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ABSTRACT

The capabilities of two imaging spectrometers, the Compact Airborne Spectrographic Imager

(casi) and the SWIR (Short-Wave Infra-Red) Full Spectrum Imager (SFSI), were evaluated for

environmental and geological applications.  Results from two case studies, one involving the

identification of minerals at Cuprite, Nevada, the other an environmental characterization of a mine

site and its rehabilitation near Sudbury, Ontario, are presented.  SFSI SWIR II (2000 nm - 2400
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nm) data were used for the mineral mapping study while casi visible and near infrared (VNIR)

(450 nm - 900 nm) data were applied in the environmental study.  The evaluation process included

the retrieval of surface reflectances prior to the application of spectral unmixing for the

identification of specific materials, and the subsequent validation of the extracted information.

Results showed that the spectral features of the alteration minerals alunite, kaolinite, and

buddingtonite could be clearly identified in the SFSI spectra and, hence, that these minerals could

be mapped.  Comparison of the mineral classification map and that retrieved from Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) data showed generally good agreement.  In

addition, results derived from casi data demonstrated that vegetation, lime, oxidized tailings, fresh

tailings, and water could be discriminated with spectral unmixing.  Validation of the environment

study results against field samples indicates good quantitative agreement with respect to the

percent ground cover of lime and of vegetation; the latter is used as an indicator of the level of

vegetation regrowth and hence rehabilitation of the mine site.  In addition, a qualitative

verification of the oxidized tailings indicates a good match between results derived from the

remotely sensed data and field checks.  In general, the casi and SFSI instruments provide useful

information for environmental and geological mapping purposes.

1. INTRODUCTION

The usefulness of hyperspectral data for geological mapping has been demonstrated in the early

development phase of imaging spectrometry by various experiments, as reported by Goetz et al.

(1985), Huntington et al. (1986), and Kruse (1988), among others.  Advances in imaging

spectrometry or hyperspectral remote sensing related to instrumentation development and

calibration, data preprocessing such as surface reflectance retrieval, and information extraction

have led to the development of sophisticated techniques for identification and mapping of minerals

(Clark et al., 1990; Boardman and Huntington, 1996; Cloutis, 1996).  Applications in areas such

as environmental geology are not as well developed yet.  However, recent work indicates that

imaging spectrometry has the potential to play a significant role in the extraction of environmental

information (Singhroy, 1996; Mueller et al., 1997; Farrand and Harsanyi, 1997; Pearson et al.,

1997).  In particular, the identification and monitoring of the surfaces of mine tailings sites are of
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interest.  Baseline mapping and subsequent monitoring of the tailings sites are essential in

documenting progress towards their rehabilitation as required by government regulations.

In this paper, the capabilities of two Canadian hyperspectral airborne instruments are investigated

to determine their potential for geological and environmental mapping.  The two sensors evaluated

are the Compact Airborne Imaging Spectrographic Imager (casi) and the SWIR (Short-Wave Infra-

Red) Full Spectrum Imager (SFSI) (Neville et al., 1995; Anger et al., 1996).  Both are pushbroom

imagers utilizing two dimensional detector arrays.  casi is a commercially available sensor

operating in the visible and near-infrared (VNIR) from 400 nm to 1000 nm.  A casi 72-band

configuration covering the wavelength range from 407 nm to 944 nm was selected for this study.

SFSI was developed by the Canada Centre for Remote Sensing as a research instrument to provide

a SWIR capability in Canada.  It provides 120 spectral bands covering a wavelength range

between 1208 nm and 2445 nm.

The case studies selected to evaluate the capability of the two instruments include mineral

identification and mapping in the Cuprite mining district of Nevada and an environmental

assessment of mine tailings in vegetated terrain near Sudbury, Ontario.  SFSI data were used for

the mineral mapping case study while casi data were applied to map the mine tailings and their

rehabilitation with respect to revegetation.  Detailed examination of SFSI data was limited to the

2000 nm to 2400 nm region, which contains important absorption features of carbonate and

hydroxyl minerals (Hunt, 1979; Goetz et al., 1983; Huntington et al., 1989).  These absorption

features due to overtone bending and stretching vibrations are distinct and can be used for mineral

identification with proper spectral resolution.  The casi VNIR wavelength range is sensitive

mainly to changes in chlorophyll concentration and plant structure and, hence, provides the

information necessary to map vegetation regrowth of the mine site.  It further includes absorption

features due to the charge transfer and crystal field effects of the transition element Fe (Huntington

et al., 1989; Goetz, 1992).  This allows one to map the oxidized tailings.

The evaluation process included the retrieval of surface reflectance from calibrated at-sensor

radiance.  This enabled the comparison of image derived spectra with those acquired on the

ground.  In order to test the mapping capability of these sensors, spectral unmixing was applied to
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the data sets.  The computed fractions were then mapped on a pixel-by-pixel basis and the

resulting imagery compared to ground data at selected locations and classified imagery derived

from data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Vane et al.,

1993).  The entire data processing was carried out on the Imaging Spectrometer Data Analysis

System (ISDAS) of the Canada Centre for Remote Sensing (Staenz et al., 1998).

2. SENSOR DESCRIPTION

The casi and SFSI instruments are pushbroom imagers based on two-dimensional detector arrays

and as such use no moving parts in the imaging process (Anger et al., 1994 and 1996; Neville et

al., 1995).  Both sensors provide data with high spectral resolution of 10 nm or better in

combination with spatial resolutions of up to 1 m.  The characteristics of these sensors are

summarized in Table 1.

casi

casi uses a two-dimensional Charge Coupled Device (CCD) array with 288 elements in the

spectral direction and 612 pixels in the spatial direction of which 512 pixels are available for

imaging.  The 288 basic spectral bands have a band centre spacing of 1.9 nm, a bandwidth of

2.2 nm, and together span a range of 545 nm, which is selectable within the 400 nm to 1000 nm

range.  The signals from each of these bands are digitized to 12 bits.  In the full spectral mode, all

288 basic bands are recorded, but the swath is limited to 39 pixels.  In the full spatial mode, the

full swath of 512 pixels is recorded for up to 20 preselected spectral bands.  The sensor can also

be operated in modes in which intermediate numbers of spectral bands and pixels are recorded.

These bands can be formed of sums of up to 16 basic bands; their centre positions and bandwidths

are programmable.  For the present case study, 72 bands, each consisting of four contiguous basic

bands summed together, were recorded.  In this configuration, the swath consists of 406 pixels.

The single pixel across-track instantaneous-field-of-view (IFOV) at nadir is 1.3 mrad.  This gives

a total field-of-view (FOV) of 29.6 degrees for the 406 pixel swath and 36.8 degrees for the full

512 pixel swath.  The along-track IFOV is 1.2 mrad.
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SFSI

SFSI employs a two-dimensional platinum silicide Schottky barrier CCD array with 488 rows of

512 detector elements.  In operation, a region of 480 lines by 496 columns is used; two adjacent

lines are summed together on the detector array to yield an effective array of 240 by 496 detector

elements.  Following readout and digitization of these signals, adjacent bands are again summed

together to reduce the output data rate.  This gives 120 spectral bands with a wavelength coverage

from 1208 nm to 2445 nm of which 115 bands covering 1219 nm to 2405 nm are used in practice.

SFSI has 496 pixels in the across-track dimension and a fixed integration period of 20 ms.  The

band spacing and nominal bandwidth are 10.3 nm.  (The sensor can now be flown with a band

spacing of 5.2 nm). The data are digitized to 13 bits of which 8 bits are selected by the operator

for recording.  The across-track pixel IFOV is 0.33 mrad (1.16 mrad today), giving an across-track

FOV of 9.4 degrees (32 degrees).  The along-track IFOV is currently 1 mrad.

3. DATA ACQUISITION

casi

High spectral resolution casi data were acquired on August 24, 1996 over the Copper Cliff mine

tailings site near Sudbury, Ontario, Canada.  The casi was flown in the 72-band configuration

(Table 1) at an altitude of 1.9 km above ground, resulting in a spatial resolution of 4.3 m along-

track and 2.5 m across-track.  Only wavelengths between 450 nm and 900 nm were used for the

evaluation of the sensor’s mapping capability because of the drop-off of the responsivity of the

silicon detector at both ends of the casi wavelength range.

SFSI

The data used were collected on 21 June, 1995 over a site located in the Cuprite mining district of

Nevada as part of a mission to test the capability of the sensor for mineral mapping (Hauff et al.,

1996).  For this mission the sensor was flown at approximately 75 m s-1 and at an altitude of 3.3
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km above ground level providing an approximate spatial resolution of 3.0 m along-track and 1.0 m

across-track.

4. DATA PROCESSING

Data processing involved the removal of the most significant aircraft motion effects, surface

reflectance retrieval, post-processing of the retrieved surface reflectance spectra, and spectral

unmixing.  An overview of the individual data processing steps is shown in Figure 1.

Aircraft Motion Effect

In assessing the data quality, it was noted that significant aircraft motion effects exist in the casi

imagery.  In order to correct for the most significant effect, the roll was removed using the

navigation data to calculate the lateral pixel shifts for each line.  These shifts were then applied to

the entire image cube.  Aircraft motion effects were minor in the SFSI data and, therefore, were not

corrected.

Surface Reflectance Retrieval

In the next processing stage, surface reflectances were computed from calibrated at-sensor

radiance data, compensating for atmospheric absorption and scattering effects.  This procedure

involves the use of the known geometric data acquisition parameters and a radiative transfer (RT)

code with an appropriate atmospheric model to calculate look-up tables (LUTs), one each for a

low and high reflectance spectrum (Staenz and Williams, 1997).  This approach reduces

significantly the number of RT code runs.  The RT calculations yield computed radiances and are

performed for only a few tunable values for each of the five input parameters: wavelength, pixel

position, atmospheric water vapour, aerosol optical depth, and terrain elevation.  The radiances

for intermediate values of these parameters are calculated by multi-dimensional bi-linear

interpolation; this results in several orders of magnitude savings in time and computing resources

required to retrieve the desired at-target reflectances.
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For the current case studies, the MODTRAN3 RT code (Berk et al., 1989) was used to calculate

the modelled at-sensor radiances for input target reflectance values.  The parameters required as

input to the MODTRAN3 RT calculations are listed in Table 2.  For each case study, LUTs were

created for all the MODTRAN3 wavelength grid values within the range of interest, for five pixel

locations equally spaced across the swath, including nadir and the swath edges, and for single

values of water vapour content and aerosol optical depth.  The water vapour and CO2

concentration were determined by applying the atmospheric correction process iteratively to

sample scene spectra, while adjusting these atmospheric parameters, and selecting those values

which best removed the corresponding absorption features.  The aerosol optical depth was

calculated from the horizontal visibility by the RT code.  The LUT generation procedure was

repeated for two spectrally flat target reflectance values, ρ 1 = 5% and ρ 2 = 60%, which

encompass the expected reflectance range.  The net results are two LUTs (LUTi , i = 1,2) between

them containing four radiance values for each of the elements of the five dimensional matrix:  the

radiances reflected from the ground target Lgi , i = 1,2 , one for each of the two reflectance values,

and the radiances, Loi , i = 1,2 , from all other sources including atmospheric scattering, the

adjacent pixels, and thermal radiation.  The final step in the LUT generation is the convolution of

these calculated output radiances with the sensor’s spectral response profiles, and the resampling

to the sensor’s band centre wavelengths.  The spectral response profiles for casi are approximated

by a trapezoidal-shaped line spread function and for SFSI by a triangular-shaped line spread

function.

The problem at hand, the calculation of the target reflectances given the at-sensor radiances, is the

inverse of the above process.  To accomplish this, the radiances Lgi and Loi are parameterized as

follows (Staenz and Williams, 1997):

L gi = A
ρ

i

1 – ρi
S

, i = 1,2 (1)

and
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L oi = B
ρ

i

1 – ρi
S

+ L a , i = 1,2 (2)

where A and B are coefficients depending on geometric and atmospheric conditions, S is the

spherical albedo of the atmosphere, and  La is the radiance backscattered from the atmosphere.  In

this system of four equations, A, B, S, and La are the unknowns, while ρ i , Lgi and Loi  are the

known quantities:  ρ 1 = 5% and ρ 2 = 60% , and the Lgi and Loi are found from the LUTs for each

pixel in the scene by multi-dimensional bi-linear interpolation (Press et al., 1992).  By substituting

the values for A, B, S, and La resulting from the solution of the Equations 1 and 2 into Equation 3,

one can calculate, for each pixel in the scene, the surface reflectance

ρ =
L – L a

A + B + S (L – L a )
, (3)

where L is the at-sensor radiance provided by the calibrated image cube.

Post-processing

The next stage of processing performs an empirical correction for irregularities in the reflectance

data that may have originated in the sensor, or that may have resulted from the approximations

made in the atmospheric modeling, and the selection of the RT code input parameters.  This

involves the calculation of correction gains and offsets using spectrally flat target pixels using a

technique similar to the one described in Boardman and Huntington (1996).  The underlying

assumption in this technique is that there are a number of pixels whose true reflectance spectra are

flat, or nearly flat, and whose brightnesses range over a major portion of the full range is covered

by all the pixels in the scene.  In this procedure, a second-order polynomial fit to the reflectance

spectra, along with a goodness of fit measure (Π-squared), is computed on a pixel-by-pixel basis.

A scatter plot is generated by plotting for each pixel the Π-squared value versus the average,

calculated over spectral bands, of the corresponding reflectance spectrum.  The pixels which, for a
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given spectrum average, have the smallest  Π-squared values are selected as the ‘spectrally flat’

target pixels.  For this set of spectrally flat pixels and for each spectral band separately, a scatter

plot is generated in which the second-order polynomial model value for the given band is plotted

versus the measured value.  Linear fits performed on a band-by-band basis give slopes and offsets

which are used as gain and offset corrections to the reflectance data.  In the case of the SFSI image

cube, the “flat” spectra are assumed only to be slowly varying, not spectrally flat.  casi data were

not corrected, since the irregularities in reflectance were minor between 450 nm and 900 nm.

Selection and Mapping of Materials of Interest

The endmember spectra were chosen from the image cubes themselves.  A principal component

analysis was performed on the reflectance cube and scatter plots of pairs of principal components

were created.  The endmembers were chosen from averages of those pixels occurring in the

extremities of the scatter plots.  These pixels are often referred to as the “purest pixels”

(Boardman, 1993). The subsequent mapping of the materials represented by the endmembers was

done using a constrained linear unmixing procedure.  This method attempts to express the

reflectance spectrum of an image pixel at location (x, y) as a linear sum of N endmember spectra

as follows  (Adams et al., 1986; Shimabukuru and Smith, 1991; Boardman, 1995):

),(

1

),(),( yx
k

N

e

ek
yx

e

yx

k rSf +





= ∑
=

ρ    ,  k = 1, 2, ....., M                                                                   (4)

where 
),( yx

kρ is the reflectance in band k of the spectrum under pixel (x, y), ekS  is the reflectance in

band k of the eth endmember spectrum s
e

= S e1 , S e2 ,... S eM , fe

(x, y)
  is the fraction of

endmember e contributing to the spectrum ρ
(x, y)

 of pixel (x, y), M is the total number of bands in

the spectrum, and r  is the error term.  In constrained unmixing, the conditions that the fractions are

positive and that the sum of the fractions under pixel (x, y) equal 1 are imposed:
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Σ
e = 1

N

fe

(x, y)
= 1 and fe > 0 , e = 1, 2, ....., N. (5)

5. CASE STUDY I - Mine Site Characterization

Background

Environmental restoration of sulphide mine tailings is a growing concern for many mine operators.

Complex chemical weathering reactions initiated when tailings are exposed to air and water lead

to the production of sulphuric acid (acid mine drainage), which is capable of liberating the heavy

metals present in large amounts within the tailings (Kelley and Tuovinien, 1988).  It is difficult to

revegetate such sites because of their high level of contamination in heavy metals and other toxic

substances related to mining exploitation.  One technique used at the Copper Cliff mine to reduce

the acidity level of the tailings, thereby aiding revegetation, is the spreading of lime prior to

seeding (Peters, 1988).  This allows certain tolerant species to initiate the revegetation process.

Long term quantitative measurements are required to monitor progress from year to year.

Results

Endmembers were selected from the image cube using the first three principal components, which

account for 99% of the variability in the data.  The following five endmembers were identified:

green vegetation, lime, oxidized tailings, and water 1 and 2 (Figure 2).  Water 1 located in the

active tailings area is contaminated with fresh tailings while water 2 in the inactive tailings area is

highly contaminated by sewage, tailings, and lime (Figure 3a).  The endmembers were identified

using field reference information in combination with ground-based spectral measurements

collected with a GER 3700 field spectroradiometer (GER 3700, 1997).  The endmember and

ground-based spectra are compared in Figure 4 for lime and oxidized tailings.  Overall scale

differences in the reflectance domain, apparent in Figure 4, can result when the target has texture

that will produce shadowing, even at the microscopic level.  This shadowing is dependent upon

the solar illumination and sensor viewing angles.  The geometrical differences between the

ground-based and airborne measurements tend to bias ground-based results to higher reflectance

values.  The ground-based measurements were acquired from sunlit, pure targets.  This selectivity
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was made possible by the small IFOV and the flexibility of the field instrument.  By contrast, this

selective sampling process is not possible with the airborne instrument because of the much larger

IFOV and the fixed viewing directions.

The results of the constrained unmixing are presented in Figure 3.  An examination of the error

images revealed no significant errors and hence, one can be confident all major endmembers have

been found and the endmembers span the data space.  A colour composite providing an overview

of the study area is shown in Figure 3a.  The upper part of the image is the inactive tailings area

where revegetation work is being done.  The lower part is an active tailings area where fresh

tailings are being deposited.  Figures 3b, 3c, and 3d show the three endmember fraction images of

green vegetation, lime, and oxidized tailings obtained from the linear constrained spectral

unmixing analysis.  Since the mine tailings and their various stages of rehabilitation were the

targets of primary interest of this study, the unmixing results presented concentrate on the three

endmembers green vegetation, lime, and oxidized tailings.

In the green vegetation fraction image of Figure 3b, the red colour indicates forested areas and

grass areas appear in tones of blue, green, yellow, and orange, which represent fractions ranging

from 0.0 to 0.4.  This result indicates that revegetation is well on the way in the inactive tailings

area.  Label A indicates a grass area where seeding and liming was performed in previous years.

This area is a mixture of dry and green grass containing less than 10 % exposed oxidized tailings

(Figure 3d).  The area labelled B had been limed and seeded with grass a few months prior to the

airborne data acquisition.  Here, oxidized tailings can still be seen through the grass.  In Figure 3c,

label C points to a lime pile where lime is stored for future spreading.  Note the absence of green

vegetation (Figure 3b) on the lime pile and the presence of oxidized tailings (Figure 3d) on its east

side where the loading area for trucks is located .  Oxidized tailings appear primarily in the

inactive tailings area as depicted in Figure 3d.  The different colours indicate the fractions of

exposed tailings.  Label D indicates an area of fresh deposited tailings where fractions of oxidized

tailings are very low (0.01 to 0.03).  Accordingly, fresh tailings are not represented by this

endmember.  Instead the fresh tailings spectrum resembles more closely the water 1 endmember

(fractions from 0.7 to 0.8).  This may be due in part to the fact that the fresh non-oxidized tailings
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in the study area are wet, since approximately 65% of the discharged slurry is water (Peters,

1988).

Validation

The unmixing results were validated by correlating the image endmember fractions to the fractions

visually assessed on the ground at 34 known pixel locations.  Visual estimations of the fractions of

lime and green vegetation were performed at these sample sites, which varied in size from 10 m by

10 m to 20 m by 20 m.  Image endmember fractions (percent ground cover) were averaged over the

pixels corresponding to the sample areas.  The relationship between image-based endmember

fractions and ground-based visually assessed fractions (percent ground cover) is illustrated in

Figures 5a and b, respectively, for the green vegetation and lime endmembers.  The root mean

square deviation from the x = y line is 0.04 for the green vegetation and 0.05 for the lime.  These

validation results indicate that the endmember fractions of green vegetation and lime agree with

visual estimates of ground cover accurate to within 5%, two thirds of the time, for these

constituents.  Errors at these low levels could easily be attributed to uncertainties in the visual

estimations or other sources such as natural variability of the target material spectra.

The presence of oxidized tailings as mapped in Figure 4d has been validated visually on a

qualitative basis at specific locations.  However, it was not possible to perform a quantitative

assessment of the degree of oxidation.  Tailings composition and therefore oxidizing potential

depend on the nature of the ore being mined at the time the tailings were produced and discharged

(Peters, 1988).  This has resulted in high spatial variability of the tailings composition with no

supporting documentation.  Although this variation in composition produced a corresponding

variation in the airborne and ground-based reflectance spectra, no ground estimates were available

for a validation of the oxidized tailings endmember fraction image.

6. CASE STUDY II - Mineral Identification/Mapping

Background
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Airborne imaging spectrometry is being used increasingly  for mapping surface alterations in arid

and semi-arid areas.  This is because numerous recent results have shown that spectral analysis of

both field and airborne imaging spectrometer data can provide useful mineralogical and

geochemical information for geological mapping and exploration.  In addition, the image

processing techniques developed to facilitate surface compositional mapping using data

compression and spectral unmixing techniques are now more robust (Boardman and Kruse, 1994).

Clay and carbonate minerals indicative of hydrothermal alterations were mapped from both field

spectra and AVIRIS data by many investigators ( Rowan et al., 1995; Boardman and Huntington,

1997; and others).  Recently, Kruse and Boardman (1997) interpreted AVIRIS data to identify

illite and calcite associated with the serpentization and carbonization of deeply weathered

kimberlites.  Our investigation builds on the existing knowledge of surface mineral identification

techniques, with specific reference to SFSI.

Results

The endmembers were chosen from the SFSI image cube using the scatter plots in the first three

principal components, which contain 99% percent of the variability in the data.  Six endmembers

were obtained for the Cuprite image:  alunite, kaolinite, buddingtonite, silica, ‘class 8 clay’, and

shadow.  The identification was done by comparing these endmember spectra to ground reference

spectra obtained at the Cuprite site and nearby sites with the Portable Infrared Mineral Analyser

(PIMA), a field spectrometer (Hauff and Cocks, 1995).  The three endmembers identified as

alunite, kaolinite, and buddingtonite are plotted in Figure 6.  By comparing these with the PIMA

spectra in Figure 7, one can see the very strong spectral similarities between the SFSI and PIMA

spectra.  As for the previous case study, there are overall scale differences between the remote

and in-situ measurements.  These can result from different illumination conditions and different

mineral grain sizes; for this study both are likely to apply.  The PIMA instrument uses an internal

light source to illuminate the ground samples, thereby avoiding shadows and atmospheric effects.

In addition, the PIMA samples very small areas (20 mm2) compared to the SFSI pixel size

(approximately 3 m2).

The unmixing results are displayed in Figure 8 along with a three-band colour image of the site
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(Figure 8a).  As in the previous case study, the error image showed no significant errors.  This

indicates that all major endmembers have been found.  In Figure 8b the calculated fraction of

alunite for each image pixel is indicated by colour, with blue representing a low value, red a high

value.  The same is done for kaolinite and buddingtonite in Figures 8c and 8d, respectively.  The

areas of high surface abundance for buddingtonite occur in the south-west quadrant, with alunite in

the neighbouring south-central region, and kaolinite in the south-east as well as in the far north-

west corner of the imaged area.

Validation

There are seven sites in the SFSI image at which PIMA samples were acquired.  However, these

were insufficient to determine the validity of the mineral fraction maps.  On the other hand, these

PIMA sample spectra, along with others obtained from neighbouring sites in the Cuprite area,

served to identify the minerals common to the area and to provide spectra for comparison with the

SFSI endmember spectra.  The similarity between the SFSI and PIMA spectra is striking (Figures

6 and 7), especially when the differences in measurement methods are taken into consideration.

This similarity provides a degree of assurance that the remote sensing approach is a valid one.  As

well, the mineral distribution as indicated in Figure 8 was compatible with the known mineralogy

of the area.

In addition to the above checks against the PIMA data, the SFSI endmember maps were compared

to a mineral map derived from AVIRIS data.  The SFSI image in Figure 8a was subsampled using

nearest neighbour resampling to a four-metre grid and georeferenced to a topographic map; the

result is shown in Figure 9a.  In Figure 9b the georeferenced SFSI image has been used as a

background upon which thresholded versions of the alunite, kaolinite, and buddingtonite

endmember fraction images have been superimposed in red, yellow, and pink, respectively.  In

addition, the endmember fraction image for the fourth endmember, tentatively identified as silica,

is added in white.  In Figure 9c, the results of the classification of an AVIRIS image acquired in

June of 1995 and analysed using a different process (Tricorder v3.3) (Clark and Swayze, 1995 and

1997) are superimposed on the same georeferenced SFSI image using nearest neighbour

resampling.  For the AVIRIS image, the white area has been classified as chalcedony and the blue
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area as Na-montmorillonite.  Simple visual assessment indicates that agreement between the two

classifications is generally good for alunite, kaolinite, and buddingtonite.  There are localised

differences, specifically in the spatial distribution of kaolinite in the upper left corner of the image,

in the extent of the buddingtonite in the lower third of the image, and in the presence of alunite

along the right edge.  In addition, it would appear that the SFSI class ‘silica’ coincides with the

two AVIRIS classes ‘chalcedony’ and ‘Na-montmorillonite’.

Most of these variances can be explained by differences in acquisition conditions, sensor

parameters, processing methods, and possible errors in the registration of the two images.  The

AVIRIS data were collected at a higher solar elevation angle (70 degrees) than was the SFSI

image (38 degrees); hence, shadowed areas were mostly absent in the AVIRIS image.  Some of the

regions classified in the AVIRIS image coincide with the shaded areas of the SFSI image and were

consequently classed as shadow in the latter image.  For these data sets, the AVIRIS spatial

resolution is 17 m by 17 m while the SFSI spatial resolution is 1 m by 3 m;  this contributed to the

increased spatial distribution of SFSI pixels classified as one of the endmember minerals, as

compared to the classified AVIRIS image.  The AVIRIS classification was performed using a

spectral matching procedure, Tricorder 3.3, while the SFSI image was analysed using spectral

unmixing.  The former method permits matching against any number of mineral spectra and has

yielded more classes for this image; the risk is that it may have misidentified a mixture of two

minerals as a third.  There is not sufficient ground reference data available to determine which is

correct in this instance.  Both analysis techniques have used thresholding to arrive at their

respective classified images and the spatial extent of the classes depends upon these thresholds.  A

rigorous quantitative analysis of the relative performance of the two sensors would require that

both data sets be acquired under the same conditions, that both be processed using the same

analysis technique, and subsequently co-registered to sub-pixel accuracy.

The AVIRIS data, while they do not in any way constitute ‘ground truth’, have been checked

against ground samples distributed (sparsely) over a 25 km2 area containing the site under

discussion.  In addition, AVIRIS is a known sensor, one which has undergone considerable testing

and calibration over a number of years, and which has become an accepted norm in the

hyperspectral airborne remote sensing arena.  While the Tricorder method used to process the
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AVIRIS data is not universally accepted, it is currently considered one of the best of the spectral

matching procedures and is in competition with spectral unmixing for widespread acceptance as

the preferred analysis technique.  That the two classification maps agree as well as they do, given

all the aforementioned differences in the data sources and in the analysis methods, is noteworthy

and is a result that cannot readily be discounted as merely coincidental.

7. CONCLUSIONS

The results based on the two case studies, mine site characterization and mineral identification and

mapping, indicate that casi and SFSI hyperspectral data have strong potential for environmental

and geological application.  The linear constrained spectral unmixing techniques have been

demonstrated to be useful for extracting information from hyperspectral data sets.

The VNIR casi data were successfully used to assess the mine site in terms of fresh and oxidized

tailings and levels of revegetation.  Validation of the classification results against ground reference

information showed that the fractions of the endmember ‘vegetation’ can be related to visual

estimates of percent ground cover.  The same was found for the endmember ‘lime’, which aids

revegetation through a reduction of acidity.  These relationships between endmember fractions and

percent ground cover allow the interpretation of the classification results on a quantitative basis

and, therefore, make spectral unmixing a powerful tool for assessing and monitoring revegetation

of mine sites.

The SWIR results show that the alteration minerals alunite, kaolinite, and buddingtonite can be

identified using SFSI data.  The capability of SFSI to resolve the distinct absorption features of

these minerals in the 2100 nm to 2250 nm region allowed the mapping of these minerals using

spectral unmixing.  Comparison of the resulting fraction images and corresponding classification

retrieved from AVIRIS data showed generally good agreement.  While the endmember fractions

can be interpreted as mineral abundances for each pixel, the validation required to substantiate this

interpretation is extremely difficult and needs large sets of intensive ground reference data.  For

many practical applications, a map showing the spatial distribution, as opposed to the absolute
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abundance, of a given exposed mineral is sufficient.  That SFSI has the spectral and spatial

characteristics necessary to identify alteration minerals has been demonstrated.
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Table 1: casi and SFSI characteristics.  The casi characteristics are given for the nominal

sensor configuration set-up in spectral data acquisition mode.  (FWHM = Full Width

at Half Maximum.)

Sensor casi SFSI
Basic design 2D array 2D array
Detector array size 288 x 612 488 x 512
Spectral coverage 407 nm - 944 nm 1208 nm - 2445 nm
Number of bands 72 120
Spectral sampling interval 7.6 nm 10.3 nm
Bandwidth at FWHM 7.9 nm 10.0 nm
Field-of-View (FOV) 29.6º 9.4º
Swath 406 pixels 496 pixels
Instantaneous FOV
-  across track
-  along track

1.3 mrad
1.2 mrad

0.33 mrad
1.00 mrad

Digitization 12 bits 13 bits
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Table 2: Input parameters for MODTRAN3 code runs.

Sensor casi SFSI
Atmospheric model Mid-latitude Summer Mid-latitude Summer
Aerosol model Continental Continental
Wave number interval 1 cm-1 1 cm-1

Date of overflight August 24, 1996 June 21, 1995
Solar zenith angle 31.5º 52.4º
Solar azimuth angle 176º 272.4º
Sensor zenith angle variable variable
Sensor azimuth angle variable variable
Terrain elevation above sea level 0.3 km 1.554 km
Sensor altitude above sea level 2.21 km 4.877 km
Water vapour content 2.35 g/cm2 0.6 g /cm2

Ozone column as per model as per model
CO2 mixing ratio as per model 200 ppm
Horizontal visibility 50 km 50 km
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