

thus depend on the relationship between the landscape heterogeneity and pixel size, and secondly

on the size of the tile relative to that of the domain. Figure 2 also shows that the trends of ED and

WAD were similar, although ED had a wider range. This is because a large difference in a few

classes will affect ED more than WAD. Thus, ED is a more appropriate criterion for the selection

of tiles because it leads to a faster convergence of the sample to the domain. The advantage of

ED is obvious in some cases, e.g. the third selection step (Figure 2) for which ED decreased

strongly (signifying fast convergence to domain values) but WAD increased somewhat.

Figure 3 illustrates the effect of adding the contagion index as a selection criterion. The overall

tendency is to approximate the Random selection result (top curve, Figure 3a). For both the TM

(Figure 3a) and P-MODIS (3b) data sets, the difference between the selections with Thr=0 (i.e.,

no CI used) and Thr=0.3 was small and not systematic. At higher Thr values, ED initially

followed the Thr=0 curve but then moves towards the Random selection case. The point at which

it starts to deviate depends on Thr. At high Thr (1.0), the selection considers a broad range of

tiles at every step. Thus, after the tiles which together can strongly contribute to the domain are

selected, the selection becomes so broad as to be effectively random. The selection is then more

strongly influenced by CI. For lower Thr (0.5), the selection is restricted to a narrower range of

tiles, and therefore the point at which the influence of CI begins to dominate arrives later. This

trend is the same for TM and for P-MODIS, and also holds for WAD. For the AVHRR (Figure

3c), ED values for intermediate threshold values (0.3, 0.5) were also between the Thr=0 and

Random cases throughout most of the selection process. The trend shown in Figure 3a and 3b

was present as well (initial ED decrease followed by an increase) but it never reached the



10

Random case. On the other hand, Thr=1.0 produced the same ED as the Random case. It suggests

that if the spatial distribution of cover types is also important (as described by CI), a larger

number of scenes will be required to represent a domain.

A further insight into the effect of CI on the selection can be obtained from Figure 4 which

shows CI values for individual selected tiles. The CI values for the domain were 21.5 (TM) and

57.1 (AVHRR). There is a general trend to increasing CI values starting from the domain value

and the selection based on ED only (Thr=0). In other words, the tiles with the highest diversity of

cover types (and thereby lowest CI) were selected first, and subsequent scenes tended to be more

homogenous. Second, for low Thr the CI values of adjacent tiles fluctuated substantially but this

fluctuation was dampened as the Thr value increased. For higher Thr, the CI values of selected

tiles increased almost monotonically once the heterogeneous tiles were used up. Thus, the

selection was guided by CI once the initial heterogeneous scenes were exhausted. In effect, the

RI values (Eq.[4]) would differ less between the remaining tiles, thus permitting a larger number

of tiles to become candidates for selection (Step 7). The same trend was observed for TM (Figure

4a) and AVHRR (4b). The main difference was the earlier start of the monotonic increase for

AVHRR, throughout the Thr=0.3 as opposed to a second half of Thr=0.5 selection (TM). The

TM curves also show that the monotonic increase was stronger for higher Thr values. Figure 4

thus implies that the ED trends in Figure 3 result from the combined effect of cover type

heterogeneity (in the candidate tiles) and the Thr value. When the former is low and the latter

high, the ED curve for the selected tiles will approximate Random case and CI will increase

monotonically for adjacent tiles. This trend is due in part to the way CI is used in the algorithm

(Step 8), and is discussed further below.

Figure 5 shows the effect of increasing the sample size on the difference between the

domain and selected tiles within the same data set, both on individual classes and the combined

effect. A value of Thr=0 was used. For one scene, the relative difference between the actual and

estimated area can fluctuate widely. In case of TM (Figure 5a), it varied between 0% (class 3)

and 97% (class 17: true fraction 2.7%, estimated 0.1%). This was reflected in the average errors

for all classes, both absolute (DAB, 1.5%, Eq. 6) and relative (DRE, 41.2%, Eq. 7).

Increasing the number of tiles dampened the fluctuation, leading to average DAB (DRE) errors of

0.3% (10%) for 10 tiles and 0.2% (10%) for 20 tiles (i.e., 31% of the area). Although further
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reductions were obtained they were relatively small. For example, by increasing the number of

tiles by 50% (to 30), the average absolute error decreased by only 0.1% and the relative error by

4.1%. It should be noted that the relative error was strongly influenced by two small classes,

representing 0.7% and 0.3% of the area respectively. Without these classes, DRE was 7.6% (10

tiles), 5.9% (20), and 2.6% (30).

A similar trend was observed for the P-MODIS data (Figure 5b). From the high average values

after one tile (DAB= 2.0%, DRE= 62.7%), the magnitude decreased to 0.2% absolute and 12.3%

(9.2% without two small classes) relative after 20 tiles. The addition of the next 10 tiles reduced

the errors by 0% and 5.1% (2.0% without the two classes), respectively. The actual AVHRR data

behaved in a similar way, although the fluctuations were larger. After one tile, the DAB (DRE)

was 3.1% (155.4%). These were reduced to 0.5% (22.9%) after 10 scenes and to 0.3% (15.2%)

after 20. As in the case of P-MODIS, the addition of further scenes decreased appreciably only

DRE (to 8.8%) while absolute error changed by 0.1%. This is because of three small classes (0.6

to 0.9% of the area); without these, the DRE values were 10.2% (with 10 tiles), 8.0% (20), and

4.8% (30). The trends observed in Figure 5 suggest that the tile selection scheme is less efficient

if small classes are present and must also be well represented, unless they are spatially associated

with larger, more ubiquitous classes.

Since the TM map completely covered the area of interest it is possible to accurately evaluate the

extent to which a sample of the AVHRR tiles would represent the area if it were imaged at high

resolution, i.e. the feasibility of using coarse resolution coverage to select a high resolution

sample. Figure 6 shows DRE values for the three data types and different reference data (Thr=0):

domain coverage by the same data type (Figure 6a); domain coverage by TM (Figure 6b); and

domain coverage by TM but ignoring the smallest class (representing 0.3% of the area) in DRE

computation. Several observations can be made. First, the relative error decreased first rapidly

and then more gradually, as also noted in Figure 5. Only in one case (AVHRR, 10 tiles) did a

partial increase (Figure 6b) occur. Second, the DRE values for coarser resolution tiles were

smaller when compared to 30m pixels (Figure 6b) than to the same resolution (Figure 6a), by

about 30% for 20 tiles and both AVHRR and P-MODIS. At the higher resolution, the individual

classes appear to be represented more accurately because the small classes were not averaged

out. Third, a comparison of Figure 6b and 6c shows that the small classes magnified the overall

relative error. For P-MODIS, the relative error was reduced by 30% when leaving out the
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smallest class; for AVHRR, the reduction was 20%. Fourth, when TM was used as a reference,

the difference in the DRE values between tiles selected using AVHRR or TM was small: 14.5%

(for 10 tiles), 0.9% (20), and 0.1% (30). Similarly, the difference in relative errors was also small

for P-MODIS (0.5% for 10 tiles, 1.5% for 20, 0.1% for 30). This shows that full coverage by

coarse or medium resolution data can be successfully used to select representative areas to derive

statistics that are nearly as accurate as if the sample were selected from full coverage of high

resolution data. Although there is an implied requirement for accurate coarse resolution map, it is

more important that the cover classes be internally consistent, i.e. each coarse resolution class

should be comprised of a reasonably stable fractions of individual classes (that are resolved at

high resolution).

Although comparable results after 20 or so tiles can be obtained this does not mean that exactly

the same tiles will be selected. Figure 7 shows the tiles selected from the three data sets. Using

the TM data set as a reference, only 7 tiles (35%) were selected from the P-MODIS data set and

11 (55%) from the AVHRR data. On the other hand, the first 5 tiles were chosen in the same

order for TM and P-MODIS while the entire selection sequence was different between the

AVHRR and the TM. A full correspondence is not to be expected because small differences in

ED may lead to different selection paths. Once a different tile is selected it affects the subsequent

sequence because those tiles are selected to balance the ones already chosen. The similarity of

the relative errors after a number of tiles were selected (Figure 6) means that various

combinations of tiles can provide similar results.

How closely do the statistics for the selected tile approximate the domain, and are they unbiased?

Figure 8 shows the mean difference per class between the domain (TM map) and the sample with

sign considered, computed as in the Eq. [6] without the absolute values. For Thr=0, the curves

rapidly converged to 0%, especially for TM and P-MODIS. The convergence was more gradual

for AVHRR but even there the mean difference was only 0.0017% after 20 tiles were selected.

The difference from 0 (and thus the bias) is therefore negligible, even without taking into

consideration other sources of error (such as classification accuracy) in the domain data sets. For

Thr=0.5, the curve behaved more erratically. This is because the importance of the contagion

index increases at some stage of the selection process (refer also to Figure 3). Neither

convergence nor zero bias can therefore be assured in this case.
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Comments

The above results show the practical feasibility of selecting a set of tiles that are �representative�

of the entire area. In this paper, representativeness was considered in terms of the cover type

composition, as expressed by the fractions occupied by each class and by the spatial distribution

measured by the contagion index. Using cover fractions only, the tiles selected with 480m or

1000m resolution maps provided virtually the same statistics as tiles selected with 30m data once

approximately 1/4 to 1/3 of the area was selected. The number of tiles included in the coverage

would depend somewhat on the importance of small classes. If the representation of such classes

is not critical, a smaller number of tiles can be used. After a certain point, more tiles makes only

a small contribution to the cover type composition, as evidenced by the increase from 20 to 30

tiles (31 to 47% of the area) which decreased the residual errors only marginally. Figure 2

indicates that the difference between the sample and domain statistics was appreciably reduced

further only when almost all tiles were selected.

When using CI as a selection criterion, the process becomes more complicated because of the

combinations of land cover distribution within individual tiles. The algorithm performed as

expected, i.e. it selected, as far as possible, scenes with CI similar to the domain. The problem is

that CIs for most individual tiles will be higher than those for the domain because of the reduced

complexity of land cover distribution over a smaller area. The complexity increases as the

number of selected tiles grows. Thus the way the CI was applied here is not optimal because only

the CI of individual tiles was considered (Step 8). The preferred approach would be to compute a

combined CI for all tiles already selected, and then compute the change in the sample CI if each

individual tile were added � similarly as for ED in Step 5. Unfortunately, this presents a

formidable computational demand, especially for areas of appreciable size. It would also require

some simplification, i.e. the selected tiles would have to be assumed to constitute a contiguous

map, thus incurring inaccuracies at the seams between tiles.

For the study area, the sample selected using the algorithm closely represents the region of

interest and the residual errors are very small. In general, the difference between the domain and

the sample is likely to depend on the heterogeneity of the land cover distribution in relation to the

pixel size and on the size of the tiles. Considering typical data types, the tiles can vary between

60 km (SPOT images) and 185 km (TM full scenes), larger than those used here. Thus the

convergence between domain and sample statistics is likely to be faster because individual tiles
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will have a more balanced representation of cover types; this is especially true if full TM scenes

are being selected. Nevertheless, from a statistical viewpoint the exact cover type composition of

the domain should not be based on a simple average of the selected tiles. Simple averaging

assumes random sampling so that the sample units can be considered independent. In our case,

the selection is not random as the goal is to select the minimum representative subset. Three

observations can be made. First, the procedure is designed to produce an unbiased sample (as

compared to the domain of the same data type). Second, the sample will also be unbiased if a

close relationship exists between the domain maps at coarse and fine resolutions. This is likely to

be the case for larger areas, simple landscapes, large parcels of individual cover types, or a

combination of these. Third, the �worst case� situation will be infrequent cover types occurring in

small patches. They should be represented well if their occurrence is correlated with the presence

of more frequent cover types, e.g. cutovers co-occurring with contiguous dense forest stands.

When small, infrequent cover types occur independently of others, their representation will

depend on the spatial distribution within the tiles. In this study, the worst case (smallest class)

occupied 0.3% of the area in the TM domain coverage. The DRE values for this class with 20

(30) tiles were 25.2% (15.1%) for TM, 21.7% (36.7%) for P-MODIS, and 0% (15.1%) for

AVHRR. This shows that coarse resolution does not necessarily cause underrepresentation of

small classes. It is also important to note that using random selection does not ensure

representativeness unless independent information about the domain is available (which implies

some form of coarse resolution mapping in the broad sense). Even when such information is

available there is no assurance that a randomly or systematically selected sample contains the

small classes. On the other hand, if the classes are mapped at both resolutions PSA ensures that

the sample is selected in the most efficient way to represent the entire domain for a given sample

size.

When analyzing land cover characteristics it is desirable to obtain measures of statistical

confidence. In principle, these can be obtained if the probability of each tile being selected is

known and statistical methods based on unequal probability sampling are applied (Cochran,

1963). Stuart (1976) demonstrated that in unequal probability sampling, the selection should be

made as nearly proportional as possible to the values of the variable in the population. Various

methods have been used to combine coarse and fine resolution data for land cover analysis (e.g.,

Walsh and Burk, 1993; Moody and Woodcock, 1996; Mayaux and Lambin, 1995, 1997; Cihlar et

al., 1997b; Moody, 1998). These methods should yield more accurate results if the selected high
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resolution sample closely represents the domain, and an objective and reproducible method of

selecting such sample is strongly preferable to a subjective procedure. This topic is explored in

the companion paper.

As described, PSA does not provide an objective cutoff for the sample size. This is a decision to

be made by the analyst depending on the requirements of a particular study and the financial and

other resources available. The changes in ED (Figure 2), CI (Figure 4), DRE (Figure 6), and

mean difference (Figure 8) or DAB with increasing number of tiles provide the foundation for the

tradeoff decisions.

Summary and conclusions

The increasing availability of coarse and fine resolution land cover maps presents a requirement

for methods to optimally combine these different sources of information for studies of landscape

characteristics at various spatial scales. In practice, it is readily feasible to produce land cover

maps for large areas at coarse resolution and for smaller areas at high resolution. The question

then arises, where should the high resolution sample be taken?

In this paper, we have developed and tested an algorithm for an objective sample selection,

concentrating on the parts of the domain which provide the most information content at the high

resolution. PSA seeks to find, at each iteration, the sample unit (tile) which would make the

greatest contribution to closing the gap between the characteristics of the whole domain and

those of the sample. We used two descriptors of land cover composition for the selection,

fractional distribution of various cover types (measured by ED) and interspersion (quantified by

Contagion Index, CI). When applied to an area mapped from both AVHRR (1000 m) and TM (30

m) images for a 47,500km2 area in central Saskatchewan, Canada we found that:

1. Using ED alone, the difference between the domain and the sample diminished rapidly at

first and later only slowly with an increasing sample size. Depending on the data set, the

difference was small to negligible after 1/6 to 1/3 of the domain was selected.

2. Selection using data with 1000 m pixels (AVHRR) was nearly as efficient as with 30 m (TM)

or 480 m (resampled TM). The average difference in cover type proportions between the

domain (mapped at 30 m) and the sample of 20 tiles was 0.0002% (TM), -0.0017%
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(AVHRR), and 0.0007% (P-MODIS). The differences were also small for lower numbers of

selected tiles.

3. When ED and CI are used in combination, the selected sample represents a combination of

the two attributes, and may not converge to the domain uniformly.

4. The final number of tiles to be included in the sample is a compromise decision which

involves the residual differences between the domain and the sample at each selection step as

well as practical (resource) considerations.

It is concluded that the PSA algorithm provides an efficient way to identify a sample of high

resolution data for multi-resolution studies.
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Table 1. Satellite data employed

Sensor Location Date Bands
Landsat TM 36/22-23*

37/22-23*
1996/07/30
1991/08/09

3,4,5
3,4,5

NOAA AVHRR Canada 1995 growing
season

1,2,Nm**

•  Path/Row; ** Mean value of the Normalized Difference Vegetation Index.

Table 2. Land cover types for the Landsat TM and AVHRR classifications

2.1 Thematic Mapper legend
Forest

Coniferous
  1 High crown density (>60%)
  2 High crown density younger (>60%)
  3 Low crown density (25-40%)
  4 Low crown density with lichens (25-40%)
  5 Very low crown density often treed wetland (10-25%)
  6 Very low crown density with lichens (10-25%)

Deciduous
  7 High crown density (>50%)
  8 Low crown density, mostly regeneration (25-50%)

Mixed
  9 Coniferous >50%
10 Deciduous >50% (occasionally very open forest)

Open land (tree crown density open forest <10%)
11 Burns
12 Burn with more vegetation (also very open lichen conifers)
13 Wetland
14 Wetland or cropland 
15 String bogs

Cropland
16 High vegetation cover
17 Medium vegetation cover
18 Low vegetation cover
19 Very low or without vegetation

Others
20 Water bodies
21 Clouds
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2.2 Advanced Very High Resolution Radiometer (AVHRR) map legend

 Forest land

Evergreen needleleaf forest
1 High density

Medium density
2 Southern forest
3 Northern forest
 Low density
4 Southern forest
5 Northern forest
6 Deciduous broadleaf forest

Mixed forest
7 Mixed needleleaf forest
 Mixed intermediate forest
8 Mixed intermediate uniform forest
9 Mixed intermediate heterogeneous forest
10 Mixed broadleaf forest
 Burns
11 Low green vegetation cover
12 Green vegetation cover

Open land
13 Transition treed shrubland
14 Wetland/shrubland (medium density)
15 Grassland   

Developed land
Cropland

16 High biomass
17 Medium biomass

Mosaic land
18 Cropland-Woodland
19 Cropland-Other

Other
20 Water
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Divide the domain land cover map into tiles

Compute fractional composition and contagion index

Compute ED for each tile

Select first tile (minimum ED)

Compute ED for each remaining tile

Compute potential improvement

Identify candidate tiles

Select closest tile using CI

If tiles left

End

Figure 1. Flowchart of the tile selection algorithm
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Figure 2. The mean Euclidean distance (ED) and the mean weighted
absolute difference (WAD) between the domain and the tiles selected
using threshold Thr=0.
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Figure 3. The mean Euclidean distance (ED) between the domain
and the tiles selected using various threshold values, and for a
random tile selection: TM map (Figure 3a), P-MODIS map (3b),
AVHRR map (3c).
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Figure 4. The contagion index (CI) between the domain and
the tile selected at each step for various threshold values:
TM map (Figure 4a), AVHRR map (4b).
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Figure 5. The cover type area fraction and the absolute difference
between the fraction of land cover type in the domain map and the
sample (right-hand y axis), for individual cover types: TM (Figure
5a), P-MODIS (5b), AVHRR (5c). The difference is computed
between the domain values for that date type and the sample.
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Figure 6. The mean relative error (DRE) between the domain and the
selected tiles with different reference data. Figure 6a: compared to the
domain map of the same data type; Figure 6b: compared to the TM
domain map; Figure 6c: compared to the TM domain map and
without the smallest class (occupying 0.3% of the domain).
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Thematic Mapper

Pseudo - MODIS

Figure 7a

Figure 7b
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Actual AVHRR

Figure 7. Tiles selected after 20 steps using TM map (Figure 7a), P-
MODIS (7b), and AVHRR (7c).
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sample. The reference used is the TM domain map, except for
the AVHRR/AVHRR curve where the reference is the AVHRR
domain map.
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