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ABSTRACT: A technique is proposed to estimate leaf 
area index (LAI) using the crop endmember fraction derived 
with spectral unmixing.  96-band hyperspectral data acquired 
with the Compact Airborne Spectrographic Imager (casi) over 
two agricultural sites were used to test the approach against 
measured LAI data and LAI computed with a NDVI-based 
semi-empirical model.  For this purpose, the radiance data 
were converted to surface reflectance prior to the extraction of 
the crop fractions which were retrieved with constrained 
linear unmixing.  The preliminary validation tests indicate that 
the proposed technique has potential to estimate the effective 
LAI from the crop fraction.  This technique has the advantage, 
compared to other approaches, of separating the crop from 
unwanted portions of vegetation such as weeds.  This should 
lead to a more accurate estimation of LAI. 
 

1.0 INTRODUCTION 
 
Image-based remote sensing can play a significant role in 
precision farming (Moran et al., 1997), providing information 
for crop management on a within-field basis.  With the advent 
of the imaging spectrometer, a fundamental new remotely 
sensed data set became available for this purpose (Staenz 
1992).  The high spectral dimensionality of such data enables 
the extraction of quantitative information never before 
possible with broad-band imaging sensors.  In particular, 
hyperspectral data can be used to improve the detection of 
within-field variability with respect to crop production, to 
determine the cause of within-field spatial variability, and to 
pararmeterize and validate crop models (Moran et al., 1995; 
Carter, 1994; Maas, 1993). 
 
In this paper, the potential of hyperspectral Compact Airborne 
Spectrographic Imager (casi) data has been evaluated for the 
detection of spatial variability on a field basis for cash crops 
near Altona, Manitoba (Canada).  Special emphasis was 
devoted to the extraction of the green leaf area index (LAI).  
LAI is a fundamental crop parameter that provides a valuable 
source for crop growth modeling (Moran et al., 1995; 
Bouman, 1992; Bauer, 1985; Wiegand et al., 1986).  Since 
LAI is functionally related to spectral reflectance, a variety of 
techniques have been developed using remotely sensed data.  
Vegetation indices are involved especially for the estimation 
of LAI (Baret and Guyot, 1991; Wiegand and Richardson, 
1990; Clevers, 1989).  One of the disadvantages of the use of 
vegetation indices is the fact that these indices are sensitive to 

the total amount of vegetation cover within a pixel without 
distinguishing between crop, weeds, and other vegetation 
components.  A new technique that only takes the crop portion 
of the vegetation into account for estimating the LAI is 
presented in this paper. 
 

2.0 DATA ACQUISITION 
 
casi data were acquired over agricultural test sites near Altona 
and Birtle, Manitoba on July 25, 1996 during maximum 
vegetation growth.  The flat test sites had a variety of cash 
crops, such as cereal grains, canola, sugar beets, and beans.  A 
typical field size is 400 m by 800 m. 
 
The casi data sets were collected in the wavelength range 
from 458 nm to 1000 nm in 96 contiguous, 6.8 nm wide 
spectral bands, sampled at 5.8 nm intervals (Anger et al., 
1996).  In this data acquisition configuration, the swath 
consists of 304 pixels with a ground resolution of 4 m across 
and 4 m along track at a flight altitude of 2745 m above sea 
level. 
 
Ground reference information relevant for this study includes 
crop type, LAI, and biomass.  Biomass samples were 
collected from 8 to 12, 0.5 m by 0.5 m plots along a diagonal 
transect of selected fields with sample plots approximately 50 
m to 60 m apart.  LAI was estimated from the leaf material 
collected from the biomass sample by dividing the total leaf 
area by the sample plot (unit) area. 
 

3.0 DATA PREPROCESSING 
 
The preprocessing of casi data included the removal of noise, 
most significant aircraft motion effects, surface reflectance 
retrieval, and post-processing of the retrieved surface 
reflectance spectra (Figure 1). 
 
Noise (non-periodic horizontal striping), which especially 
affects bands at the two extremes of the casi wavelength 
coverage, was removed in the principal component (PC) 
domain using the last 89 of 96 PC images.  The average of 
each line per PC image was calculated and subsequently 
plotted against the line number.  A Gaussian smoothing with a 
window of 15 lines was then applied to the data.  This enabled 
the computation of a correction factor (gain) for each line to 
adjust the original mean values to the smoothed ones.  The 
gain was calculated by dividing the smoothed values by the 
original line means.  In a final step, the entire 96-PC image set 
was inversely transformed back to the spectral band domain. 



ISPRS ECO BP�98, Budapest, September 1-4, 1998 

In order to correct for the most significant aircraft motion 
effect, the roll was estimated using the navigation data to 
calculate lateral pixel shifts for each line.  These shifts were 
then applied to the entire image cube on a line by line basis. 
 
In the next processing stage, surface reflectances were 
computed from calibrated at-sensor radiance data, 
compensating for atmospheric absorption and scattering 
effects.  The procedure is based on a look-up table (LUT) 
approach with tunable breakpoints as described in Staenz and 
Williams (1997), to reduce significantly the number of 
radiative transfer (RT) code runs.  MODTRAN3 was used in 
forward mode to generate the radiance LUTs, one of each for 
a 5% and 60% reflectance.  These LUTs were produced for 
five pixel locations equally spaced across the swath, including 
nadir and swath edges, for a range of water vapour contents, 
and for single values of aerosol optical depth (horizontal 
visibility) and terrain elevation.  The specification of these 
parameters and others required for input into the 
MODTRAN3 RT code are listed in Table 1.  For the retrieval 
of the surface reflectance from the Altona cube, the LUT 
radiances were adjusted for the ground target�s (pixel) 
position in the swath and the water vapour content using an n-
dimensional bilinear interpolation (Press et al., 1992).  For 
this purpose, the water vapour content was estimated on a per 
pixel-basis from the image cube with an iterative curve fitting 
technique (Staenz et al., 1997).  For the Birtle data cube, the 
LUTs were only interpolated for the pixel position since a 
single water vapour amount was used for the entire cube.  The 
surface reflectance ρ  was then calculated for each pixel as 
follows: 
 

 
where L is the at-sensor radiance provided by the image cube, 
La is the radiance backscattered by the atmosphere, S is the 
spherical albedo of the atmosphere, and A and B are 
coefficients that depend on geometric and atmospheric 
conditions.  The unknowns A, B, S, and La were calculated 
from the equations 

 
and 
 

 
where Lgi is the at-sensor radiance reflected by the target and 
Lpi is the at-sensor radiance scattered into the path by the 
surrounding targets, respectively.  These equations can be 
solved on a per pixel basis for each set of (ρi , Lgi , and Lpi) 
obtained from the LUTs by interpolation for the different 
geometric and atmospheric conditions.  With i = 1 and 2 (ρ i = 
5%, ρ 2  = 60%), this yields a system of four equations with 
four unknowns. 
 
In a last step, band-to-band errors due to atmospheric 
modelling and calibration effects in the retrieved surface 
reflectance spectra were removed using a Gaussian smoothing 

with a 80 nm window between 820 nm and 1000 nm.  A 
resulting reflectance spectrum of canola is shown in 
comparison with non-smoothed data in Figure 2. 
 

Table 1 
Input Parameters for MODTRAN3 Code Runs 

 
Test Site Altona Birtle 

Atmospheric model Mid-latitude 
summer 

Mid-latitude 
summer 

Aerosol model Continental Continental 
Date of overflight July 25, 1996 July 25, 1996 
Solar zenith angle 31.3° 49.7° 
Solar azimuth angle 155.9° 109.5° 
Sensor zenith angle Variable Variable 
Sensor azimuth angle Variable Variable 
Terrain elevation above 
sea level 

0.250 km 0.540 km 

Sensor altitude above 
sea level 

2.745 km 3.035 km 

Water vapour content Variable 2.75 g/cm2 
Ozone column as per model as per model 
CO2 mixing ratio as per model as per model 
Horizontal visibility 40 km 30 km 
 
 

4.0 LAI COMPUTATION 
 
The LAI can be expressed as follows (Chen et al., 1991): 
 

 
where LAIe is the effective LAI and Ω is the clumping index. 
Ω varies between 0 and 1 for clumped canopies, but can be 
larger than 1 for regularly distributed foliage.  For most row 
crops such as beans, Ω is less than 1.  For crops with more 
random plant distribution such as canola, Ω approximates 1.  
Since Ω is generally unknown, only LAIe can be calculated 
according to the following formula (Ross, 1981): 

 
where P is the probability of a view line or a beam of radiation 
at an incident angle α passing through a horizontally uniform 
plant canopy with random leaf angular and spatial distribution 
and G is the mean projection coefficient of unit foliage area 
on a plane perpendicular to α. 
 
In order to estimate LAIe from hyperspectral data, G can be 
set to 0.5 for plants with leaf angle randomly distributed such 
as for agricultural crops (Norman, 1979).  The incident angle 
α corresponds to the sensor viewing zenith angle.  In our case, 
α was set to 0° (nadir looking), which was appropriate for the 
viewing angles under consideration (<15°).  P represents the 
gap fraction, which was determined by spectral unmixing as 
follows: 

 
where �c is the fraction of the crop endmember.  LAIe can 
then be expressed from hyperspectral data according to 
equations (5) and (6) by 

ρ =
L � La

A + B + S L � La

, (1)

P = 1 � ƒc , (6)

Lgi =
ρi

1 � ρi S
+ La , i = 1, 2 (2)

Lpi =
ρi

1 � ρi S
+ La , i = 1, 2 (3)

LAI=
LAIe
Ω

, (4)

LAIe = cos α
G

� ln P , (5)
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In order to retrieve �c, a constrained linear unmixing 
procedure was applied to the image (reflectance) cube to map 
the different field components represented by the endmembers 
of crop, weeds, and soil.  These endmembers were selected 
from the cube itself.  A principal component (PC) analysis 
was then performed on the cube and scatter plots of a pair of 
PCs were generated.  The endmembers were selected from 
averages of those pixels located in the extremities of the 
scatter plot.  These pixels are often referred to as the �purest 
pixels� (Boardman, 1993). 
 
The retrieved endmembers were then used in unmixing, which 
expresses the reflectance spectrum of an image pixel as a 
linear sum of N endmember spectra as follows (Shimabukuru 
and Smith, 1991; Boardman, 1995): 
 

 
where ρk (x, y) is the reflectance in band k of the spectrum for 
pixel (x, y), Sek is the reflectance in band k of the eth 
endmember spectrum, �e

(x,y) is the fraction of endmember e 
contributing to the spectrum of pixel (x, y), and M is the total 
number of bands in the spectrum.  In constrained unmixing, 
the fractions are positive and the sum of the fractions for pixel 
(x, y) equals 1. 
 
An overview of the data processing layout for computing the 
effective LAI is presented in Figure 3. 
 

5.0 RESULTS 
 
Validation of the estimated LAI was performed for the three 
crop types of bean, canola, and wheat, each with a distinct 
plant architecture.  The estimated LAI values were compared 
against those derived from direct measurements and those 
calculated with a semi-empirical approach using the 
normalized difference vegetation index (NDVI) as a function 
of surface reflectance using casi bands 36 (659 nm) and 63 
(813 nm). 
 
5.1 Comparison With Ground-based Measurements 
 
Due to the uncertainty of locating the biomass sample plots in 
the imagery, a 3 by 3 pixel average of the crop fractions 
corresponding to the sample plot areas was used to compute 
the LAI with equation (7).  Subsequently, the results were 
compared to the LAI derived from the biomass samples 
(Figure 4).  The root mean square deviation from the x=y line 
is 0.9.  These validation results indicate that the LAI based on 
the image fraction provides an absolute measure of the LAI 
accurate to within 0.9, two thirds of the time.  Some of the 
deviation can be related to the difficulties of locating the 
sample plots in the imagery.  An accurate location of the 
sample plot is important since the fractions can vary up to 
30% within the selected 3 by 3 pixel window. 
 
Table 2 indicates that the LAIe of beans was smaller than the 
measured LAI on average.  This is probably due to the foliage 
clumping as a result of the distinct row structure.  For the 

other two crops without open row struture Ω ~ 1, therefore 
LAIe should be approximately equal to LAI.  The estimated 
LAIe of canola agrees quite well on average with the 
measured LAI, but the LAIe of wheat was overestimated.  It is 
possible that the wheat foliage was more regularly distributed 
than random. 
 

Table 2. 
Comparison of leaf area index determined from the image 
fraction (LAIe) and direct measurements (LAI) for different 
crop types.  LAIe and LAI represent the mean of the sample 
plots per field; s is the standard deviation, and n is the number 
of sample plots. 
 

Field n LAIe ± s LAI ± s 
Bean 

Canola 
Wheat 

10 
5 
9 

2.38 ± 0.72 
3.06 ± 0.68 
1.76 ± 0.81 

2.68 ± 1.25 
3.02 ± 0.86 
1.38 ± 0.60 

 
5.2 Comparison with LAI Calculated from NDVI 
 
Additional validation tests were carried out comparing the 
LAI values calculated from the crop fraction with those 
derived from NDVI.  The following relationship was used to 
compute the LAI for the different crop types (Baret and 
Guyot, 1991): 

 
where NDVIM is the maximum value of NDVI found in the 
image (asymptotic value of NDVI when LAIe tends towards 
infinity), NDVIS is the NDVI of soil retrieved from the site 
under consideration in the imagery, and k is the coefficient 
which controls the slope of the relationship.  The parameters 
to calculate LAIe (NDVI) are listed in Table 3.  Equation (7) 
was used to calculate the LAIe (�c) from the image fraction.  
The fraction �c includes in this case the crop as well as the 
other vegetative fractions such as weeds since NDVI 
represents a value for the total vegetation cover.  k in equation 
(9) was selected such that 

 
where s is the standard deviation of LAIe.  The results as 
shown in Table 3 for the different crop types indicate that 
values of LAIe (NDVI) and LAIe (�c) are within a standard 
deviation of about 0.3 for beans and wheat and 0.2 for canola. 
 

Table 3 
Standard deviation (s) of the computed LAIe (�c) with respect 
to the LAI(NDVI) estimated from NDVI.  Parameters 
required to calculate the NDVI based LAI are also listed.  
(NDVIM = maximum value of NDVI found in the image, 
NDVIS = NDVI value of soil retrieved from the image, k = 
coefficient which controls the relationship as stated in 
equation (9)). 
 

Field NDVIM NDVIS k s 
Beans 
Canola 
Wheat 

0.97 
0.97 
0.96 

0.22 
0.22 
0.31 

0.52 
0.55 
0.83 

0.29 
0.21 
0.30 

ρk
(x,y)

= ƒe
(x,y)

SekΣ
e = 1

N

, k = 1,2 , ......., M (8)

LAIe = � 2 ln l � ƒc . (7)

LAIe (NDVI) = �
1
k

ln
NDVI � NDVIM

NDVIS � NDVIM

, (9)

LAIe (NDVI) = LAIe ƒc 1 ± s , (10)
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6.0 CONCLUSIONS 
 
Preliminary validation tests indicate that using linear spectral 
unmixing to extract the crop endmember (gap) fraction has 
potential for the estimation of the effective LAI.  Results for 
bean, canola, and wheat showed a reasonable agreement with 
LAI derived from direct measurements considering the 
uncertainty in foliage distribution patterns (clumped, random, 
or regularly) and in locating the sample plots in the imagery.  
A comparison with LAI values calculated with a semi-
empirical approach using NDVI and those estimated from the 
image fraction indicate that the two values agree within a 
standard deviation of at most 0.3.  The proposed technique has 
the advantage that crop specific fractions can be determined 
and, therefore, unwanted portions of vegetation such as weeds 
can be excluded.  This is not the case for LAI estimations 
based on vegetation indices such as NDVI. 
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Figure 1: Data pre-processing flow. 
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Figure 2: casi surface reflectance of canola.  The casi 

spectrum was averaged over four adjacent pixels. 
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Figure 3: Data processing layout for leaf area index (LAI) 

computation. 
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Figure 4: Relationship between the LAI derived from direct 

measurements L (measured) and from the image 
cube Le (image).  The solid line represents the x=y 
line. 
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