# Canada's RADARSAT-1 Understanding the benefits for the mining community

**Robert Saint-Jean<sup>1</sup>** 

Yves Crevier<sup>2</sup>, Vern Singhroy<sup>3</sup>, Michel Rheault<sup>1</sup>, Julie Clark<sup>2</sup>



MIR Télédétection Inc. Remote Sensing

**Applications** 

2 RADAR SAT INTERNATIONAL



3

**Geomatics Canada** 

Canada Centre for Remote Sensing

#### Presentation framework

- RADARSAT : the technology and the capabilities
- RADARSAT : efficient use of the data
- RADARSAT : the benefits

The technology and the capabilities

#### RADARSAT-1 The tool



### RADARSAT-1 The products

- Up to 5 processing levels
- Coverage between 2500 250 000 km<sup>2</sup> per scene
- 36 different beam modes are available
- Resolutions varying between 8 and 100 m
- Incidence angles varying between 10° and 59°
- 2 different look directions

#### RADARSAT-1 ScanSAR one day coverage



#### RADARSAT-1 resolution comparison



How to optimize the information content for geological applications

- RADARSAT-1 data will reveal terrain morphology that can lead to geological structure (geological contacts, faults, bedding, etc.)
- Choosing the right resolution, incidence angle, look direction

The technology and the capabilities

## Guidelines for Geology

| Terrain<br>Area                  | Relief                           | Recommended<br>viewing geometry<br>(incidence angle) | Features<br>identified                                                                        |
|----------------------------------|----------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Cordillera                       | High                             | S6 - S7                                              | Block slides,                                                                                 |
| Fraser Valley, BC                | 50 – 13 /0 m                     | $(40^{\circ} - 60^{\circ})$                          | faults                                                                                        |
| Highlands                        | Moderate – high                  | S1 - S4                                              | Faults, folds,                                                                                |
| Cape Breton Is, NS               | 0 – 350 m                        | (20° – 35°)                                          | drainage patterns,<br>ridges                                                                  |
| Canadian Shield<br>Geraldton, ON | Moderate, rolling<br>300 – 500 m | S1 – S4<br>(20° – 35°)                               | Faults, flutes<br>surfaces, eskers,<br>till, organic<br>terrains, some<br>lithotectonic units |
| Prairies<br>Morden, MN           | Low - moderate<br>300 – 400 m    | S1 – S7<br>(20° – 50°)                               | Strandlines, flow<br>slides, drainage<br>pattern, alluvium                                    |

Adapted from : Singhroy V. and Saint-Jean, R., 1997. "Effects of relief on the selection of RADARSAT beam modes for geological mapping".

## New techniques using RADARSAT

- DEM production using stereo photogrammetry
- Image interpretation using stereo pairs

The GIS concept for remotely sensed information management

- GIS are the tools used to manage the information leading to a sound Integrated Exploration Approach
- RADARSAT data serves as an additional layer of information relevant to the study site
- A clever synthesis of the analysed data can lead to innovative interpretation

Efficient use of the data

#### The Traditional Method



## Data Analysis : The Traditional Method

- Hard copy information
- Difficult to deal with various scale, projection, format, medium, etc.
- Analysis = simple data overlay + user interpretation (1st order)
- No physical data fusion or integration the user only has a mental image
- In this case, the derived information may only be the sum of the information layers

#### Efficient use of the data

#### Integrated Exploration Approach



DECISION

- Total flexibility
  - Standard
  - Analysis
  - Output
- Easy up-dates
- Low cost information dissemination



Efficient use of the data

## Data Analysis : The Integrated Exploration Approach

- Various sources of digital information easy to manipulate, total flexibility for scale and projection
- Analysis = data fusion/integration + user interpretation
- Data fusion/integration techniques: IHS, image arithmetic, principal components analysis, etc.

*"The integrated image has more value than the sum of its components"* 



#### The benefits

# Cost effectiveness of some exploration methods

| Method                    | Cost (US \$)                       | Efficiency (km <sup>-2</sup> day <sup>-1</sup> ) |
|---------------------------|------------------------------------|--------------------------------------------------|
| <u>Preliminaries</u>      |                                    |                                                  |
| RADARSAT scene            | $0.28 \text{ km}^{-2}$ (1998 data) | 104                                              |
| Interpretation and map    | 0.7 km <sup>-2</sup>               | $10^{4}$                                         |
| Airborne Remote Sensing   | 10 km <sup>-2</sup>                | 500                                              |
| Interpretation and map    | 5 km <sup>-2</sup>                 | 50                                               |
| Airborne Geoph. (MAG, EM) | 25 km <sup>-2</sup>                | 500                                              |
| Interpretation and map    | 10 km <sup>-2</sup>                | 25                                               |
| Literature search         | 250 day <sup>-1</sup>              |                                                  |
| Field studies             |                                    |                                                  |
| Geological reconnaissance | 160 km <sup>-2</sup>               | 10                                               |
| Geochemical survey (soil) | 750 km <sup>-2</sup>               | 2                                                |
| Geophysical survey (IP)   | 160 km <sup>-1</sup>               | 0.5                                              |
| Diamond drill cores       | $40 \text{ m}^{-1}$                |                                                  |
| Shaft sinking             | 5000 m <sup>-1</sup>               |                                                  |

Adapted from : S.A. Drury, 1993. "Image Interpretation in Geology", second edition. (1988 data)

#### The benefits

# General stages of a mineral exploration program



Adapted from : S.A. Drury, 1993. "Image Interpretation in Geology", second edition.

#### Conclusion

- RADARSAT-1 data is rich in information for geologists
- A cleaver <u>Integrated Exploration Approach</u> of the data can lead to innovative interpretation
- For Remotely Sensed data, the benefit / cost ratio is high