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Abstract

Open boreal forests present a challenge in understanding remote sensing signals acquired with various solar 
and view geometries. Much research is needed to improve our ability to model the bidirectional reflectance 
distribution (BRD) for retrieving the surface information using measurements at a few angles. The 
geometric-optical bidirectional reflectance model presented in this paper considers four scales of canopy 
architecture: tree groups, tree crowns, branches and shoots. It differs from the Li-Strahler's model in the 
following respects:  
1) the assumption of random spatial distribution of trees is replaced by the Neyman distribution which is 
able to model the patchiness or clumpiness of a forest stand;  
2) the multiple mutual shadowing effect between tree crowns is considered using a negative binomial and 
the Neyman distribution theory;  
3) the effect of the sunlit background is modelled using a canopy gap size distribution function that affects 
the magnitude and width of the hotspot;  
4) the branch architecture affecting the directional reflectance is simulated using a simple angular radiation 
penetration function;  
5) the tree crown surface is treated as a complex surface with micro-scale structures which themselves 

straby



generate mutual shadows and a hotspot. All these scales of canopy architecture are shown to have effects 
on the directional distribution of the reflected radiance from conifer forests. The model results compare 
well with a data set from a boreal spruce forest. 

1  Introduction

Solar radiance reflected from the earth's surface is strongly anisotropic and depends on both the sun and 
observation directions. Such bidirectional reflection behaviour has been extensively investigated over 
various surfaces with remote sensing data (Cihlar et al. [8] and Wu et al. [37]), ground-based measurements 
(Deering et al. [10]) and numerical models (see Myneni and Ross [26]). In bidirectional reflectance 
distribution (BRD) models, vegetated surfaces are often described as turbid media (Gao [12], Jupp and 
Strahler [17], Otterman and Brakke [30] Verhoef [34], Verstraete [35]) that represent well agricultural 
crops and grassland. For forests, geometric-optical models (Li and Strahler [21] [22], Strahler and Jupp 
[33]) and hybrid-models (Li et al. [23], Nilson and Peterson [29]) combining geometrical and turbid media 
have been used. One common challenge for canopy models of all types is the difficulty in simulating the 
multiple scattering processes within the canopy. Much attention has been given to this problem. The other 
major challenge is the effect of plant canopy architecture on radiative transfer processes. This challenge has 
not yet been rigorously tackled in the literature although there have also been quite a few publications on 
this problem (Borel et al. [1], Goel et al. [15], Myneni and Ross [26]) in addition to geometric-optical 
models. The meaning of architecture here goes beyond the usual angle distribution of leaves. It also 
includes the spatial distribution patterns of leaves and higher-level structures such as shoots, branches and 
trees. Architecture at all levels in a plant canopy affects not only the transmission of the solar beam through 
the canopy, but also the multiple scattering processes contributing to the observed radiances. In forest 
stands, for example, the number of multiple scattering events between tree crowns is undoubtedly much 
smaller than between leaves, and the modelling methodology would be exceedingly complex and depend 
on the treatment of the canopy architecture. In the modelling effort presented here, the attention is first 
given to a detailed mathematical descriptions of the canopy architecture at various levels.  

In Li and Strahler's BRD models [22], a forest stand is assumed to consist of randomly-distributed objects 
containing leaves as turbid media. These two-scale models mark a major advancement in simulating 
radiation regimes in forest stands as compared with the one-scale turbid-media models, but also 
dramatically increase the complexity of the models. However, two-scale models may be regarded as much 
simplified mathematical descriptions of the physical reality. First, trees are generally not randomly 
distributed in space but are usually clustered at large scales due to variations in the soil and topographic 
conditions, creating patchiness of forest stands. They are also not randomly positioned when close to each 
other because of the natural repulsion effect in competition for resources (Franklin et al. [11]). Second, 
leaves are not randomly distributed within tree crowns. In conifer stands, for example, needles are grouped 
into shoots, branches and whirls, and all these sub-canopy structures are important in determining the 
radiation regime, especially the directional reflectance. In the present paper, these two additional scales of 
plant canopy architecture are considered. Figure  1 shows the concept of the different radiation transfer 
models based on canopy architecture at several scales. The objective of this paper is to present the first four-
scale BRD model for the purpose of investigating the effect of the different architectural scales on the 
directional reflection behaviour of plant canopies.  



 

2  Model description

A BRD model computes the percentage of incident radiation that is reflected by a forest in various 
directions. It is the proportions of the sunlit and shadowed areas of foliage and ground that are used to 
determine the BRD. Our model contains several ``modules'', each with specific tasks. The first module 
constructs the forest. It includes the spatial distribution of trees within a modelling domain and the macro-
scale geometry of the trees. By considering the tree crown geometry, the shadowed and illuminated areas 
of an isolated tree are calculated, and by combining the geometry and tree distribution, the gap fraction and 
gap size distribution of the canopy are computed as functions of solar or view zenith angle. The gap size 
distribution is then used to model the hotspot effect. The hotspot occurs on both the tree crowns and the 
ground. The mathematical treatments on the canopy architecture are presented below. 

2.1  Tree distribution

BRD models based on discrete canopy structures usually assume that trees are randomly distributed within 
a spatial domain. This distribution is described using the Poisson theory: 

P(x) = 
e−m mx 

x!
, (1)

where m is the average value of the number of objects (in our case, trees) in a sub-domain called quadrat, 
and P(x) is the probability of finding x objects in the sub-domain. However, in reality, trees are generally 
not randomly distributed but rather grouped together in various ways. Measurements from a boreal jack 
pine stand (Fig. 2) show an obvious deviation of the tree distribution from Poisson's random case, i.e. the 
number of quadrats having a certain number of trees is distributed narrowly around the mean number of 
trees per quadrat while the measured distribution is much broader. The Poisson tree distribution is in fact 
an averaging process: as the quadrat size (or the mean number of trees per quadrat) increases trees become 
more evenly distributed among the various quadrats. The application of this process to represent reality 
requires a forest stand to be uniform at both small and large scales. However, variations in environmental 
conditions such as topography, soil and sucessional processes often make trees irregularly distributed, 
forming patches at various scales. The simple Poisson theory is incapable of describing such patchiness. 
Nilson and Peterson [29] made a correction to the Poisson theory to model non-randomness of tree 
distribution. Neyman [27] (with application to geography by Getis and Boot [13]) developed a method for 
describing the contagious distribution of larvae. This method called Neyman type A has been used by 
Franklin et al.[11] for the investigation of tree distributions. It assumes that trees are first combined in 
groups and the spatial distribution of the centre of a group follows the Poisson process. The mean size of 
the groups is a required model input depending on the degree of clumping of trees. Centred around a given 
mean group size, there are also probabilities for other group sizes determined again by the Poisson theory. 
Hence, the Neyman type A distribution can also be called the double-Poisson distribution. For the 
convenience of mathematical description, a group must fall completely into a quadrat with the centre of the 
group. The size of the quadrat denoted by A, used in the model, should represent the extent of radiation 
interaction between trees, i.e., the horizontally-projected path length of a solar beam through the canopy. 



The modelling domain is equivalent to the size of a pixel in remote sensing. In selecting the quadrat size 
there is also a computational constraint: the larger the group, the larger should be the quadrat. For a 100 × 
100 m2 domain with 3000 trees, for example, it is preferable to divide the domain into at least 10 quadrats 
to avoid overly populated quadrats that could be difficult to handle numerically.  

According to the conditional probability theory, the probability of having i trees given j groups in a 
quadrat, P(i|j), times the probability of having j groups in the quadrat, P(j), gives the probability of having i 
trees in the quadrat given j groups. The probability of having i trees in the quadrat, P(i), is the summation 
of all the conditional probabilities for j: 

P(i) =

∞ 

∑ 
j

P(i|j)P(j). (2)

When both P(j) and P(i|j) are determined by the Poisson process, we obtain 

PN(i;m1;m2) = e−m1

mi
2 

i!

∞ 

∑ 
j = 1

[ m1 e−m2 ]j 

j!
·ji  for i = 0, 1, 2, ... , (3)

where  

m1 = 
m2 

ν− m
, (4)

is the mean number of groups per quadrat and 

m2 = 
ν−m 

m
. (5)

is the cluster mean size. m = m1 m2 is the mean and ν = m1 m2[1+m2] is the variance of the distribution of 

the number of trees per quadrat and can be measured in a real forest stand. In creating this distribution, the 
following implicit assumptions are used [13]: Within the modelling domain each quadrat is equally likely 
to receive a cluster and the placement of a cluster is independent of the placement of any other clusters.  

1) The parameter m1 corresponds to a priori value of the density of a cluster and m2 corresponds to a priori 

value of the mean size of clusters (optional).  
2) In conformity with a Poisson model the variance about the mean size of cluster is equal to the mean size 
of cluster.  
3) The assignment of a cluster size to one location is independent of the assignment of any other cluster 
size or cluster location (optional).  
4) The points in a cluster are propagated by a `progenitor' who is located at the site of each cluster (pseudo-
contagious assumption). 



If the real distribution is not known, m2 will be fixed at a low value ( m2 = 1 implies a tree distribution 

close to the random case). Comparison with field data will later determine the values for those parameters.  

Figure 3 shows a random tree distribution (Poisson) in comparison with Neyman distributions with the 
mean grouping m2 of 1, 5, and 20 trees per group. In the calculation, the average density was 75 trees per 

quadrat (1500 trees/ha with 20 quadrats of 500 m2 each). Groupings of 1 and 5 produce distributions 
centred at 75 and increase the standard deviation from the random case. m2 = 1 means that the grouping is 

mostly random (group of one) but it contains probabilities of having groups of two trees or more and 
therefore has a broader distribution than the random case. If the group size is too large compared to the 
overall mean (m), the Neyman distribution becomes variable with peaks at multiples of that size. As a 
result, the curve for m2 = 20 in Fig. 3 shows maxima at 20, 40, and 60 trees per quadrat. At i = 0, the 

number of quadrats (having no trees) increases with group size, suggesting that for larger group sizes, the 
probability of having empty quadrats is greater. In Fig. 2, measurements from a jack pine forest are 
compared with the Poisson and Neyman distributions. The domain studied was one hectare with 1793 trees 
divided into 100 quadrats. A Neyman distribution with grouping of 3 simulates the measurements more 
closely than the Poisson theory. Processes other than Neyman could be used in this kind of analysis. For its 
simplicity and for the first analysis of tree clumping in forest canopies, only the Neyman, i.e., the double-
Poisson process is used in this paper. 

2.2  Tree crown projection

Conifer tree crowns have been modelled with a cone shape by Li and Strahler [19]. Nilson and Peterson 
[29] added a cylinder below the cone in their simulations. A photograph taken in a mature black spruce 
stand near Candle Lake, Saskatchewan, Canada (Figure 4), shows that the trees essentially have a 
cylindrical shape with a conical top. In our model, a tree crown is then assumed to consist of a cone and a 
cylinder. In common with Li and Strahler's [19] model, the conical part is described with two factors: its 
radius (r) and its half apex angle (α). In this paper, all trees have the same half apex angle (α = 13°) . 
Figure 5 shows how a tree crown is modelled. Hb is the height of the cylinder. The height of the cone is 

defined by its apex angle and the radius of the tree: Hc = r/tan(α). The total height of the tree crown is Ht = 

Hb + Hc.  

A cone casts a shadow on the ground in addition to the cylinder beneath it only if the solar zenith angle is 
larger than one-half of the apex angle. This shadow area is expressed as [19]: 

Sgc = 
 
 


1 

tan(γs)
−

π 

2
+γs

 
 


r2 , (6)

where γs (see Fig. 5 ) is defined as 



γs = sin−1
 
 


tan(α) 

tan(θs)

 
 


, (7)

where θs is the solar zenith angle. The shadow cast by the cylinder on the ground has an area given by 

2tan(θs)Hb r . (8)

To obtain the total area of a tree projected on the ground surface, the base of the tree, a disc, should also be 
included: 

πr2 . (9)

In this model, the cylinders can either rest on the ground surface or have their bases elevated to the same 
height (Ha). Since the lower part of a forest is generally a trunk space without much foliage, it is more 

realistic to elevate the bases, i.e. to have the crown ``on a stick''. In our model, the height of tree crown base 
affects the contribution of the ground surface to the hotspot. The summation of (6), (8) and (9) gives the 
total area within the outline of a tree crown projected on the ground surface : 

Sg = 

 
 
 
 
 
 


πr2 + 2tan(θs)Hbr for       θs≤α, 

 
 


1 

tan(γs)
+

π 

2
+γs

 
 


r2 + 2tan(θs)Hb r for       θs > α.
(10)

This projected area can be used to find the ground area not seen by a viewer, if the viewer is far enough so 
that the parallax won't change the view. For this reason, we only need to replace θs in (10) with θv. This 

quantity is denoted by VG, which is the area on the ground covered by opaque crowns in the viewer's 

direction: 

Vg = 

 
 
 
 
 
 


πr2 + 2tan(θv)Hbr for       θv≤α,

 
 


1 

tan(γv)
+

π 

2
+γv

 
 


r2 + 2tan(θv)Hb r for       θv > α.
(11)

After calculating the shadow area that a single tree casts on the ground, the sunlit crown proportion seen by 
the viewer is computed from the total surface area of the tree visible to the viewer projected to a plane 
perpendicular to the view line. For the cylinder we have 

tab = 2rsin(θv)Hb . (12)

The total tree surface area projected on a plane perpendicular to the view line is  



tac = 

 
 
 
 


πr2 for       θv = 0, 

πr2cos(θv) for       θv < α, 

πr2cos(θv)+tact for       θv > α. 

(13)

tact of (13) is described in Appendix A.  

For cylinders, the self-shadowing and illumination geometry are very simple: half the surface is illuminated 
and half in shadow. The illumination part seen by the viewer is then 

tib = 2rsin(θv)Hb·
 
 


1−
φ 

π

 
 


, (14)

where φ is the azimuth angle difference between the sun and the viewer. The sunlit part of a cone seen by a 
viewer, denoted tic, cannot be easily expressed in a simple equation, but is described in Appendix A. This 

quantity depends on the apex angle of the trees and the positions of the sun and the viewer. If θs is smaller 

than α, no self-shadow occurs on the cone, but as θs gets larger than α, a portion of the cone is shaded. The 

proportion of the tree that is illuminated and seen by the viewer (Pti) can be found by adding the areas 

illuminated and dividing by the total surface area of the tree presented to the viewer. However, the 
contributions from both the cone and the cylinder part of a tree must be included. Thus 

Pti = 
tic + tib 

tac+tab

. (15)

2.3  Canopy gap fraction

The canopy gap fraction determines the contribution of the underlying surface to the reflectance measured 
above the canopy. It is based on the method described above for calculating the shadow area. If the trees 
are distributed randomly within the domain and the tree crowns are opaque, the probability of seeing the 
ground is  

Pvg−r= 
 
 


1−
Vg 

A

 
 


D/n , (16)

where D is the number of trees in the domain B and A = B/n is a quadrat. By definition there are n quadrats 
in the domain. If the trees are clustered, the probability PN(i), found in (3), is used to compute this effect. 

We have 



Pvg−c = 

κ 

∑ 
i = 0

PN(i) 
 
 


1−
Vg 

A

 
 


i , (17)

where i is the number of trees in A, and PN(i) is the probability of having i trees in A. In this equation, gaps 

within tree crown are not considered. Pvg−c represents the ground that can be seen between tree crowns. If 

we allow gaps in crowns and overlapping of crowns to occur, (17) becomes 

Pvg = 

κ 

∑ 
j = 1

Ptj(Vg)Pgap
j(θv)+Pt0, (18)

where  

Pgap
j(θv) = 

j 

∏ 
1

Pgap(θv) (19)

is the gap probability (depending on θv) inside the trees, and Ptj(Vg), the probability of having j trees 

intercepting the view line is calculated with a negative binomial: 

Ptj(Vg) = 

κ 

∑ 
i = j

PN(i) 
 
 


(i+j−1)! 

(i−1)! j!

 
 


 
 


1−
Vg 

A

 
 


i
 
 


Vg 

A

 
 


j , (20)

where PN(i) is the Neyman distribution (3) and κ is an integer which should be large enough to consider all 

overlapping of the trees in a quadrat. It must correspond to PN(κ) = 0 or Pt(j = κ)(Vg) = 0. In this paper, κ = 

350. In the case of j = 0, Pt0 is equal to (17). Likewise the probability of the ground surface being 

illuminated, Pig, can be found by replacing Vg by Sg and θv by θs. In real forests, trees found in clusters are 

usually smaller than the average tree size. In one quadrat, we have m = m1m2 = D/n trees on average. The 

model assumes that for the probability of having more than m trees in a quadrat, the size of the trees will 
decrease inversely with the number of trees per quadrat: 

Vgi = Vg·m/i. (21)

With the setting used in the first section, m = 75, the probability of having 100 trees in a quadrat, the 
individual tree shadow area is reduced by 75%. For i less than or equal to 75 all trees have the same size.  

The gap probability, Pgap(θ), is well known for a continuous medium [28]. For a discontinuous canopy, we 

use an equation similar to Li and Strahler [21] but modified to consider the foliage clumping effect [4]: 

Pgap(θs) = e−G(θs)Lo ·ΩE/γE , (22)



where  

Lo = µ· _ 
s

(23)

and  

µ = L/[V·D/B] (24)

is the foliage density, and  

_ 
s

(θs) = 
V 

Sg(θs) cos(θs)
, (25)

is the mean path length of the solar beam through a tree. V is the volume contained within the tree crown 
outline, D/B is the number of trees per m2, ΩEis a clumping index of the shoots within tree crowns [4], L is 

the leaf area index (LAI) defined as half the total needle area per unit ground surface area [4].  

(22) gives the probability of the solar beam passing through a single tree. Using θv instead of θs gives the 

probability of seeing the background through a single tree. For a canopy with a random foliage angle 
distribution, G(θ) = 0.5. For canopies with branch architecture [3], G(θ) = a−bθ, where a and b are positive 
constants. Adding a gap probability to tree crowns gives less shadow on the ground and more ground area 
seen by the viewer. 

3  Mutual shadowing effect

At large θv values, a viewer sees mostly the upper part of the trees. Without considering the height-

dependent mutual shadowing effect, the model will underestimate the proportion of sunlit canopy Pti in 

view because the illuminated top part is less likely in shadow. In this version of our model, we only 
separate a tree crown into two parts: cone and cylinder, and calculate the mutual shadow effects for these 
two parts in two steps. In step one, the mutual shadowing effects among the cones can be found by 
allowing the projected conical areas to overlap. The probability of cone overlapping is obtained by 
summing (20) from j = 2 to κ, based on the shadow area of a cone cast on the ground in the sun's direction 
(Sgc) and in the viewer's direction (Vgc). 

Psc = 

k 

∑ 
j = 2

Ptj(Sgc) [ 1−Pgap(θs)j] (26)

is the overlapping probability for Sgc and  

Pvc = 

k 

∑ 
j = 2

Ptj(Vgc) [ 1−Pgap(θv)j] (27)

is the overlapping probability for Vgc. In 26 and (27), 1−Pgap(θv)j is multiplied to discount the gaps within 



the crowns. In step two, the mutual shadowing effects on the cylindrical part are calculated as the 
difference between the total overlapping and the cone overlapping. The total overlapping effects, denoted 
by Ps and Pv, are calculated by replacing Sgc and Vgc with Sg and Vg in (26) and (27), where Sg and Vg are 

the ground shadow areas of a single tree crown in the sun's and viewer's directions, respectively. After 
weighting the overlapping probabilities of the crown and cylinder parts by their respective areas, the 
mutual shadowing effects for the cylindrical (base) part are then: 

Psb = 
Ps·Sg − Psc·Sgc 

Sgb

(28)

and 

Pvb = 
Pv·Vg − Pvc·Vgc 

Vgb

, (29)

where Sgb and Vgb are the projected areas on the ground in the sun and view directions, respectively. For 

the calculation of the probability of viewing the sunlit portion of tree crowns, the quantities needed are the 
proportions of the tree crowns that are not overlapped under the various scenarios, i.e. 

Qsc = 1−Psc, (30)

Qvc = 1− Pvc , (31)

Qsb = 1−Psb, (32)

Qvb = 1− Pvb . (33)

If the illumination and viewing directions are far apart, Qsc and Qvs, as well as Qsb and Qvb, are considered 

to be independent. The products of the pairs, i.e. Qvc ·Qsc and Qvb ·Qsb, are the probabilities of actually 

seeing the illuminated part of the cones and cylinders, respectively. We must multiply tib, the illuminated 

area of one tree, by Qvb ·Qsb in (15), and tic by Qvc ·Qsc, and tac and tab in the same equation are multiplied 

by Qvc and Qvb, respectively, to obtain the actual areas of the conical and cylindrical parts of one tree seen 

by a viewer.  

Near the principal plane on the backscatter side, the illumination and observation of a sunlit area can occur 
in the same gap in the canopy. In such a case, the processes of illumination and viewing are correlated. The 
angle range over which the correlation occurs depends on the tree size and the average tree spacing. A 
function f(φ), depending on the difference in the azimuth angle between the sun and the viewer, is used to 
consider this correlation effect. Using the mean distance between tree centres [] calculated by:  



E (d) = 

1 

2 
  ___ 

√D/B

, (34)

we can determine the azimuthal angle range within which overlapping of one tree with the other occurs in 
both the illumination and view directions:  

tan(θE) = 
2r 

E(d)−2r
. (35)

A linear equation is used between φ = 0 and φ = θE:  

f(φ) = 1 −
φ 

θE

, (36)

where f(φ) is a kernel with non zero values only when 0 < φ < θE. The overall mutual shadowing effects, 

Qc and Qb, for the conical and cylindrical parts, respectively, are then given by 

Qc = Qvc ·Qsc + f(φ)·[Qsvc−Qvc ·Qsc] (37)

and 

Qb = Qvb ·Qsb +f(φ) ·[Qsvb−Qvb ·Qsb], (38)

where Qsvc is the minimum of Qsc and Qvc, and Qsvb is the minimum of Qsb and Qsb. With considerations 

of these mutual shadowing effects, the probability of seeing illuminated tree crowns becomes 

Pti = 
Qc ·tic + Qb ·tib 

Qvc ·tac + Qvb ·tab

. (39)

Much of the complexity of the mutual shadow calculations arises from the fact that the conical and the 
cylindrical parts have different geometry and have to be separately modelled. Since conifer trees are better 
represented using the combination of these two parts than the single cone shape, we believe that the 
formulation presented above is an improvement over previous models based on cone geometry when used 
for conifer forests. 



4  Canopy gap size and hotspot

The hotspot is a phenomenon that occurs when the observation and the illumination directions coincide 
within the same canopy gap [16]. At the hotspot, the viewer sees either sunlit foliage or the sunlit 
background, resulting in large observed reflectance factors. In this case, the probability of seeing the 
ground, Pvg, is equal to the probability of having the ground illuminated, Pig, and the probability of seeing 

tree crowns, Pst = 1−Pvg, is equal to 1−Pig. As the viewer moves away from the hotspot, the view line and 

the solar beam are less likely to fall in the same canopy gap and Pig and Pvg gradually become independent 

of each other. The product of the pair (Pig and Pvg ) then determines the probability of seeing the sunlit 

ground. However, around the hotspot, such simple calculations are invalid because of the correlation of 
these two processes. The importance of the correlation in determining the hotspot has been investigated by 
many modellers including Kuusk [18], who devised a correlation function based on the leaf size. We found 
that leaf size is irrelevant for the correlation in conifer canopies. Nilson and Peterson [29] used a 
correlation based on a characteristic gap size. In the present paper, we introduce a canopy gap size 
distribution function for the calculation of the correlation. The function closely relates the hotspot to the 
canopy attributes. 

The theory of gap size distribution in plant canopies was first derived by Miller and Norman [25] and 
further investigated by Chen and Black [5] and Chen and Cihlar [6]. The accumulated gap size distribution 
can be calculated from: 

Fat(λ) = 
 
 


1+Lt

λ 

Wt

 
 


e− Lt[1+[(λ)/(Wt)]] , (40)

for gaps ≥ λ, where Wt is the characteristic width of a tree crown projected on the ground; and Lt is the 

clumping-adjusted projected tree crown area index. This formulation is made according to the finding of 
Chen and Cihlar [7] that a large part of the gap size distribution curve measured in boreal forests is 
determined by tree crowns as discrete objects. Wt and Lt are computed as follows:  

Wt = 
  __ 

√Sg
, (41)

and 

Lt = Ωt Sg D/B , (42)

where Sg is the area of a tree crown projected on the ground in the sun's direction and Ωt is a tree clumping 

index, determined by the Neyman distribution as 

Ωt = log(Pig(Neyman))/log(Pig(Poisson)) (43)

It is 0.95 obtained from simulation with a Neyman grouping of 4 for a forest with 4000 stems per hectare 
divided into 25 quadrats. 



Similar to (40), a distribution for gaps inside crowns can be computed where the shoots are taken as the 
foliage elements: 

Fas(λ) = 
 
 


1+Ls

λ 

Ws

 
 


e− Ls[1+[(λ)/(Ws)]] . (44)

where 

Ls = 
G(θs)ΩE L 

γE cos(θs)
(45)

is the clumping-adjusted foliage area index and the characteristic width of the foliage elements is  

Ws = 
  __ 

√As
. (46)

ΩE is a clumping index for the effect of confining shoots within tree crowns; γE is the needle-to-shoot area 

ratio quantifying the effect of needle grouping in shoots on the radiation interception; and As is the average 

shoot projected area. According to Chen [2], for the black spruce stand investigated in this paper, L = 4.5, 

G(θ) = 0.5, ΩE= 0.70, γE = 1.41 and Ws = 35 mm. Only very small gaps are computed inside trees, but they 

contribute significantly to the total canopy gap fraction because of their large numbers. In the calculation of 
the hotspot, these small gaps are of critical importance in determining the shape of the hotspot. 

[small modifications: equation (45) is use with LAI=1; ΩEis modified in the code since TRAC 

measurements include clumping between crowns. The clumping is reduced by half, e.g. 0.70 becomes 
0.85] 

Table 1: 

Ha 0.5 m 

Hb 6.5 m 

Radius of crown 0.45 m 

G(θ) 0.5 

LAI 4.5 

Domain 1 ha 

Density 4000 tress/ha 

Quadrat size 400 m2



Neyman grouping 4 

α 13o

γE 1.41 

ΩE 0.70 

Ws 0.035 

RG (red) 0.06 

RT (red) 0.13 

RZG(red) 0.006 

RZT(red) 0.01

RG (nir) 0.20 

RT (nir) 0.53 

RZG(nir) 0.05 

RZT(nir) 0.08 

Figure 6 shows  accumulated gap size distributions measured along a 300 m transect in the black spruce 
forest [2]. The measured gap size distribution can be separated into two parts: between and within the tree 
crowns. (40) and (44) are used to simulate these two parts respectively. The parameters used in (40) and 
(44) are those found in Table 1 except Wt that was fixed at 1.4 m to reflect the typical width of tree crowns 

encountered on the transect at about 45° to the sun. The characteristic width Ws for black spruce shoots was 

measured to be three cm. Same Wt and Ws values were used for both gap size distributions, i.e., Figs. 6(a) 

and (b). In both cases, the contributions of gaps between and within tree crowns to the measured gap size 
distributions are distinct, but there is a portion of the distribution curve in the range of 10-50 cm which can 
not be fitted using the crown and shoot attributes. This out-lying portion is a result of the branch 
architecture because the gaps between branches are larger than those between shoots but smaller than those 
between tree crowns.



4.1  Hotspot between crowns

Fat(λ) and Fas(λ) are quantities that can be measured directly in a forest canopy. From the measurements of 

Fat(λ) and Fas(λ) the following gap size distribution can be derived: 

Pt(λ) = e− Lt[1+[λ/Wt]] . (47)

Pt(λ) is defined as the probability of a horizontal probe of length λ falling completely within a gap between 

tree crowns. This gap size distribution between tree crowns is important in determining the contribution of 
the ground surface to the hotspot. Figure 7(a) shows how Pt(λ) varies with λ at different solar zenith 

angles. For the calculation of the hotspot kernel for the ground, a gap number density function is used, 
which is defines as  

Nt(λ) = −
dPt(λ) 

dλ
= 

Lt 

Wt

e−Lt[1+[λ/Wt]]. (48)

The probability PG of observing the sunlit ground under the tree crowns can then be written in the general 

form: 

PG = PigPvg+ [Pig−Pig Pvg]Ft(ξ), (49)

where Ft(ξ) is a hotspot kernel, which is unity at the hotspot and zero when the illumination and view 

angles are far apart, and ξ is the angle between the sun and the viewer determined by cos(ξ) = cos(θs) 

cos(θv) + sin(θs)sin(θv)cos(φ). The first term on the right hand side of (49) is the probability of observing 

the sunlit ground when Pig and Pvg are not correlated, i.e., the viewer sees the sunlit ground through a gap 

different from that of illumination. The second term gives the additional probability resulting from the 
correlation. Figure 8 shows how a gap of certain size contributes to the hotspot kernel. The angle range in 
which the viewer can see the sunlit ground through the same gap as the illumination is determined by the 
gap size and the effective height of the gap column that depends on the view zenith angle. For one gap of 
size λ, we have the hotspot function:  

Ft(ξ) = 1−
ξ 

tan−1(λ/H)
. (50)

where H = [Ha+Hb+Hc/3]/cos(θs). For the whole canopy containing multiple gaps of different sizes with a 

number density of N(λ), the hotspot function is obtained through the following integration: 



Ft(ξ) = 

⌠ 
⌡

∞ 

λmin

 
 


1−
ξ 

tan−1(λ/H)

 
 


N(λ) dλ

⌠ 
⌡

∞ 

λmin

N(λ) dλ

. (51)

For a given angle difference between the sun and the viewer, there is a minimum gap size λmin in which the 

view line penetrates through the same gap as the solar beam. It is determined by 

λmin = H tan(ξ). (52)

The ground reflectance is assumed to be isotropic in this paper.

4.2  Hotspot within tree crowns

In the estimation of the hotspot within the tree crown, a gap size distribution within individual tree crowns 
is used. In previous geometric-optical models, the imaginary tree crown surface has been treated as a 
smooth surface in the calculation of the hotspot [22]. Some more elaborate models have dealt with the 
crowns as object containing turbid media with multiscattering [29][23]. Since shadows can be observed on 
the sunlit side of real tree crowns, the micro-scale structures within tree crowns have important 
contributions to the hotspot, modifying the hotspot shape and magnitude. An important structure within 
conifer trees is the shoots, which are the basic collections of needles. Needles are grouped tightly in shoots, 
which allow little radiation penetration and can be treated as the basic foliage units for radiation modelling 
[7]. Similar to the distribution between crowns, a gap size distribution within the crown is used to calculate 
the gap number density function: 

Ns(λ) = −
dPs(λ) 

dλ
= 

Ls 

Ws

e−Ls[1+[(λ)/(Ws)]]. (53)

The formulation presented above has implications on the inversion of the model for leaf area index because 
the micro-scale structures within the tree crowns affect the BRD and cannot be ignored. 

In computing the hotspot within the tree crowns, the self-shadowing and the vertical tree crown structure 
must be considered. Discontinuities in mathematical expressions are found at nadir or the boundary 
between sunlit and shaded sides of a crown. Therefore, we treat the two sides separately. On the sunlit side, 
the probability of seeing the illuminated foliage PT at the hotspot is simply 1 − Pig, i.e. the viewer sees 

either the sunlit ground or the sunlit foliage. Considerable complication arises when we treat the tree crown 
surface as a complex surface with micro-scale structures. In this case, a view line can penetrate into the 
depth of the crown and reach to the shaded foliage behind the sunlit part even though the imaginary tree 
crown surface is theoretically sunlit. The problem may be understood in the extreme cases: 1) a tree crown 
is very dense - the imaginary surface can reasonably represent the tree crown, and 2) a tree crown is very 



sparse - the imaginary surface ceases to have meaning. The reality is in between these two extremes, i.e. 
the imaginary surface exists but is unsmooth or complex. In this case, the effect of mutual shadowing 
among foliage elements within a tree crown cannot be ignored. 

Figure 10 shows the physics involved in the determination of the hotspot within a tree crown, where a tree 
is considered as a vertical structure with spherical foliage elements (shoots) dispersed within it. Using L(x) 
as the accumulated LAI from the imaginary surface to a given location x within the crown, the accumulated 
sunlit leaf area from 0 to L(x) is 1−e−Cs L(x), where Cs = G(θs) ΩE/γE sin(θs + α) to take into account the 

cone inclination and the vertical structure. At position x, the increment of sunlit leaf area with increasing 
L(x) is  

d 

dL(x)
[1−e−Cs L(x)] = Cs e−Cs L(x) (54)

Similarly, the increment of leaf area seen after dL(x) is 

d 

dL(x)
[1−e−Cv L(x)] = Cv e−Cv L(x). (55)

If we denote LH as the leaf area index accumulated horizontally from the sunlit side to the shaded side, the 

total probability of viewing sunlit leaf area from 0 to LH is then 

Q1(LH) = Γ(ξ)
⌠ 
⌡

LH 

0

Cv Cse−CvL(x) e−CsL(x) dL(x) 

= Γ(ξ)[1− e−LH(Cs +Cv)]
 
 


CsCv 

Cs +Cv

 
 


(56)

where Γ(ξ) is the first-order scattering (geometric shadow) phase function of the foliage elements. It is 
defined as 

Γ(ξ) = 
 
 


1−
Cp ξ 

π

 
 


(57)

where Cp is a coefficient determined by the optical properties of foliage elements. If the elements are solid 

spheres with a Lambertian surface, Cp is unity, resulting in the phase function being 1.0 at ξ = 0, 0.5 at ξ = 

π/2 and 0 at ξ = π. The phase function in this case gives the proportion of the sunlit sphere surface seen by 
the viewer. Although a conifer shoot can be approximated by a sphere to describe the projected area [2], it 
can not be treated as a solid because of the gaps within it. The value of Cp for porous elements is smaller 

than unity. Because of lack of data, we assume that Cp = 0.75 in this paper. This constant is found to affect 

the sharpness of the hotspot. Q1 must be calculated for all trees, it gives: 



Q1 tot = 

κ 

∑ 
j = 1

Q1(j ·LH)·Ptj(Vg) (58)

where Ptj(Vg) is the probability of a view line going through j tree crowns calculated by (20).  

[Q1tot is no longer computed with (58). It uses the same reasonning as Q2tot] On the shaded side, the 

probability of observing sunlit leaves also exists, especially in canopies with sparse tree crowns. The 
increment of sunlit leaf area along the sun's direction is calculated using (54), but the increment of leaf area 
viewed from the opposite side is calculated differently as follows: 

d 

dL(x)
[1−e−Cv(LH−L(x))] = −Cv e−Cv(LH−L(x)). (59)

At a given depth x, the probability of observing sunlit foliage is 

Γ(ξ)Cs e−Cs L(x)(−Cv e−Cv(LH− L(x))). (60)

After integration from LH to 0 across the tree crown, the overall probability becomes 

Q2(LH) = 
 
 


1−
Cp ξ 

π

 
 


[e−CsLH− e−CvLH]
 
 


CsCv 

Cv − Cs

 
 


. (61)

This phenomenon must be considered on each tree along the path of view. On the first tree, it is simply 
Q2(LH). For i trees along the path it is: 

Q2 tot = Q2(LH) 

κ 

∑ 
i = 1

·Ptt(i) ·K(i) (62)

where 

Ptt (i) = Pat(i) Pat(i−1) Pgap
i−1(θv). (63)

in which 

Pat(i) = 

κ 

∑ 
j = i

Ptj(Vg). (64)

Pat(i) represents the probability of having i trees within one path. The probability of seeing the ith tree 

behind i−1 trees is found by the probability of having i−1 tree overlapping, Pat(i−1), times the probability 

of passing through i−1 trees, Pgap
i−1(θv). As the view line penetrates through the forest, it reaches the lower 

portion of the canopy where shaded foliage is more likely to be observed. For the ith tree on the path, this 
height attenuation is considered by 



K(i) = e−i GE(θv) ·cos(θv)/cos(θs). (65)

With the proportion of sunlit and shaded tree crown as Pti and (1−Pti) respectively, we can then calculate 

the probability of seeing the illuminated foliage as follows: 

PTf = Pti ·Q1 tot + [1−Pti]·Q2 tot. (66)

This equation is only valid far from the hotspot. A hotspot function, similar to (51), can also be defined. 

Fs(ξ) follows the same principles as Ft(ξ) but it involves foliage elements (shoots) instead of tree crowns.  

Fs(ξ) = 

⌠ 
⌡

∞ 

λmins

 
 


1−
ξ 

tan−1(λ/Hs)

 
 


Ns(λ) dl

⌠ 
⌡

∞ 

λmins

Ns(λ) dλ

, (67)

where Hs is the effective distance between two layers of leaves inside a tree crown. In our model, it is 

inversely proportional to the leaf area density in the tree crown or Lo, i.e. 

Hs = 
r 

Lo

, (68)

where r is the tree crown radius. This definition produces sharper hotspots in canopies with sparser tree 
crowns. After considering the hotspot on tree crowns, the overall probability of observing sunlit foliage is  

PT = PTf + [(1−Pig)−PTf]Fs(ξ) . (69)

This gives PTf outside of the hotspot where Fs(ξ) = 0 and (1−Pig) at the centre of the hotspot where Fs(ξ) = 

1. Figure  9 shows examples of the hotspot kernel calculated using (51) and (67) along the principal solar 

plane at a solar zenith angle of 45°. As the first approximation, the shape of the kernel is the same in all 
directions, i.e., the hotspot has a circular shape.

4.3  Canopy reflectance

For estimating the first order scattering, the model computes the various components: sunlit foliage (PT), 

sunlit ground (PG), shaded foliage (1−Pvg−PT) and the shaded ground (Pvg − PG). If direct solar beams are 

the sole source of illumination and no multiple scattering occurs, only the first two components are 
responsible for the reflectance of the canopy. However, since the diffuse radiation from the sky is 
considerable compared with the direct radiation and the multiple scattering is also inevitable, the shaded 
components cannot be ignored. These components are considered in our model by assigning the 
appropriate reflectivities to them as follows: 

RZT = Cm ·Fdt ·RT (70)

and  



RZG = Cm ·Fdg ·RG, (71)

where RZT and RZG are the reflectivities for shaded foliage and ground, respectively; RT and RZ are the 

reflectivities for sunlit foliage and ground, respectively; Fdt and Fdg are the fractions of diffuse irradiance 

in the total incoming solar irradiance above and below the stand, respectively; and Cm is a multiple-

scattering factor. RZT and RZG can also be measured directly from a forest stand.  

The total canopy reflectance is  

ρ = RT ·PT + RG ·PG + RZT ·ZT + RZG ·ZG, (72)

where ZT = 1−Pvg−PT and ZG = Pvg −PG. All these reflectivities are wavelength dependent. In modelling 

canopy reflectance in red and near-infrared bands, (72) is used with a different value for each reflectivity.

5  Model results

5.1  Effect of Neyman grouping

The model first computes the canopy gap fraction Pvg (18). Measurements from a boreal black spruce 

forest were used to validate the computation. According to Chen [2], the following values are used: 4000 
for the tree density (stems per hectare), 6.5 m for the average tree height, 4.5 for LAI, and 0.45 m for the 
crown radius. The quadrat size is fixed at 400 m2, having an average of 200 trees per quadrat. Figure 11 
shows Pvg distributions calculated using the Poisson model and the Neyman model with groupings of 4, 12, 

and 24. Near the vertical view direction, the different sizes of Neyman grouping do not have much effect 
because the forest is very open. The effect of the grouping is more pronounced for θv between 15° and 60°. 

The best fits are found with small Neyman groups. An analysis of 24 quadrats of 10×10 m2 each measured 
in black spruce stands gives m2 = 2 calculated with (5), but when grouped into six 400 m2 quadrats, m2 = 4. 

A grouping of 4 is used in all simulations unless noted otherwise. 

The measured gap fraction data at large zenith angles are positively biased because of the effect of multiple 
scattering on the measurements using an optical instrument [2]. The modelled curves all show a sharp 
increase near the vertical direction because of the simple geometry to represent the tree crown and 
overlapping of the crowns without considering the repulsion effect. This creates unsmoothness of the 
model results at the nadir as shown later. In reality, the tree crown geometry is more variable and the 
reflectance distribution are usually smoother around nadir. 

To understand the effect of the Neyman grouping, Fig. 12 shows different components of the model for a 

range of m2 values from 1 to 50 at θv = 30°, θs = 55° and φ = 0. The grouping of trees produces a larger gap 

fraction because it increases the probability of having quadrats with few trees. With the increasing 
grouping size, the proportion of canopy illuminated (Pti) decreases, and so does the probability of seeing a 

tree illuminated (PT). This is mainly because of the increase in the gap fraction. In accordance with Pvg, the 

probability of seeing the illuminated ground surface (PG) increases. Red and near infra-red reflectances 

decrease with the Neyman grouping because ground reflectivity is low compared to the crown reflectivity.



5.2  BRD and hotspot

The plots in Fig. 13 were computed using the same inputs as in Fig. 12   and the reflectivities summarised 
in table 1. Based on measured spectra (White et al. [36], Middleton et al. [24], Soffer [32]) , RG = 0.06 and 

RT = 0.13 for the red band and RG = 0.20 and RT = 0.53 for the near-infrared band. The ground reflectivity 

in the red band is smaller than that of leaves even though the overall reflectivity of the stand is lower than 
the ground reflectivity because of the shadow components in the stand. Using (70) and (71) we can 
attribute the appropriate reflectivities to the shaded tree crown and ground surfaces. Because of the small 
contributions from shaded ground and crowns, we use constant multiscatterring factors, leading to Cm ·Fdt 

= 0.08 and Cm ·Fdg = 0.10 for the red band and Cm ·Fdt = 0.15 and Cm ·Fdg = 0.25 for the near infra-red 

band. The six plots in Fig. 13 show the same components as those in Fig. 12  but as distributions against θv 

on the principal solar plane at θs = 35°. For the view angle θv, we use the following sign convention: 

negative for backscatter and positive for forwardscatter. Figure 13a shows the gap fraction versus the view 
zenith angle for a Neyman grouping of 4. Figure 13b is the proportion of the imaginary tree crown surface 

seen by the viewer that is illuminated. From θv = −90° to −35° it equals unity, meaning that all tree crowns 

imaginary surface in view are illuminated in the principal solar plane. At nadir (θv = 0), there is a 

discontinuity because the viewer can only see the cone part of the tree crown which is mostly illuminated. 
On the backscattering side, Pti decreases near the vertical direction because the viewer can see the lower 

part of the cylinder that is shaded by other cylinders. On the fowardscattering side, the cylinder is 
completely shaded, and as θv increases, more of the shaded cylinder occupies the view. At very large θv 

values, the conical part dominates the view, and the proportion of the tree in view that is illuminated 
increases because more than half of the cone surface is usually sunlit. Figure 13c represents the probability 
of seeing illuminated foliage within tree crowns. It includes the probability of observing sunlit foliage from 
the shaded side and the hotspot effect on the illuminated side. A pronounced hotspot peak is computed at θv 

= 35°. Figure 13d is the probability of seeing the ground illuminated by the sun. The bi-module distribution 
pattern results from the peaks at the hotspot and at nadir. The peak at the nadir is due to the largest gap 
probability at that angle. The other peak at the hotspot is obtained after the introduction of the hotspot 
function (51), otherwise the PG curve would be symmetric about the centre. At the hotspot, all the ground 

areas in view are illuminated, and the value of PG is simply Pvg at the same angle (0.35 at θv = 35°). Figs. 

13e and 13f describe the BRD in the red and near-infrared bands. Both distributions resemble the 
probability of seeing illuminated foliage (PT) because of the large PT values and the large reflectivity 

values for the foliage. Although the magnitudes of the red and near-infrared reflectances are very different, 
the shapes of the distributions are remarkably similar because only the first-order scattering is considered in 
the calculation and the multiple scattering effects are included as invariant offsets. However, there are 
subtle differences in the shapes due to the different foliage and ground reflectivity combinations with PT 

and PG. These small differences have implications on the angular distribution of vegetation indices 

calculated from the two bands and deserve further investigation. 

Comparisons of the model results were made with measurements of a boreal black spruce forest [9]. 



Figures 14a and 14b show the calculated and measured reflectance in the red band for two different θs 

values, 40° and 55°, in the principal plane. At θs = 40°, the model is overestimating the reflectance on the 

forwardscattering side. This is mainly due to the constant reflectivities used for the shaded foliage and 
ground. The model uses constant values for Fdt and Fdg in (70) and (71) for the fraction of diffuse radiation 

in the total incident solar irradiance. As the fraction changes during the course of the day, these constant 
values better represent the average daily conditions. Near solar noon when the sun is high, the diffuse 
fraction is smaller than the daily average and the reflectivities for the shaded components are also 
correspondingly smaller than the daily average, resulting in the discrepancies between the modelled and 
observed values at θs = 40°. The comparisons suggest that the model will benefit from accurate separation 

of the diffuse and direct solar radiation. The model shows sharp spikes at the hotspot in comparison with 
the measurements. The gentle variation in the measurements may be a result of the low angular resolution 
(15°) which effectively produced window-averaged results. The effect of the averaging is to dampen and 
broaden the peak at the hotspot. For θs = 40° and other small θs values not shown here, the width of the 

hotspot is well modelled. The model does not perform as well at the larger solar zenith angles like Fig. 

14(b) for θs = 55°. This model deficiency may have resulted from the simplified geometry used to represent 

the tree crowns. The model geometry is such that, all foliage is confined within the cone or cylinder, while 
in reality branches extend much further than the mean radius and intercept more radiation than the model 
prediction. One way to handle the problem is to increase the mean radius of the tree crowns, but in that 
case the branch structure needs to be more vigorously described to allow more gaps within the tree crown. 
This suggests that geometric-optical models are still approximations to reality and accurate simulation of 
BRD requires accurate descriptions of the canopy architecture at all scales. Figure 14c shows a comparison 

between the model and measurements for the reflectance in the near-infrared band at θs = 40°. The model is 

able to simulate the measurements closely. In Fig. 14d where θs = 60°, the model performs well except for 

the largest θv, especially on the backscattering side, indicating the effect of non-uniform distribution of 

multiple scattering on BRD which is not considered in the present study. 

Figure 15 shows hemispheric distributions of reflectance in the red band at four solar zenith angles. The 
hotspot varies in size, being generally larger when the sun is higher in the sky. The model does not show 
much of the usual bowl-shape because of the high LAI and the fixed diffuse fractions used in the model. 
Some of the bowl-shape can be seen in Fig. 15c and 15d. Figure 16 shows the corresponding distributions 
in the NIR band. The distributions are similar to those in Fig.  but the bowl-shape is more pronounced for 
θs = 60° and 75°. The increase in reflectance at large θv values, where the ground is hidden under the tree 

crowns is due in part to the larger reflectivity of the shaded foliage as compared to the shaded ground A 
singularity is seen at nadir for the large solar zenith angles, i.e. Fig. 16(d) because of the large shaded 
ground components viewed vertically.



6  Discussion

The 4-Scale model presented here was developed to investigate the effect of canopy architecture at 
different scales on the bidirectional distribution. Since we have incorporated mathematics descriptions of 
canopy architecture at scales larger and smaller than the tree crown, it becomes a fuzzy geometric-optical 
model in the sense that the clearly defined canopy geometry, such as that of Li and Strahler's models, is 
disintegrated and defined probalistically. The inclusion of canopy architecture at the various scales in a 
geometric-optical model may be considered as an influx of negative entropy which increases the 
orderliness of the system under investigation and is expected to approximate more closely natural living 
organisms. We believe that such a model contains more flexibility to adapt to different plant canopies than 
previous models. 

Much mathematical complexity arises, though still tractable, when we treat the tree crown surface as a 
complex surface within which mutual shadows and the hotspot also occur. Through our numerical 
simulation, we believe that the sub-canopy structures have profound effects on the directional reflection 
behaviour of the canopy and deserve such attention. Figure 17 shows the sensitivity of the model to the 
foliage density within tree crowns. With the fixed stand density and tree crown shape and dimensions 
(Table 1), the foliage density increases proportionally with LAI. For these simulations, we kept the 
multiscattering factors constant, and realised that some inaccuracies occurred in the model results because 
larger LAI should induce more multiscattering in the canopy. Both the red and NIR reflectances increase 
with decreasing LAI in the forward scattering direction due to the increased probabilities of observing 
sunlit foliage from the shaded side through sparse tree crowns. The hotspot is smaller for a sparser canopy 
(lower LAI) because of the increased probability of observing the ground, which has a lower reflectivity 
than the foliage. These model results support the findings of Soffer [32] that the measured reflectance on 
the shaded side of jack pine crowns is considerably larger than the predictions of a Li and Strahler model. 
Black spruce crowns are generally denser and the shaded side appears darker than the jack pine. Our model 
is able to simulate such differences. 

The assumption of random tree distribution is removed at the expense of lengthy mathematical descriptions 
using the combined Neyman and binomial distributions. Apparently, such effort has not been very 
rewarding with regard to its impact on the final BRD results for the stand investigated. Figure 18a shows 
that the Neyman grouping increases the reflectance in the red band only on the forward scattering side near 
the vertical direction. The increased openness of the forest due to the Neyman grouping is the main cause 
of the increase in the modelled reflectance. The Neyman grouping decreases the width of the hotspot 
because a larger m2 gives a smaller Ωt which affects the hotspot kernel for the ground. At large view 

angles, a larger Neyman grouping gives a smaller reflectance because the contribution of the ground to the 
reflectance becomes very small and the tree crown properties dominate at these angles. The change of the 
hotspot width is more important in the NIR than the red band because the Neyman grouping affects the 
proportion of the ground illuminated (PG). Our present simulation is limited to small quadrats with small 

Neyman groupings. More research is needed to determine the grouping effect at larger scales (large 
quadrats with large groupings). 



Sub-canopy architecture is not only important in investigating the BRD of vegetated surfaces but also 
critical in the inversion of the model to obtain biophysical parameters such as leaf area index. Clumping of 
needles within shoots, for example, affects the radiation interception in the plant canopy and hence 
vegetation indices derived from the reflectances in red and near-infrared bands. Grouping of shoots in 
branches also has similar effects. Accurate estimation of LAI from the model requires appropriate 
descriptions of architecture at these sub-canopy levels. 

In this paper, the effect of multiple scattering on BRD is not investigated. Our attention is first given to 
canopy architecture because the first order scattering is usually much larger than the sum of multiple 
scattering and the angular distribution of the multiply scattered radiances is usually considered to be 
isotropic [31]. However, at NIR wavelengths, the multiple scattering effect is larger than that at visible 
wavelengths and the isotropic assumption may lead to some inaccuracies in the BRD results. Such subtle 
differences may have significant effects on the simulated vegetation indices using reflectance factors for 
these two bands. We hold the believe that in modelling the multiple scattering, the canopy architecture is 
foremost important because it dictates the direction of first order scattering and the probability of observing 
the reflecting surfaces at different steps of the scattering sequence. The approaches of Goel et al. [14] and 
Strahler and Jupp [33] in the description of plant canopy architecture have such merits, but forest canopies 
are much more complex than what have been described. The model presented here provides a framework in 
which the effect of canopy architecture at various scales on BRD can be systematically investigated. 
 

7  Conclusion 
In contrast to the turbid-medium type of models suitable for short vegetation canopies without distinct 
foliage structures, geometric-optical models are more appropriate for forest canopies which are usually 
well organised at various scales. Compared with previous 2-scale geometric-optical models, which describe 
trees as randomly-distributed discrete objects containing turbid media, the 4-scale model presented in this 
paper includes the effects of two additional scales of canopy architecture: tree distribution pattern and 
foliage distribution pattern within trees. The 4-scale model simulates closely the measurements of tree 
distribution, canopy gap fraction and the bidirectional reflectance. It is shown in model simulation that the 
architecture within tree crowns has profound effects on the bidirectional reflectance distribution (BRD). 
Tree distribution patterns have small but significant effects on BRD for the stand investigated and may 
have larger effects for more patchy stands. 

In our model, a tree crown consists of conical and cylindrical parts. An effective mathematical scheme is 
devised to estimate the mutual shadowing effect between tree crowns and among foliage elements within 
tree crowns. The canopy gap size distributions between and within tree crowns are used to describe the 
hotspot size and shape. The description, for the first time, closely relates the bidirectional reflection 
behaviour to canopy attributes. 
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List of symbols

  

A Quadrat size

B Domain size (pixel size)

C(θ) G(θ)/sin(θ)

D Number of trees in the domain B

Fas(λ) Accumulated gap size distribution inside tree crowns

Fat(λ) Accumulated gap size distribution between tree crowns

G(θ) Projection of unit leaf area

H Effective height ( Ha + Hb + 1/3 Hc )/cos(θs)

Ha Height of the lower part of the tree (trunk space)

Hb Height of cylinders

Hc Height of cones

Ht Total height of the tree crown (Hc + Hb)

L Leaf area index (LAI)

LH LAI accumulated horizontally (L·s(θ = 90°) )

Lo Mean LAI accumulated over the view or sun path within one tree crown

Ls Clumping-adjusted projected tree crown element area index

Lt Clumping-adjusted projected tree crown area index

m Mean number of trees in a quadrat

m1 Mean number of cluster per quadrat

m2 Cluster mean size

n Number of quadrats in the domain B

PG Probability of seeing illuminated ground area

Pgap (θ) Gap Probability within a tree at the angle θ

Pig Probability of having sunlit ground area

Ps Total shadowing effect



Pvg Probability of seeing the ground (including clusters and overlap)

Pvg−r Probability of seeing the ground (random tree distribution)

Pvg−c Probability of seeing the ground (clustered tree, without overlap)

Pst Probability of seeing tree crown area (1−Pvg)

PT Probability of seeing sunlit trees

Pti Proportion of tree crown surface viewed that is illuminated

Ptj Probability that j trees overlap

Pv Total view overlapping effect

P(x) Poisson distribution

PN(i) Neyman distribution

Ps(λ) Probability of having a gap of size λ in a crown

Pt(λ) Probability of having a tree gap of size λ between trees

Q1tot, Q2tot Probability of seeing sunlit shoots inside the tree crowns (no hotspot consideration)

r Radius of the  crowns

s(θ) Mean path length within a crown

RG Ground reflectivity

RT Foliage reflectivity

RZG Shaded ground  reflectivity

RZT Shaded foliage reflectivity

R Total reflectance (pixel)

Sg Shaded area on the ground produced by one tree

Sgc Shadowed area on the ground produced by the cone part of the tree

Sgb Shadowed area on the ground produced by the cylinder (base) part of the tree

tic tib Tree illuminated surface visible to the viewer

tac tab Tree crown surface visible to the viewer

V Volume of a tree

Vg Ground surface not seen by viewer because of one tree

Vgc Ground surface not seen by viewer because of the cone part of one tree

Ws Mean width of element shadows cast inside tree crowns



Wt Characteristic mean width of tree crowns projected to the ground

α Half apex angle

γs , γv Angle related to the self-shadowing of the cone

γE Needle-to-shoot area ratio

Γ(ξ) First-order scattering (geometric shadow) phase function of the foliage

µ Crown foliage density

ΩE Clumping index for shoots

Ωt Clumping index for trees

λ Gap size

λmin Minimum gap size for having an illuminated surface

φ Relative azimuth angle between the sun and the viewer

θs Solar zenith angle

θv View zenith angle

ξ Angle difference between the sun and the viewer (phase angle)

  
  

 

A  Cone geometry

The computation of the proportion of illuminated area on a cone is done using simple geometry. The area 
of the cone projected to a viewer can be separated into two parts: an ellipse and a triangle. The nine 
schematic representations in Fig. show the typical shaded areas viewed on the cone. The origin of the 
coordinates is always the centre of the ellipse and the x-coordinate of each point stays the same. The ellipse 
is expressed by 

x2 

xA
2

+ 
y2 

r2
= 1, (73)

where xA = r cos(θv); (xA,yA) is point A; and yA = 0. r is the base radius of the cone. For θv ≤α the cone 

area seen is 

tac = π·r ·xA = πr2 cos(θv). (74)



When θv > α, the point B is outside the ellipse. This new area (called tact in the paper) can be easily 

computed by integrating twice from the ellipse to the segment [BD] from 0 to yD:  

tac = πr2 cos(θv) + 2 ⌠ 
⌡

yD 

0

 
 


xA 

r

  ______ 

√r2− y2 −
y−bBD 

mBD

 
 


dy , (75)

where bBD and mBD are the intercept and the slope of the [BD] segment. (xB,yB) denotes point B, which 

is the projected tip of the cone (yB = 0). (xD,yD) is the intercept between the triangle and the ellipse. The 

integral in (75) has an analytical solution. 

When the solar zenith angle θs is less than the apex angle α, self-shadowing on the cone occurs. At nadir, 

the illuminated area is expressed by 

tic = 
 
 


π 

2
+ γ

 
 


r2 ,, (76)

where γ = sin−1 [[(tan(α))/(tan(θs))]] [19]. This is valid for all azimuth angles φ. On the backscattering side 

of the principal plane (Fig. 19a), the shadow can be seen while θv < θs. For θv ≤α we have 

tic = yE ·(xE−xB) + rxA ·[ sin(γ)cos(γ) −γ+π/2 ] (77)

where (xE,yE) denotes point E. xE = xA ·sin(γ+φ) and yE = r·cos(γ+φ) As θv increases, the triangular part 

appears to the viewer. Two shadowed areas can be seen on the triangle part. Outside the principal plane, the 
symmetry does not exist, but the same equations can still be used. The third plate of Fig. 19b shows such a 
case. The computation of the shaded area is an integration of areas inside the ellipse which is separated into 
four parts to facilitate the selection of integral limits. Figure 19b for α > θv > 0 we have the shadowed area 

in three parts of the ellipse, it is calculated as follow:  
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dy.

(78)

The first term is for the area formed by the points E, B, and A, denoted EBA, the second and third are for 
the area ABGC and GFC, respectively. The point G is the intercept of [BF] on y. The area illuminated (tic) 



is found by substracting ( 78) from (75). 

In (78) mBE and bBE are the slope and intercept of [BE] on y defined by the equation of the curve that has 

the 2 points B and E. mBF and bBF have similar definitions. yE and yF do not depend on θv. Once they are 

found at nadir, their values can be apply to other view angle at any given φ. When θv > α, the amount of 

shadowed surface in the triangle is calculated as follows: the integration is like the one in (75). We divide 
the triangle into two parts separated by the x-axis. The areas of the two triangles are: 

⌠ 
⌡

yI 

0
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√r2− y2 −
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dy (79)

and 
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yJ 

0
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dy. (80)

The shadow on the ellipse is, as above, calculated by separating the ellipse into four parts: HOAJ, GOAI, 
FGOK, and EHOK.

Figure 3: Comparison between Poisson and Neyman distribution of various group sizes (m2)

Figure 4: Old black spruce forest, a BOREAS site, near Candle Lake, Saskatchewan, investigated in this 
paper.

Figure 5: Tree crown geometry and the definition of variables

Figure 6: Two gap size accumulation curves measured.

Figure 7: Calculated gap size distributions between (a) and within (b) tree crowns at three solar zenith 
angles.

Figure 8: Geometry determining the hotspot on the ground: the solar beam and the view line coincide 
within the same canopy gap.

Figure 9: Hotspot kernel

Figure 10: Gap probability used in the hotspot modelling

Figure 11: Measured and modelled gap fraction for a black spruce forest

Figure 12: Different components of the model versus m2
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Figure 2: Measured and simulated tree distributions in a boreal jack pine stand (100 x 100m2). Neyman distribution 

                                   (3) with a mean group size of 3 simulates well the measured distribution.



 
                Figure 1: Scales of canopy architecture considered in radiation models



 
Figure 3: Comparison between Poisson and Neyman distribution of various group sizes (m2) with 

an average of 75 trees per quadrat.



 
Figure 4: A photograph of an old black spruce 

forest, near Candle lake, Saskatchewan, Canada, 
investigated in this paper.



 
Figure 5: Tree crown geometry and the definition of variable used.





 
Figure 6: Two gap size accumulation curves measured in the old black spruce 

stand using an optical instrument (TRAC) at two zolar zenith angles. 
In both cases (a) and (b), teh accumulation of the gap fraction resulting 

from gap of various sizes can be separated into two components: 
gaps between (Fat) and within (Fas) tree crowns. The portion of the 

curve in the λ range 10-50 cm is due to branch architecture.





 
Figure 7: Calculated gap size distribution in the black spruce stand at three solar zenith angle: 
(a) between tre crown and (b) inside tree crowns. For the distributions between tree crowns, 

(47) is used with Lt and Wt from (41) and (42), respectively. For the distribution inside tree crowns, 

Lt and Wt are replaced by Ls and Ws, respectively, where Ls is calculated from (45) 

and Ws is taken to 35 mm.



 
Figure 8: Geometry determining the hotspot on the ground due to the co-occurance of illumination and observation within the same gap between 

tree crowns.



 
Figure 10: gap probability used in modeling the probability of observing sunlit 
foliage inside a tree crown from the sunlit side (Q1 for viewer 1) and from the 

shaded side (Q2 for viewer 2)



 
Figure 9:Example of (a) the tree crown and (b) the background hotspot kernel 
for a solar zenith angle of 45° calculated using (51) and (67) with parameters 

given in Table 1.



 
Figure 11: Canopy gap fraction modeled with different Neyman group sizes as compared 

with the measurements from a black spruce forest.





 
Figure 12: Different components of the model versus the Neyman grouping at a view angle of 35° 

in the principal solar plane at a solar zenith angle of 55°.

  





 
Figure 13:Different components of the reflectance in the principal plane at a solar zenith angle of 30°.



 
Figure 14: Comparison of measured and modeled BRD in the principal plane 

for a black spruce in the red band for 9a) SZA = 40°, and (b) SZA = 55°, and in the near infrared band for 
(c) SZA = 40° , and (d) SZA = 60°. The measurements were made by Deering et al. [9].



 
Figure 15: Modeled hemispherical reflectance distributions in the red band at four solar zenith angles.



 
Figure 16:  Modeled hemispherical reflectance distributions in the near-infrared band at four solar zenith angles.



 
Figure 17: effect of foliage density in tree crowns determined by LAI on the BRD in the principal 
plane, (a) red band, (b) near-infrared band. SZA = 35°. in the simulation, the tree density is fixed 

at 4000 stems/ha.



 
Figure 18: Effect of Neyman grouping on the BRD in the principal plane: (a) red band and (b) 

near-infrared band. SZA = 35°.



 
Figure 19: Examples of illuminated cone surface area (tic) at different view angles.



Typos, errors, or changes in papers 

(from published versions)

  

J. M. Chen and S.G. Leblanc. 
A Four-Scale Bidirectional Reflectance Model Based on Canopy Architecture. 

(IEEE TGARS, 1997, vol. 35, pp.1316-1337 )
(1) Equation (34), on page 1322, is not used anymore for the calculation of the mean distance between trees. Instead, the 
mean distance between trees is calculated more accurately with the gap size distribution:

Pt is the gap size distribution between crown (Equation 47) and λ is the gap size. This is more accurate since it depends on 

the non random distribution of crowns simulated by the Neyman distribution. 

(2) Q1tot and Q2tot: basically, Q1tot  (Eq. 58) now uses the same formulation as Q2tot (Eq. 62). Cv and Cs also have been 

slighly changed:

(3) Equation (65) should be:

straby
Pencil



(4) in Equation (45), L =1

S. G. Leblanc, P. Bicheron , J. M. Chen, M. Leroy and J. Cihlar, 
Investigation of directional reflectance in boreal forests using an improved 4-Scale model and airborne 
POLDER Data. 

IEEE TGARS,  Vol. 37, No. 3, pp. 1396-1414, May 1999
(1) The Repulsion function (Fo in the papers, but Fr in this manual) has been modified to accomodate more cases:

Fr(θ) = FFO*exp(-2θ/π(SG(θ)-SG(θ=0))/SG(θ=0))

where FFO is the input repulsion parameter, θ is the view or solar zenith angle, SG is the projection of one crown on the 

ground at the angle  θ.

Wrong graphs for Figure 9 (e) and (f) on page 1407, they should be:

S. G. Leblanc, J. M. Chen and J. Cihlar, 

Directionality of NDVI in Boreal Forest: A Model Simulation of Measurements"
Canadian Journal Remote Sensing, Vol. 23, No. 4, 
December 1997, pp. 369-380.

 

On page 375, some of the shaded reflectivities miss "Z" in the subscripts.
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