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Abstract �   This paper investigates the effect of varying 
bandwidth and number of bands on spectral unmixing 
results of casi data acquired over a mine tailings site. 
Forthcoming high spatial resolution sensors with less bands 
and larger bandwidths such as Quickbird, Ikonos1 and 
Orbview3 were simulated in order to determine whether 
the similar unmixing results can be achieved as with the 68-
band casi data.   
 
 

1.  INTRODUCTION 
 
Canadian liability for acid mine drainage is in the order 
of $2 billion to $5 billion depending on the technique 
used to dispose of and treat the acidic waste (MEND).  In 
the Sudbury area alone, Inco Ltd. spends an annual $5 
million to reclaim property (Inco Ltd.). Given these 
enormous costs, monitoring techniques are needed to 
evaluate the efficiency of the techniques used to 
revegetate mine tailings sites. In a previous study, 
Lévesque et al. (1997) demonstrated the monitoring 
capability of the Compact Airborne Spectrographic 
Imager (casi) over the Sudbury mine tailings area. If 
long term monitoring is required airborne surveys can 
become quite expensive. The question is whether one can 
achieve similar results using forthcoming high spatial 
resolution satellites such as Quickbird, Ikonos1, and 
Orbview3 (Table 1). The spatial resolution of these 
sensors is similar to that of  the casi data acquired over 
the Sudbury mine tailings site (2.3 m by 4.3 m). 
However,  these sensors have fewer spectral bands and 
their bands are wider than those of the casi dataset used 
in this study.  This paper investigates the effect of 
varying bandwidth and number of bands on spectral 
unmixing results. Finally,  four Quickbird bands and 
related bandwidths were simulated in order to evaluate 
their possible monitoring capability. Since Orbview3 and 
Ikonos1 have basically the same spectral configuration as 
Quickbird the results obtained for Quickbird are assumed 
to be applicable to these sensors also. 

 
 

Table 1. Spectral band configuration and spatial resolution 
for the Quickbird, Orbview3 and Ikonos sensors.  

 
Sensor Quickbird Orbview3 Ikonos1 

Company Earthwatch Orbital Sciences Space Imaging 

Spectral 450 - 520 450 - 520 450 - 520 
bands 530 - 590 520 - 600 520 - 600 
(nm) 630 - 690 625 - 695 630 - 690 

 770 - 900 760 - 900 760 - 900 

Spatial    
resolution 3.2 m 4 m 4 m 

 
 

2.  METHODOLOGY 
 
2.1 Image data 
 
Hyperspectral casi radiance data were acquired on August 
24, 1996 in 72 contiguous, 8.7 nm wide, spectral bands 
covering a wavelength range from 407 nm to 944 nm. 
Pixel size is 2.3 m in the across track direction and 4.3 m 
in the along track direction. Table 2 summarizes the casi 
sensor configuration parameters. Only wavelengths 
between 407 nm and 900 nm (68 bands) were used due to 
the poor spectral quality of the last four bands.  
 
 

Table 2.  casi sensor configuration. 
 

Spectral coverage 407-944 nm 
Number of bands 72 
Spectral sampling interval 7.6 nm 
Bandwidth at FWHM* 8.7 nm 
Sensor altitude above ground 1905 m 
Ground resolution:  across track 2.3 m 
                                 along track 4.3 m 
Swath  406 pixels 
* FWHM: Full Width at Half Maximum 
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2.2 Image data preprocessing 
 
The casi image data were roll corrected using the 
navigation data to remove most significant aircraft 
motion effects from the imagery. Surface reflectance was 
retrieved from the radiance data using a look-up table 
based approach implemented in the Imaging 
Spectrometer Data Analysis System (ISDAS) (Staenz et 
al., 1997 and 1998). 
 
2.3 Band simulation 
 
Band reduction. The number of bands were reduced by 
skipping every other band of the 68-band casi dataset 
resulting in a 34-band dataset.  This procedure was 
repeated to produce datasets containing 17, 8, and 4 
bands, respectively. 
 
Varying bandwidth. In order to test the effect of varying 
the bandwidth on the unmixing results, 6 bands were 
chosen based on the geobotany dataset from Staenz 
(1996) (480 nm, 548 nm, 608 nm, 676 nm, 745 nm, 829 
nm). A gaussian spectral response profile centered at 
each of the 6 selected bands was used to simulate the 
bandwidths ranging from 8.5 nm to 76.5 nm with an 
increment of 8.5 nm. 
 
Sensor simulation. Quickbird spectral bands as shown in 
Table 1 were simulated using gaussian spectral response 
profiles.   
 
2.4 Spectral unmixing 
 
Constrained spectral unmixing was performed on all the 
simulated casi data cubes  using an algorithm 
implemented in ISDAS (Szeredi et al., 1998 ; Boardman, 
1989 and 1990). The method decomposes the image 
spectra S

�

in terms of endmember spectra iS
�

: 
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if and if  is the fraction of 

endmember i contributing to the image spectrum S
�

, and 
N is the total number of endmembers. The result of the 
unmixing is a set of N fraction images which show the 
fractional abundance of the endmembers. Endmember 
spectra were selected from the original image using the 
three first principal components (PCs) which account for 
77%, 21% and 1% of the variability in the dataset, 
respectively. Endmembers are the purest pixel spectra in 

the dataset and are often located at the extremities of the 
scatterplot when two PCs are plotted against each other. 
Five endmember spectra were identified as shown in 
Figure 1: lime, green vegetation, oxidized tailings, water 1, 
and water 2 (distinct from water 1 because of it�s high 
content of sewage, tailings, and lime). According to the PC 
scatterplots, the endmember spectra were the same for the 
band reduced, varying bandwidth, and sensor simulation 
data cubes.  The unmixing results of the simulated datasets 
were then compared to the unmixing results of the full 68-
band dataset. Comparison between the 68-band dataset 
unmixing results and the unmixing results from the 
simulated cubes was achieved by computing the absolute 
and relative difference.  
 

3.  RESULTS 

 
The relative difference between the Quickbird simulation 
and the 68-band unmixing results is shown in Figure 2 for 
the green vegetation endmember. The plot  shows that low 
fractions display a larger relative difference than higher 
fractions. For a constant absolute difference this result is to 
be expected. 

Figure 2. Relative difference (solid curve) and standard deviation 
(vertical bars) for the green vegetation endmember between unmixing 

results achieved with Quickbird simulated data and the 68-band casi data. 
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Figure 1.  Endmember  spectra.
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3.1 Band reduction 
 
Figure 3  shows the effect of varying the number of casi 
bands on the spectral unmixing results. The absolute 
mean difference (AMD) remains under 0.02 for all the 
endmembers using 34, 17, and 8 bands.  When using 4 
bands the overall AMD increases but remains below 0.03 
for green vegetation and lime. The  two water 
endmembers consistently display a higher AMD than the 
other endmembers.  This can be understood from eq. (1). 
The water endmember spectra 1wS

�

, 2wS
�

, are relatively 

dark, hence the spectral magnitudes 1wS
�

and 2wS
�

 are 

small compared to the other endmembers. Due to this 
fact the fractions 1wf and 2wf  can vary by a relatively 
large amount without changing the sum spectrum in 
eq.(1) too much. The constrained unmixing takes 
advantage of this fact and hence the fractions 1wf and 

2wf  vary more than the fractions of the other 
endmembers. 
 

 
Figure 3. Absolute mean difference (AMD) between the 68-band 

unmixing results and unmixing results of a varying  
number of bands for each endmembers. 

 
 
3.2 Varying bandwidth 
 
Figure 4 shows the AMD and its standard deviation 
between the 68-band unmixing results and the varying 
bandwidth of the 6 selected band data cube.  AMD 
slightly increases with increasing bandwidth but the 
AMD remains below 0.005. The standard deviation of 
the AMD decreases as the bandwidth increases since the 
local variations (in wavelength) in the spectrum are 
smoothed over. This results in less fractional variations 
and a smaller standard deviation. 
 

 

 
 
 

 
 

Figure 4. Absolute mean difference (AMD) and standard deviation 
between the 68-band umixing results and the unmixing  
results of varying bandwidth of the 6-band datacube. 

 
 
3.3 Sensor simulation 
 
In Figure 5 the AMD is shown for each endmember for the 
Quickbird simulation unmixing results against the 68-band 
unmixing results. Unlike for the case of four bands used in 
Figure 3, the four Quickbird bands were selected to 
enhance differences between the spectra and hence display 
lower AMD. As pointed out before, the two water 
endmembers, followed by the oxidized tailings, the green 
vegetation and the lime endmembers, show an inverse 
relationship between their spectral reflectance magnitude 
and their AMD. AMD values for all endmembers do not 
exceed 0.015. Similarly, the standard deviation of the 
AMD is related to the magnitude of the endmember 
spectra which indicates that more variation is expected 
when using low reflectance endmembers.  

Figure 5.  Absolute mean difference (AMD) between the 68-band 
unmixing results and the Quickbird simulation unmixing 

results for each endmember. 
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Figure 6.  Map of the absolute difference (AD) between Quickbird 
simulation unmixing results and the 68-band unmixing results over the 

Copper Cliff mine tailings area in Sudbury. 
 

The map shown in Figure 6 gives a spatial representation 
of the absolute difference (AD) between the Quickbird 
simulation unmixing results and the 68-band unmixing 
results over the Copper Cliff mine tailings area in 
Sudbury. The brighter parts of the map show higher 
differences and the darker parts show lower differences. 
Most of the data are in the AD range of 0.00 to 0.05.  
 

4.  CONCLUSION AND DISCUSSION 
 
The unmixing results obtained by varying the number of 
bands produce absolute mean differences that do not 
exceed 0.02 for 34-band, 17-band and 8-band sets.  The 
4-band dataset yields larger differences, up to 0.094.  
However, Quickbird simulation indicates a difference of 
0.016 is achievable if the bands are selected according to 
physical spectral properties. The bandwidth simulation 
results indicate that as bandwidth increases, the absolute 
mean difference increases and the standard deviation of 
the absolute mean difference decreases. The study shows 
that similar unmixing results are obtained using casi 

hyperspectral data and simulated broad-band high 
resolution multispectral sensors.  
 
However, several points must be borne in mind: the 
limited spectral resolution of broad-band sensors make it 
difficult to spectrally identify endmembers and to 
spectrally separate subtle differences in endmembers. The 
endmembers in this study are very spectrally different and 
hence the second point was not a problem. To unmix a 
scene with N endmembers requires N-1 bands. Therefore, 
complicated scenes with many endmembers might require 
more bands to perform spectral unmixing than provided by 
forthcoming high spatial resolution sensors. 
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