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Abstract

Open boreal forests present a challenge in understanding remote sensing signals acquired with various solar
and view geometries. Much research is needed to improve our ability to model the bidirectional reflectance
distribution (BRD) for retrieving the surface information using measurements at afew angles. The
geometric-optical bidirectional reflectance model presented in this paper considers four scales of canopy
architecture: tree groups, tree crowns, branches and shoots. It differs from the Li-Strahler's model in the
following respects:

1) the assumption of random spatial distribution of treesis replaced by the Neyman distribution which is
able to model the patchiness or clumpiness of aforest stand;

2) the multiple mutual shadowing effect between tree crowns is considered using a negative binomial and
the Neyman distribution theory;

3) the effect of the sunlit background is modelled using a canopy gap size distribution function that affects
the magnitude and width of the hotspot;

4) the branch architecture affecting the directional reflectance is smulated using a simple angular radiation
penetration function;

5) the tree crown surface is treated as a complex surface with micro-scal e structures which themselves


straby


generate mutual shadows and a hotspot. All these scales of canopy architecture are shown to have effects
on the directional distribution of the reflected radiance from conifer forests. The model results compare
well with a data set from a boreal spruce forest.

1 Introduction

Solar radiance reflected from the earth's surface is strongly anisotropic and depends on both the sun and
observation directions. Such bidirectional reflection behaviour has been extensively investigated over
various surfaces with remote sensing data (Cihlar et al. [8] and Wu et al. [37]), ground-based measurements
(Deering et a. [10]) and numerical models (see Myneni and Ross [26]). In bidirectional reflectance
distribution (BRD) models, vegetated surfaces are often described as turbid media (Gao [12], Jupp and
Strahler [17], Otterman and Brakke [30] Verhoef [34], Verstraete [35]) that represent well agricultural
crops and grassland. For forests, geometric-optical models (Li and Strahler [21] [22], Strahler and Jupp
[33]) and hybrid-models (Li et al. [23], Nilson and Peterson [29]) combining geometrical and turbid media
have been used. One common challenge for canopy models of all typesisthe difficulty in simulating the
multiple scattering processes within the canopy. Much attention has been given to this problem. The other
major challenge is the effect of plant canopy architecture on radiative transfer processes. This challenge has
not yet been rigorously tackled in the literature athough there have also been quite a few publications on
this problem (Borel et al. [1], Godl et al. [15], Myneni and Ross [26]) in addition to geometric-optical
models. The meaning of architecture here goes beyond the usual angle distribution of leaves. It also
includes the spatial distribution patterns of leaves and higher-level structures such as shoots, branches and
trees. Architecture at all levelsin a plant canopy affects not only the transmission of the solar beam through
the canopy, but aso the multiple scattering processes contributing to the observed radiances. In forest
stands, for example, the number of multiple scattering events between tree crowns is undoubtedly much
smaller than between leaves, and the modelling methodol ogy would be exceedingly complex and depend
on the treatment of the canopy architecture. In the modelling effort presented here, the attention is first
given to a detailed mathematical descriptions of the canopy architecture at various levels.

InLi and Strahler's BRD models [22], aforest stand is assumed to consist of randomly-distributed objects
containing leaves as turbid media. These two-scale models mark a major advancement in simulating
radiation regimes in forest stands as compared with the one-scale turbid-media models, but also
dramatically increase the complexity of the models. However, two-scale models may be regarded as much
simplified mathematical descriptions of the physical redlity. First, trees are generally not randomly
distributed in space but are usually clustered at |arge scales due to variations in the soil and topographic
conditions, creating patchiness of forest stands. They are al'so not randomly positioned when close to each
other because of the natural repulsion effect in competition for resources (Franklin et a. [11]). Second,
leaves are not randomly distributed within tree crowns. In conifer stands, for example, needles are grouped
into shoots, branches and whirls, and al these sub-canopy structures are important in determining the
radiation regime, especially the directional reflectance. In the present paper, these two additional scales of
plant canopy architecture are considered. Figure 1 shows the concept of the different radiation transfer
models based on canopy architecture at several scales. The objective of this paper isto present the first four-
scale BRD model for the purpose of investigating the effect of the different architectural scales on the
directional reflection behaviour of plant canopies.



2 Model description

A BRD model computes the percentage of incident radiation that is reflected by aforest in various
directions. It is the proportions of the sunlit and shadowed areas of foliage and ground that are used to
determine the BRD. Our model contains several “modules’, each with specific tasks. The first module
constructs the forest. It includes the spatial distribution of trees within a modelling domain and the macro-
scale geometry of the trees. By considering the tree crown geometry, the shadowed and illuminated areas
of an isolated tree are calculated, and by combining the geometry and tree distribution, the gap fraction and
gap size distribution of the canopy are computed as functions of solar or view zenith angle. The gap size
distribution is then used to model the hotspot effect. The hotspot occurs on both the tree crowns and the
ground. The mathematical treatments on the canopy architecture are presented bel ow.

2.1 Tree distribution

BRD models based on discrete canopy structures usually assume that trees are randomly distributed within
aspatial domain. This distribution is described using the Poisson theory:
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where m is the average value of the number of objects (in our case, trees) in a sub-domain called quadrat,
and P(X) is the probability of finding x objects in the sub-domain. However, in reality, trees are generally
not randomly distributed but rather grouped together in various ways. M easurements from a boreal jack
pine stand (Fig. 2) show an obvious deviation of the tree distribution from Poisson's random casg, i.e. the
number of quadrats having a certain number of treesis distributed narrowly around the mean number of
trees per quadrat while the measured distribution is much broader. The Poisson tree distribution isin fact
an averaging process. as the quadrat size (or the mean number of trees per quadrat) increases trees become
more evenly distributed among the various quadrats. The application of this process to represent reality
requires aforest stand to be uniform at both small and large scales. However, variations in environmental
conditions such as topography, soil and sucessional processes often make trees irregularly distributed,
forming patches at various scales. The simple Poisson theory isincapable of describing such patchiness.
Nilson and Peterson [29] made a correction to the Poisson theory to model non-randomness of tree
distribution. Neyman [27] (with application to geography by Getis and Boot [13]) developed a method for

describing the contagious distribution of larvae. This method called Neyman type A has been used by
Franklin et al.[11] for the investigation of tree distributions. It assumes that trees are first combined in
groups and the spatial distribution of the centre of a group follows the Poisson process. The mean size of
the groupsis a required model input depending on the degree of clumping of trees. Centred around a given
mean group size, there are also probabilities for other group sizes determined again by the Poisson theory.
Hence, the Neyman type A distribution can also be called the double-Poisson distribution. For the
convenience of mathematical description, agroup must fall completely into a quadrat with the centre of the
group. The size of the quadrat denoted by A, used in the model, should represent the extent of radiation
interaction between trees, i.e., the horizontally-projected path length of a solar beam through the canopy.



The modelling domain is equivalent to the size of a pixel in remote sensing. In selecting the quadrat size
there is also a computational constraint: the larger the group, the larger should be the quadrat. For a 100 x
100 m2 domain with 3000 trees, for example, it is preferable to divide the domain into at least 10 quadrats
to avoid overly populated quadrats that could be difficult to handle numerically.

According to the conditional probability theory, the probability of having i trees givenj groupsin a
quadrat, P(ij), times the probability of having j groups in the quadrat, P(j), gives the probability of having i
treesin the quadrat given j groups. The probability of having i trees in the quadrat, P(i), is the summation
of all the conditional probabilitiesfor j:
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Is the cluster mean size. m = m; m, isthe mean and v = m; my[1+m,] is the variance of the distribution of

the number of trees per quadrat and can be measured in areal forest stand. In creating this distribution, the
following implicit assumptions are used [13]: Within the modelling domain each quadrat is equally likely

to receive a cluster and the placement of a cluster isindependent of the placement of any other clusters.

1) The parameter m, corresponds to a priori value of the density of a cluster and m, corresponds to a priori

value of the mean size of clusters (optional).

2) In conformity with a Poisson model the variance about the mean size of cluster is equal to the mean size
of cluster.

3) The assignment of a cluster size to one location is independent of the assignment of any other cluster
size or cluster location (optional).

4) The pointsin acluster are propagated by a "progenitor' who islocated at the site of each cluster (pseudo-
contagious assumption).



If the real distribution is not known, m, will be fixed at alow value ( m, = 1 implies atree distribution
close to the random case). Comparison with field datawill later determine the values for those parameters.

Figure 3 shows arandom tree distribution (Poisson) in comparison with Neyman distributions with the
mean grouping m, of 1, 5, and 20 trees per group. In the calculation, the average density was 75 trees per
quadrat (1500 trees/ha with 20 quadrats of 500 m?2 each). Groupings of 1 and 5 produce distributions
centred at 75 and increase the standard deviation from the random case. m, = 1 means that the grouping is

mostly random (group of one) but it contains probabilities of having groups of two trees or more and
therefore has a broader distribution than the random case. If the group size istoo large compared to the
overall mean (m), the Neyman distribution becomes variable with peaks at multiples of that size. Asa
result, the curve for m, = 20 in Fig. 3 shows maxima at 20, 40, and 60 trees per quadrat. Ati = 0, the
number of quadrats (having no trees) increases with group size, suggesting that for larger group sizes, the
probability of having empty quadrats is greater. In Fig. 2, measurements from ajack pine forest are

compared with the Poisson and Neyman distributions. The domain studied was one hectare with 1793 trees
divided into 100 quadrats. A Neyman distribution with grouping of 3 simulates the measurements more
closely than the Poisson theory. Processes other than Neyman could be used in thiskind of analysis. For its
simplicity and for the first analysis of tree clumping in forest canopies, only the Neyman, i.e., the double-
Poisson processis used in this paper.

2.2 Tree crown projection

Conifer tree crowns have been modelled with a cone shape by Li and Strahler [19]. Nilson and Peterson
[29] added a cylinder below the conein their ssimulations. A photograph taken in a mature black spruce
stand near Candle L ake, Saskatchewan, Canada (Figure 4), shows that the trees essentially have a

cylindrical shape with a conical top. In our model, atree crown is then assumed to consist of acone and a
cylinder. In common with Li and Strahler's [19] model, the conical part is described with two factors: its

radius (r) and its half apex angle (a). In this paper, all trees have the same half apex angle (a = 13°) .
Figure 5 shows how atree crown is modelled. Hy, is the height of the cylinder. The height of the coneis

defined by its apex angle and the radius of the tree: H; = r/tan(a). The total height of the tree crownisH; =
Hp + He.

A cone casts a shadow on the ground in addition to the cylinder beneath it only if the solar zenith angleis
larger than one-half of the apex angle. This shadow areais expressed as[19]:
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wherey; (see Fig. 5) is defined as
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where 65 is the solar zenith angle. The shadow cast by the cylinder on the ground has an area given by
2tan(qgHp r . (8)

To obtain the total area of atree projected on the ground surface, the base of the tree, a disc, should also be
included:

ne ©)
In this model, the cylinders can either rest on the ground surface or have their bases elevated to the same

height (H,). Since the lower part of aforest is generally atrunk space without much foliage, it is more

realistic to elevate the bases, i.e. to have the crown "“on a stick”. In our model, the height of tree crown base
affects the contribution of the ground surface to the hotspot. The summation of (6), (8) and (9) givesthe

total areawithin the outline of atree crown projected on the ground surface :
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This projected area can be used to find the ground area not seen by aviewer, if the viewer isfar enough so
that the parallax won't change the view. For this reason, we only need to replace 6 in (10) with 6,,. This

quantity is denoted by Vg, which is the area on the ground covered by opague crowns in the viewer's
direction:
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After calculating the shadow areathat a single tree casts on the ground, the sunlit crown proportion seen by
the viewer is computed from the total surface area of the tree visible to the viewer projected to a plane
perpendicular to the view line. For the cylinder we have

ty = 2rsin(8,)Hy, . (12)

The total tree surface area projected on a plane perpendicular to the view lineis
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toct Of (13) is described in Appendix A.

For cylinders, the self-shadowing and illumination geometry are very simple: half the surface isilluminated
and half in shadow. The illumination part seen by the viewer isthen
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where @ is the azimuth angle difference between the sun and the viewer. The sunlit part of acone seen by a
viewer, denoted t;., cannot be easily expressed in asimple equation, but is described in Appendix A. This

quantity depends on the apex angle of the trees and the positions of the sun and the viewer. If ggis smaller
than a, no self-shadow occurs on the cone, but as 8¢ gets larger than a, a portion of the cone is shaded. The
proportion of the tree that is illuminated and seen by the viewer (P;;) can be found by adding the areas
illuminated and dividing by the total surface area of the tree presented to the viewer. However, the
contributions from both the cone and the cylinder part of atree must be included. Thus

tic * tip

Py = : (15)
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2.3 Canopy gap fraction

The canopy gap fraction determines the contribution of the underlying surface to the reflectance measured
above the canopy. It is based on the method described above for calculating the shadow area. If the trees
are distributed randomly within the domain and the tree crowns are opaque, the probability of seeing the
ground is

O VgO
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where D isthe number of treesin the domain B and A = B/nisaquadrat. By definition there are n quadrats
in the domain. If the trees are clustered, the probability Py(i), found in (3), is used to compute this effect.

We have
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where i isthe number of treesin A, and Py(i) isthe probability of having i treesin A. In this equation, gaps
within tree crown are not considered. P, represents the ground that can be seen between tree crowns. If

we allow gapsin crowns and overlapping of crowns to occur, (17) becomes
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is the gap probability (depending on 6,) inside the trees, and Py;(V ), the probability of having j trees
intercepting the view line is calculated with a negative binomial:
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where Py(i) is the Neyman distribution (3) and K is an integer which should be large enough to consider all
overlapping of the treesin a quadrat. It must correspond to Py(K) = 0 or Py = (V) = 0. In this paper, k =
350. Inthe case of | = 0, Py isequal to (17). Likewise the probability of the ground surface being
illuminated, P;y, can be found by replacing V4 by Sy and 8,, by 6. In real forests, trees found in clusters are
usually smaller than the average tree size. In one quadrat, we have m = mym, = D/n trees on average. The

model assumes that for the probability of having more than m trees in a quadrat, the size of the trees will
decrease inversely with the number of trees per quadrat:

Vgi = ngll (21)

With the setting used in the first section, m = 75, the probability of having 100 treesin a quadrat, the
individual tree shadow areais reduced by 75%. For i less than or equal to 75 all trees have the same size.

The gap probability, Pya(0), is well known for a continuous medium [28]. For a discontinuous canopy, we
use an equation similar to Li and Strahler [21] but modified to consider the foliage clumping effect [4]:

Pyap(8) = €7C(OLo Qele (22)



Lo=p = (23)

and
m= L/[V-D/B] (24)
isthe foliage density, and
V
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S(as) cos(ay)
is the mean path length of the solar beam through atree. V is the volume contained within the tree crown
outline, D/B is the number of trees per m2, Weis a clumping index of the shoots within tree crowns [4], L is
the leaf areaindex (LAI) defined as half the total needle area per unit ground surface area[4].

(22) gives the probability of the solar beam passing through a single tree. Using q,, instead of g gives the

probability of seeing the background through a single tree. For a canopy with arandom foliage angle
distribution, G(qg) = 0.5. For canopies with branch architecture [3], G(q) = a- bg, where aand b are positive

constants. Adding a gap probability to tree crowns gives less shadow on the ground and more ground area
seen by the viewer.

3 Mutual shadowing effect

At large g, values, aviewer sees mostly the upper part of the trees. Without considering the height-
dependent mutual shadowing effect, the model will underestimate the proportion of sunlit canopy Py in

view because the illuminated top part is less likely in shadow. In this version of our model, we only
separate a tree crown into two parts. cone and cylinder, and cal culate the mutual shadow effects for these
two partsin two steps. In step one, the mutual shadowing effects among the cones can be found by
allowing the projected conical areasto overlap. The probability of cone overlapping is obtained by
summing (20) from j = 2 to K, based on the shadow area of a cone cast on the ground in the sun's direction
(§c) and in the viewer's direction (V).

k
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is the overlapping probability for Sy and
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is the overlapping probability for V.. In 26 and (27), 1—Pgap(ev)i is multiplied to discount the gaps within



the crowns. In step two, the mutual shadowing effects on the cylindrical part are calculated as the
difference between the total overlapping and the cone overlapping. The total overlapping effects, denoted
by Psand P, are calculated by replacing Sy and Vo with Sy and V in (26) and (27), where Sy and Vy are
the ground shadow areas of a single tree crown in the sun's and viewer's directions, respectively. After
weighting the overlapping probabilities of the crown and cylinder parts by their respective areas, the
mutual shadowing effects for the cylindrical (base) part are then:

Ps'sg B Psc'sgc
Py = (28)
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where Sy, and V g, are the projected areas on the ground in the sun and view directions, respectively. For

the calculation of the probability of viewing the sunlit portion of tree crowns, the quantities needed are the
proportions of the tree crowns that are not overlapped under the various scenarios, i.e.

Qg = 1-Pg, (30)
Que=1-Pyc, (31)
Qs = 1Py, (32)
Qup=1-Pyp - (33)

If the illumination and viewing directions are far apart, Q. and Q,, aswell as Qg, and Q,y,, are considered
to be independent. The products of the pairs, i.e. Q¢ ‘Qg and Q,, -Qq,, are the probabilities of actually
seeing the illuminated part of the cones and cylinders, respectively. We must multiply t;,, the illuminated
areaof onetree, by Q,p, -Qg in (15), and tj. by Q, Qg and t; and ty, in the same equation are multiplied
by Q,c and Q,,, respectively, to obtain the actual areas of the conical and cylindrical parts of one tree seen
by aviewer.

Near the principal plane on the backscatter side, the illumination and observation of a sunlit area can occur
in the same gap in the canopy. In such a case, the processes of illumination and viewing are correlated. The
angle range over which the correlation occurs depends on the tree size and the average tree spacing. A
function f(¢), depending on the difference in the azimuth angle between the sun and the viewer, is used to
consider this correlation effect. Using the mean distance between tree centres [] calculated by:
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we can determine the azimuthal angle range within which overlapping of one tree with the other occursin
both the illumination and view directions:

2r
tan(6g) = : (35)
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A linear equation is used between @ =0 and @ = Og:
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where f(¢) is a kernel with non zero values only when 0 < @ < 8. The overall mutual shadowing effects,
Q. and Qy, for the conical and cylindrical parts, respectively, are then given by

Q¢ = Que Qsc * F(P)[Qsvc=Quc Qs (37)
and
Qp = Qub Qs H(9) [Qsyb=Qub Qsul (38)

where Qg is the minimum of Qg and Q,,., and Qg is the minimum of Qg, and Qg,. With considerations
of these mutual shadowing effects, the probability of seeing illuminated tree crowns becomes
Qc tic + Qp tip
Py = : (39)
ch tac + va tab
Much of the complexity of the mutual shadow calculations arises from the fact that the conical and the
cylindrical parts have different geometry and have to be separately modelled. Since conifer trees are better
represented using the combination of these two parts than the single cone shape, we believe that the

formulation presented above is an improvement over previous models based on cone geometry when used
for conifer forests.




4 Canopy gap size and hotspot

The hotspot is a phenomenon that occurs when the observation and the illumination directions coincide
within the same canopy gap [16]. At the hotspot, the viewer sees either sunlit foliage or the sunlit

background, resulting in large observed reflectance factors. In this case, the probability of seeing the
ground, Pq, isequal to the probability of having the ground illuminated, P;g, and the probability of seeing
tree crowns, Py = 1-P, 4, isequal to 1-P;4. Asthe viewer moves away from the hotspot, the view line and
the solar beam are less likely to fall in the same canopy gap and P,y and P, gradually become independent
of each other. The product of the pair (P, and P, ) then determines the probability of seeing the sunlit
ground. However, around the hotspot, such ssmple calculations are invalid because of the correlation of

these two processes. The importance of the correlation in determining the hotspot has been investigated by
many modellersincluding Kuusk [18], who devised a correlation function based on the leaf size. We found

that leaf sizeisirrelevant for the correlation in conifer canopies. Nilson and Peterson [29] used a

correlation based on a characteristic gap size. In the present paper, we introduce a canopy gap size
distribution function for the calculation of the correlation. The function closely relates the hotspot to the
canopy attributes.

The theory of gap size distribution in plant canopies was first derived by Miller and Norman [25] and
further investigated by Chen and Black [5] and Chen and Cihlar [6]. The accumulated gap size distribution
can be calculated from:

O A O
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for gaps = A, where W, is the characteristic width of atree crown projected on the ground; and L; is the

clumping-adjusted projected tree crown areaindex. This formulation is made according to the finding of
Chen and Cihlar [7] that alarge part of the gap size distribution curve measured in boreal forestsis

determined by tree crowns as discrete objects. W; and L; are computed as follows:

Wi = \/gg : (41)
and
L= S,D/B, (42)

where Sy isthe area of atree crown projected on the ground in the sun's direction and € is atree clumping
index, determined by the Neyman distribution as

W, = log(Pig(Neyman))/log(P;(Poisson)) (43)

It is 0.95 obtained from simulation with a Neyman grouping of 4 for aforest with 4000 stems per hectare
divided into 25 quadrats.



Similar to (40), adistribution for gaps inside crowns can be computed where the shoots are taken as the
foliage elements:

O A O
Fal(l) = Ol+Ls— Qe L4THMNWS (44)
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where
G(6)QE L
Ls= ——— (45)
Ye cos(8y)

is the clumping-adjusted foliage area index and the characteristic width of the foliage elementsis

W isaclumping index for the effect of confining shoots within tree crowns; ge is the needle-to-shoot area
ratio quantifying the effect of needle grouping in shoots on the radiation interception; and A4 is the average

shoot projected area. According to Chen [2], for the black spruce stand investigated in this paper, L = 4.5,

G(qg) = 0.5, We=0.70, g = 1.41 and W5 = 35 mm. Only very small gaps are computed inside trees, but they
contribute significantly to the total canopy gap fraction because of their large numbers. In the calculation of

the hotspot, these small gaps are of critical importance in determining the shape of the hotspot.

[small modifications: equation (45) is use with LAI=1; Wgis modified in the code since TRAC

measurements include clumping between crowns. The clumping is reduced by half, e.g. 0.70 becomes
0.85]

Table 1.
Hy 0.5m
Hy 6.5m
Radius of crown 0.45m
G(q) 0.5
LAI 4.5
Domain 1 ha
Density 4000 tress/ha
Quadrat size 400 m?




Neyman grouping
a
9%
We
WS
Rg (red)
Ry (red)
Rz(red)
Rzr(red)
Rg (nir)
Ry (nir)
Rzg(nir)

Rzr(nir)

130
141
0.70

0.035
0.06
0.13

0.006

0.01
0.20
0.53
0.05
0.08

Figure 6 shows accumulated gap size distributions measured along a 300 m transect in the black spruce
forest [2]. The measured gap size distribution can be separated into two parts. between and within the tree
crowns. (40) and (44) are used to simul ate these two parts respectively. The parameters used in (40) and
(44) arethose found in Table 1 except W, that was fixed at 1.4 m to reflect the typical width of tree crowns

encountered on the transect at about 45° to the sun. The characteristic width W, for black spruce shoots was
measured to be three cm. Same W, and W values were used for both gap size distributions, i.e., Figs. 6(a)
and (b). In both cases, the contributions of gaps between and within tree crowns to the measured gap size
distributions are distinct, but there is a portion of the distribution curve in the range of 10-50 cm which can

not be fitted using the crown and shoot attributes. This out-lying portion is aresult of the branch
architecture because the gaps between branches are larger than those between shoots but smaller than those

between tree crowns.




4.1 Hotspot between crowns

F,i(1 ) and F (I ) are quantities that can be measured directly in aforest canopy. From the measurements of
Fai(l ) and F (I ) the following gap size distribution can be derived:

Pyl ) = e LA+ W] (47)

Py(I') is defined as the probability of ahorizontal probe of length A falling completely within a gap between

tree crowns. This gap size distribution between tree crowns is important in determining the contribution of
the ground surface to the hotspot. Figure 7(a) shows how Py(l ) varieswith | at different solar zenith

angles. For the calculation of the hotspot kernel for the ground, a gap number density function is used,
which is defines as
dPy(l) Lt
Ni(l ) = = —— = — e Ld 1+ /W], (48)
dl W
The probability P5 of observing the sunlit ground under the tree crowns can then be written in the general
form:

I:)G = I:)igpvg“" [Pig' I:)ig I:)vg] Ft(x)’ (49)

where F;(x) is a hotspot kernel, which is unity at the hotspot and zero when the illumination and view
angles are far apart, and x is the angle between the sun and the viewer determined by cos(x) = cos(qy)
cos(qy) + sin(gg)sin(q,)cos(f ). The first term on the right hand side of (49) is the probability of observing
the sunlit ground when P;g and P, are not correlated, i.e., the viewer sees the sunlit ground through a gap

different from that of illumination. The second term gives the additional probability resulting from the
correlation. Figure 8 shows how a gap of certain size contributes to the hotspot kernel. The angle rangein

which the viewer can see the sunlit ground through the same gap as the illumination is determined by the
gap size and the effective height of the gap column that depends on the view zenith angle. For one gap of
size A, we have the hotspot function:

§
Fi(€) = 1- ——. (50)
tan=1(l /H)
where H = [H +H,+H/3]/cos(By). For the whole canopy containing multiple gaps of different sizeswith a
number density of N(A), the hotspot function is obtained through the following integration:
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For a given angle difference between the sun and the viewer, there isaminimum gap size A, in which the
view line penetrates through the same gap as the solar beam. It is determined by

Amin = H tan(€). (52)
The ground reflectance is assumed to be isotropic in this paper.
4.2 Hotspot within tree crowns

In the estimation of the hotspot within the tree crown, a gap size distribution within individual tree crowns
isused. In previous geometric-optical models, the imaginary tree crown surface has been treated as a
smooth surface in the calculation of the hotspot [22]. Some more elaborate models have dealt with the
crowns as object containing turbid media with multiscattering [29][23]. Since shadows can be observed on
the sunlit side of real tree crowns, the micro-scale structures within tree crowns have important
contributions to the hotspot, modifying the hotspot shape and magnitude. An important structure within
conifer trees is the shoots, which are the basic collections of needles. Needles are grouped tightly in shoots,
which allow little radiation penetration and can be treated as the basic foliage units for radiation modelling
[7]. Similar to the distribution between crowns, a gap size distribution within the crown is used to calculate
the gap number density function:

dPgA) Ls
= — e LJIHA/(WII. (53)
d\ W

Ng(A) =—

The formulation presented above has implications on the inversion of the model for leaf areaindex because
the micro-scale structures within the tree crowns affect the BRD and cannot be ignored.

In computing the hotspot within the tree crowns, the self-shadowing and the vertical tree crown structure
must be considered. Discontinuities in mathematical expressions are found at nadir or the boundary
between sunlit and shaded sides of a crown. Therefore, we treat the two sides separately. On the sunlit side,
the probability of seeing the illuminated foliage Py at the hotspot is simply 1 - P, i.e. the viewer sees
either the sunlit ground or the sunlit foliage. Considerable complication arises when we treat the tree crown
surface as a complex surface with micro-scale structures. In this case, aview line can penetrate into the
depth of the crown and reach to the shaded foliage behind the sunlit part even though the imaginary tree
crown surface is theoretically sunlit. The problem may be understood in the extreme cases: 1) atree crown
isvery dense - the imaginary surface can reasonably represent the tree crown, and 2) atree crownisvery



sparse - the imaginary surface ceases to have meaning. The reality isin between these two extremes, i.e.
the imaginary surface exists but is unsmooth or complex. In this case, the effect of mutual shadowing
among foliage elements within a tree crown cannot be ignored.

Figure 10 shows the physicsinvolved in the determination of the hotspot within atree crown, where atree

isconsidered as a vertical structure with spherical foliage elements (shoots) dispersed within it. Using L(x)
asthe accumulated LAI from the imaginary surface to a given location x within the crown, the accumul ated

sunlit leaf areafrom 0 to L(x) is 1~ CsL(X), where C, = G(89) Q/ye sin(6s + a) to take into account the

cone inclination and the vertical structure. At position X, the increment of sunlit leaf areawith increasing
L(x)is

d
[1-eCsLX)] = C e CsL(¥) (54)
dL(x)
Similarly, the increment of leaf area seen after dL(x) is
d
[1-e G L] =C, e & LX), (55)
dL(x)

If we denote Ly, as the leaf areaindex accumulated horizontally from the sunlit side to the shaded side, the
total probability of viewing sunlit leaf areafrom Oto Ly isthen

L
Quln) =T (&) J[ ’ C, Ce G e CL () dL(x)
0
56
0CCy O (50)

= ()[1- eLr(Cs+C)] O 0
0Cs +Cy O

where ' (§) isthe first-order scattering (geometric shadow) phase function of the foliage elements. It is
defined as

O CpE O
r¢)= 01-—10o (57)
l T U

where C,, is a coefficient determined by the optical properties of foliage elements. If the elements are solid
spheres with a Lambertian surface, C,, is unity, resulting in the phase function being 1.0at § =0,0.5a § =

w2 and O at € = 1t The phase function in this case gives the proportion of the sunlit sphere surface seen by
the viewer. Although a conifer shoot can be approximated by a sphere to describe the projected area[2], it

can not be treated as a solid because of the gaps within it. The value of C,, for porous elements is smaller
than unity. Because of lack of data, we assume that C,, = 0.75 in this paper. This constant is found to affect
the sharpness of the hotspot. Q; must be calculated for all trees, it gives:



K

Q1 tot = Z Q10 -Ln)-Py(Vy) (58)
j=1
where P;(V ) is the probability of aview line going through j tree crowns calculated by (20).

[Q110t IS NO longer computed with (58). It uses the same reasonning as Qo] On the shaded side, the

probability of observing sunlit leaves also exists, especially in canopies with sparse tree crowns. The
increment of sunlit leaf area along the sun's direction is calculated using (54), but the increment of leaf area

viewed from the opposite side is calculated differently as follows:
d

[1-eCulLu—L())] = -C,, e CulLuL (), (59)
dL(x)

At agiven depth x, the probability of observing sunlit foliageis
[(€)Cs e CsLM(-C, e Culbn L)), (60)
After integration from L, to O across the tree crown, the overall probability becomes
0 CyéO 0CLCy O
Qo(Ly) = 01- — O[eCstr— e Ciln] O 0. (61)
0 m 0O OG- GO

This phenomenon must be considered on each tree along the path of view. On thefirst tree, it issimply
Qo(Lp)- For i treesaong the pathitis:

K

Q2 tot = QoL h) Pyli) K(i) (62)
where
Pyt (i) = Py(i) Pa(i—1) Pyan71(8y). (63)
in which
K
Px(i) = z Pi(Vg)- (64)

j=i
P4(i) represents the probability of having i trees within one path. The probability of seeing theith tree
behind i—1 treesis found by the probability of having i—1 tree overlapping, P4(i—1), times the probability
of passing through i—1 trees, Pgapi‘l(ev). Asthe view line penetrates through the forest, it reaches the lower

portion of the canopy where shaded foliage is more likely to be observed. For the ith tree on the path, this
height attenuation is considered by



K(i) = e Ge(6,) ©0s(8,)/cos(8y). (65)
With the proportion of sunlit and shaded tree crown as P;; and (1-P;;) respectively, we can then calculate
the probability of seeing the illuminated foliage as follows:

Pri = Py Q1 tot + [1-Pi] - Q2 tot- (66)
Thisequation isonly valid far from the hotspot. A hotspot function, similar to (51), can also be defined.
F4(&) follows the same principles as F(&) but it involves foliage elements (shoots) instead of tree crowns.

o [ & [
[ 01— — ONgA) dl
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F(€) = : (67)
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where Hg is the effective distance between two layers of |eavesinside atree crown. In our model, it is
inversely proportional to the leaf areadensity in thetree crownor L, i.e.
r

HS: . (68)
I-O
where r is the tree crown radius. This definition produces sharper hotspots in canopies with sparser tree
crowns. After considering the hotspot on tree crowns, the overall probability of observing sunlit foliageis

Pt = Pt + [(1- Pig)- PrilF«(X) - (69)

This gives P outside of the hotspot where F4(x) = 0 and (1-P;g) at the centre of the hotspot where F¢(x) =
1. Figure 9 shows examples of the hotspot kernel calculated using (51) and (67) aong the principal solar
plane at asolar zenith angle of 45°. Asthe first approximation, the shape of the kernel isthe samein all
directions, i.e., the hotspot has a circular shape.

4.3 Canopy reflectance

For estimating the first order scattering, the model computes the various components: sunlit foliage (Py),
sunlit ground (Pg), shaded foliage (1-P,,4- Py) and the shaded ground (P4 - Pg). If direct solar beams are

the sole source of illumination and no multiple scattering occurs, only the first two components are
responsible for the reflectance of the canopy. However, since the diffuse radiation from the sky is
considerable compared with the direct radiation and the multiple scattering is also inevitable, the shaded
components cannot be ignored. These components are considered in our model by assigning the
appropriate reflectivities to them as follows:

Rz = Ch Fat Ry (70)

and



Rz = Cm ‘Fag ‘Ras (71)
where Rt and R, are the reflectivities for shaded foliage and ground, respectively; Ry and R, are the
reflectivities for sunlit foliage and ground, respectively; Fq and Fyq are the fractions of diffuse irradiance
in the total incoming solar irradiance above and below the stand, respectively; and C,,,isamultiple-
scattering factor. Rt and R, can also be measured directly from aforest stand.
The total canopy reflectanceis

r = Ry P+ Rg -Pg + Rop Z1 + Ryg Zs, (72)

where Zt = 1- Py4- Py and Zg = Pq - Pg. All these reflectivities are wavelength dependent. In modelling
canopy reflectance in red and near-infrared bands, (72) is used with a different value for each reflectivity.

5 Model results

5.1 Effect of Neyman grouping

The model first computes the canopy gap fraction P, (18). Measurements from a boreal black spruce
forest were used to validate the computation. According to Chen [2], the following values are used: 4000
for the tree density (stems per hectare), 6.5 m for the average tree height, 4.5 for LAI, and 0.45 m for the
crown radius. The quadrat sizeisfixed at 400 m2, having an average of 200 trees per quadrat. Figure 11
shows P, distributions cal culated using the Poisson model and the Neyman model with groupings of 4, 12,
and 24. Near the vertical view direction, the different sizes of Neyman grouping do not have much effect
because the forest is very open. The effect of the grouping is more pronounced for g, between 15° and 60°.
The best fits are found with small Neyman groups. An analysis of 24 quadrats of 10x10 m2 each measured
in black spruce stands gives m, = 2 calculated with (5), but when grouped into six 400 m2 quadrats, m, = 4.
A grouping of 4 isused in al simulations unless noted otherwise.

The measured gap fraction data at large zenith angles are positively biased because of the effect of multiple
scattering on the measurements using an optical instrument [2]. The modelled curves all show a sharp
increase near the vertical direction because of the simple geometry to represent the tree crown and
overlapping of the crowns without considering the repulsion effect. This creates unsmoothness of the
model results at the nadir as shown later. In redlity, the tree crown geometry is more variable and the
reflectance distribution are usually smoother around nadir.

To understand the effect of the Neyman grouping, Fig. 12 shows different components of the model for a

range of m, values from 1 to 50 at g, = 30", g5 =55 and f = 0. The grouping of trees produces alarger gap

fraction because it increases the probability of having quadrats with few trees. With the increasing
grouping size, the proportion of canopy illuminated (Py;) decreases, and so does the probability of seeing a

tree illuminated (P). Thisis mainly because of the increase in the gap fraction. In accordance with P, the
probability of seeing the illuminated ground surface (Pg) increases. Red and near infra-red reflectances
decrease with the Neyman grouping because ground reflectivity islow compared to the crown reflectivity.



5.2 BRD and hotspot

The plotsin Fig. 13 were computed using the same inputsasin Fig. 12 and the reflectivities summarised
in table 1. Based on measured spectra (White et al. [36], Middleton et al. [24], Soffer [32]) , R; = 0.06 and
Ry = 0.13 for the red band and Rg = 0.20 and Rt = 0.53 for the near-infrared band. The ground reflectivity

in the red band is smaller than that of leaves even though the overall reflectivity of the stand is lower than
the ground reflectivity because of the shadow components in the stand. Using (70) and (71) we can

attribute the appropriate reflectivities to the shaded tree crown and ground surfaces. Because of the small
contributions from shaded ground and crowns, we use constant multiscatterring factors, leading to C,, -F;

=0.08 and Cy, -Fgq = 0.10 for the red band and Cyy, -F = 0.15 and Cyy, -F g = 0.25 for the near infra-red
band. The six plotsin Fig. 13 show the same components asthose in Fig. 12 but as distributions against 6,,

on the principal solar plane at 6, = 35°. For the view angle 8,,, we use the following sign convention:
negative for backscatter and positive for forwardscatter. Figure 13a shows the gap fraction versus the view
zenith angle for aNeyman grouping of 4. Figure 13b is the proportion of the imaginary tree crown surface
seen by the viewer that isilluminated. From 6, = —90° to =35’ it equal's unity, meaning that all tree crowns
imaginary surfacein view areilluminated in the principal solar plane. At nadir (6, = 0), thereisa
discontinuity because the viewer can only see the cone part of the tree crown which is mostly illuminated.
On the backscattering side, P,; decreases near the vertical direction because the viewer can see the lower
part of the cylinder that is shaded by other cylinders. On the fowardscattering side, the cylinder is
completely shaded, and as g, increases, more of the shaded cylinder occupiesthe view. At very large g,

values, the conical part dominates the view, and the proportion of thetree in view that isilluminated
increases because more than half of the cone surface is usually sunlit. Figure 13c represents the probability

of seeing illuminated foliage within tree crowns. It includes the probability of observing sunlit foliage from
the shaded side and the hotspot effect on the illuminated side. A pronounced hotspot peak is computed at g,

= 35". Figure 13d is the probability of seeing the ground illuminated by the sun. The bi-module distribution
pattern results from the peaks at the hotspot and at nadir. The peak at the nadir is due to the largest gap
probability at that angle. The other peak at the hotspot is obtained after the introduction of the hotspot
function (51), otherwise the P curve would be symmetric about the centre. At the hotspot, all the ground
areasin view areilluminated, and the value of Pg issimply P4 a the same angle (0.35 at g, = 35°). Figs.
13e and 13f describe the BRD in the red and near-infrared bands. Both distributions resemble the
probability of seeing illuminated foliage (P1) because of the large Pt values and the large reflectivity

values for the foliage. Although the magnitudes of the red and near-infrared reflectances are very different,
the shapes of the distributions are remarkably similar because only the first-order scattering is considered in
the calculation and the multiple scattering effects are included as invariant offsets. However, there are
subtle differences in the shapes due to the different foliage and ground reflectivity combinations with P

and Pg. These small differences have implications on the angular distribution of vegetation indices
calculated from the two bands and deserve further investigation.

Comparisons of the model results were made with measurements of a boreal black spruce forest [9].



Figures 14a and 14b show the calculated and measured reflectance in the red band for two different 64

values, 40° and 55°, in the principal plane. At g5 = 40", the model is overestimating the reflectance on the

forwardscattering side. Thisis mainly due to the constant reflectivities used for the shaded foliage and
ground. The model uses constant values for Fy and Fqgq in (70) and (71) for the fraction of diffuse radiation
in the total incident solar irradiance. As the fraction changes during the course of the day, these constant
values better represent the average daily conditions. Near solar noon when the sun is high, the diffuse
fraction is smaller than the daily average and the reflectivities for the shaded components are also
correspondingly smaller than the daily average, resulting in the discrepancies between the modelled and
observed values at g = 40°. The comparisons suggest that the mode! will benefit from accurate separation
of the diffuse and direct solar radiation. The model shows sharp spikes at the hotspot in comparison with
the measurements. The gentle variation in the measurements may be aresult of the low angular resolution
(15%) which effectively produced window-averaged results. The effect of the averaging isto dampen and
broaden the peak at the hotspot. For g = 40" and other small g values not shown here, the width of the
hotspot is well modelled. The model does not perform as well at the larger solar zenith angles like Fig..
14(b) for g, =55". Thismodel deficiency may have resulted from the simplified geometry used to represent
the tree crowns. The model geometry is such that, al foliage is confined within the cone or cylinder, while
in reality branches extend much further than the mean radius and intercept more radiation than the model
prediction. One way to handle the problem is to increase the mean radius of the tree crowns, but in that
case the branch structure needs to be more vigorously described to allow more gaps within the tree crown.
This suggests that geometric-optical models are still approximations to reality and accurate simulation of
BRD requires accurate descriptions of the canopy architecture at all scales. Figure 14c shows a comparison

between the model and measurements for the reflectance in the near-infrared band at g = 40°. The model is

able to simulate the measurements closely. In Fig. 14d where g5 = 60°, the model performs well except for
the largest q,, especially on the backscattering side, indicating the effect of non-uniform distribution of
multiple scattering on BRD which is not considered in the present study.

Figure 15 shows hemispheric distributions of reflectance in the red band at four solar zenith angles. The

hotspot variesin size, being generally larger when the sun is higher in the sky. The model does not show
much of the usual bowl-shape because of the high LAl and the fixed diffuse fractions used in the model.
Some of the bowl-shape can be seen in Fig. 15c and 15d. Figure 16 shows the corresponding distributions

in the NIR band. The distributions are similar to those in Fig. but the bowl-shape is more pronounced for
gs = 60" and 75°. Theincrease in reflectance at large g, values, where the ground is hidden under the tree

crownsisduein part to the larger reflectivity of the shaded foliage as compared to the shaded ground A
singularity is seen at nadir for the large solar zenith angles, i.e. Fig. 16(d) because of the large shaded

ground components viewed vertically.




6 Discussion

The 4-Scale model presented here was devel oped to investigate the effect of canopy architecture at
different scales on the bidirectional distribution. Since we have incorporated mathematics descriptions of
canopy architecture at scales larger and smaller than the tree crown, it becomes a fuzzy geometric-optical
model in the sense that the clearly defined canopy geometry, such asthat of Li and Strahler's models, is
disintegrated and defined probalistically. The inclusion of canopy architecture at the various scalesin a
geometric-optical model may be considered as an influx of negative entropy which increases the
orderliness of the system under investigation and is expected to approximate more closely natural living
organisms. We believe that such amodel contains more flexibility to adapt to different plant canopies than
previous models.

Much mathematical complexity arises, though still tractable, when we treat the tree crown surface as a
complex surface within which mutual shadows and the hotspot also occur. Through our numerical
simulation, we believe that the sub-canopy structures have profound effects on the directional reflection
behaviour of the canopy and deserve such attention. Figure 17 shows the sensitivity of the model to the

foliage density within tree crowns. With the fixed stand density and tree crown shape and dimensions
(Table 1), the foliage density increases proportionally with LAI. For these ssmulations, we kept the

multiscattering factors constant, and realised that some inaccuracies occurred in the model results because
larger LAl should induce more multiscattering in the canopy. Both the red and NIR reflectances increase
with decreasing LAl in the forward scattering direction due to the increased probabilities of observing
sunlit foliage from the shaded side through sparse tree crowns. The hotspot is smaller for a sparser canopy
(lower LAI) because of the increased probability of observing the ground, which has alower reflectivity
than the foliage. These model results support the findings of Soffer [32] that the measured reflectance on

the shaded side of jack pine crownsis considerably larger than the predictions of aLi and Strahler model.
Black spruce crowns are generally denser and the shaded side appears darker than the jack pine. Our model
is able to simulate such differences.

The assumption of random tree distribution is removed at the expense of lengthy mathematical descriptions
using the combined Neyman and binomial distributions. Apparently, such effort has not been very
rewarding with regard to its impact on the final BRD results for the stand investigated. Figure 18a shows

that the Neyman grouping increases the reflectance in the red band only on the forward scattering side near
the vertical direction. The increased openness of the forest due to the Neyman grouping is the main cause
of the increase in the modelled reflectance. The Neyman grouping decreases the width of the hotspot
because alarger m, gives asmaller W, which affects the hotspot kernel for the ground. At large view

angles, alarger Neyman grouping gives a smaller reflectance because the contribution of the ground to the
reflectance becomes very small and the tree crown properties dominate at these angles. The change of the
hotspot width is more important in the NIR than the red band because the Neyman grouping affects the
proportion of the ground illuminated (Pg). Our present ssimulation is limited to small quadrats with small

Neyman groupings. More research is needed to determine the grouping effect at larger scales (large
quadrats with large groupings).



Sub-canopy architecture is not only important in investigating the BRD of vegetated surfaces but also
critical in the inversion of the model to obtain biophysical parameters such as leaf areaindex. Clumping of
needles within shoots, for example, affects the radiation interception in the plant canopy and hence
vegetation indices derived from the reflectances in red and near-infrared bands. Grouping of shootsin
branches also has similar effects. Accurate estimation of LAI from the model requires appropriate
descriptions of architecture at these sub-canopy levels.

In this paper, the effect of multiple scattering on BRD is not investigated. Our attention isfirst given to
canopy architecture because the first order scattering is usually much larger than the sum of multiple
scattering and the angular distribution of the multiply scattered radiances is usually considered to be
isotropic [31]. However, at NIR wavelengths, the multiple scattering effect is larger than that at visible

wavel engths and the isotropic assumption may lead to some inaccuracies in the BRD results. Such subtle
differences may have significant effects on the simulated vegetation indices using reflectance factors for
these two bands. We hold the believe that in modelling the multiple scattering, the canopy architectureis
foremost important because it dictates the direction of first order scattering and the probability of observing
the reflecting surfaces at different steps of the scattering sequence. The approaches of Goel et al. [14] and
Strahler and Jupp [33] in the description of plant canopy architecture have such merits, but forest canopies

are much more complex than what have been described. The model presented here provides a framework in
which the effect of canopy architecture at various scales on BRD can be systematically investigated.

7 Conclusion

In contrast to the turbid-medium type of models suitable for short vegetation canopies without distinct
foliage structures, geometric-optical models are more appropriate for forest canopies which are usually
well organised at various scales. Compared with previous 2-scale geometric-optical models, which describe
trees as randomly-distributed discrete objects containing turbid media, the 4-scale model presented in this
paper includes the effects of two additional scales of canopy architecture: tree distribution pattern and
foliage distribution pattern within trees. The 4-scale model simulates closely the measurements of tree
distribution, canopy gap fraction and the bidirectional reflectance. It is shown in model simulation that the
architecture within tree crowns has profound effects on the bidirectional reflectance distribution (BRD).
Tree distribution patterns have small but significant effects on BRD for the stand investigated and may
have larger effects for more patchy stands.

In our model, atree crown consists of conical and cylindrical parts. An effective mathematical schemeis
devised to estimate the mutual shadowing effect between tree crowns and among foliage elements within
tree crowns. The canopy gap size distributions between and within tree crowns are used to describe the
hotspot size and shape. The description, for the first time, closely relates the bidirectional reflection
behaviour to canopy attributes.
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List of symbols

A Quadrat size

B Domain size (pixel size)

C(0) G(8)/sin(B)

D Number of treesin the domain B

Fas(A) Accumulated gap size distribution inside tree crowns
Fat(A) Accumulated gap size distribution between tree crowns
G(0) Projection of unit leaf area

H Effective height (H4 + H, + /3 H. )/cos(6y)

Hy Height of the lower part of the tree (trunk space)

Hy, Height of cylinders

H, Height of cones

H; Total height of the tree crown (H. + Hy)

L Leaf areaindex (LAI)

Ly LAI accumulated horizontally (L~ s(6 = 90°) )

Lo Mean LAI accumulated over the view or sun path within one tree crown
Ls Clumping-adjusted projected tree crown element area index
Ly Clumping-adjusted projected tree crown areaindex

m Mean number of treesin a quadrat

my Mean number of cluster per quadrat

o Cluster mean size

n Number of quadratsin the domain B

Pe Probability of seeing illuminated ground area

Pgap (6) Gap Probability within atree at the angle ©

Pig Probability of having sunlit ground area

Ps Total shadowing effect




Probability of seeing the ground (including clusters and overlap)

vg
Vg- Probability of seeing the ground (random tree distribution)
Vg- ¢ Probability of seeing the ground (clustered tree, without overlap)
P« Probability of seeing tree crown area (1-P,,)
Py Probability of seeing sunlit trees
Py Proportion of tree crown surface viewed that isilluminated
Py, Probability that j trees overlap
Py Total view overlapping effect
P(x) Poisson distribution
Pn() Neyman distribution
Ps(A) Probability of having agap of size A in acrown
Py(A) Probability of having atree gap of size A between trees

Qltot’ Q2tot

Probability of seeing sunlit shoots inside the tree crowns (no hotspot consideration)

Radius of the crowns

- 5(0) Mean path length within a crown

Rg Ground reflectivity

Ry Foliage reflectivity

Rsc Shaded ground reflectivity

Rzt Shaded foliage reflectivity

R Total reflectance (pixel)

Y Shaded area on the ground produced by one tree

Se Shadowed area on the ground produced by the cone part of the tree
S Shadowed area on the ground produced by the cylinder (base) part of the tree
tic tip Tree illuminated surface visible to the viewer

tac tab Tree crown surface visible to the viewer

Volume of atree

Ground surface not seen by viewer because of one tree

Ground surface not seen by viewer because of the cone part of one tree

HIESPSIE

Mean width of element shadows cast inside tree crowns




W, Characteristic mean width of tree crowns projected to the ground
o Half apex angle

Ys» W Angle related to the self-shadowing of the cone

YE Needle-to-shoot arearatio

) First-order scattering (geometric shadow) phase function of the foliage
H Crown foliage density

Qp Clumping index for shoots

Q; Clumping index for trees

A Gap size

Amin Minimum gap size for having an illuminated surface

0] Relative azimuth angle between the sun and the viewer

65 Solar zenith angle

8, View zenith angle

& Angle difference between the sun and the viewer (phase angle)

A Cone geometry

The computation of the proportion of illuminated area on a cone is done using simple geometry. The area
of the cone projected to a viewer can be separated into two parts: an ellipse and atriangle. The nine
schematic representations in Fig. show the typical shaded areas viewed on the cone. The origin of the
coordinates is aways the centre of the ellipse and the x-coordinate of each point stays the same. The ellipse
IS expressed by

X2 y2

—_— 4+ —=1, (73)

XA2 r2
where x5 =r cos(6,); (Xa,Ya) ispoint A; and y, = 0. risthe base radius of the cone. For 6, <a the cone
areaseenis

tye = TOr Xp = T02 cOS(B,). (74)



When 0, > a, the point B is outside the ellipse. This new area (called t, in the paper) can be easily
computed by integrating twice from the ellipse to the ssgment [ BD] from 0 to yp:

|~ Yp [ XA y_bBD D
tye = T2 cos(6,) + 2 00— - Ody , (75)
Vr2-y2
oQgr Mgp [

where bgp and mgp, are the intercept and the slope of the [ BD] segment. (xg,yg) denotes point B, which
is the projected tip of the cone (yg = 0). (Xp,Yp) isthe intercept between the triangle and the ellipse. The
integral in (75) has an analytical solution.

When the solar zenith angle 64 is less than the apex angle a, self-shadowing on the cone occurs. At nadir,
the illuminated area is expressed by

Lt U
tic= O-+y0Or2,, (76)
02 0O

wherey = sin~1 [[(tan(a))/(tan(By))]] [19]. Thisisvalid for all azimuth angles @. On the backscattering side
of the principal plane (Fig. 19a), the shadow can be seen while 8, < 8. For 6,, <a we have

tic =Yg (Xg~Xg) * Xa [ sin(y)cos(y) —y+1v2] (77)

where (Xg,Yg) denotes point E. Xg = X -Sin(y+@) and yg = r-cos(y+@) As 6,, increases, the triangular part
appears to the viewer. Two shadowed areas can be seen on the triangle part. Outside the principal plane, the
symmetry does not exist, but the same equations can still be used. The third plate of Fig. 19b shows such a
case. The computation of the shaded area is an integration of areas inside the ellipse which is separated into
four parts to facilitate the selection of integral limits. Figure 19b for a > 6,, > 0 we have the shadowed area
in three parts of the ellipse, it is calculated as follow:

ye OY-Pge X N
O - — (dy
2_\2

Vo omge Vi-y2 o

i IXg Dl
+ — 12 cos(B,) - (78)

4 2

|. X|: D r D
+ J DmBFX+bB|:_— '\/XAZ— X2 Ddy

0 [ Xa

Thefirst term isfor the areaformed by the points E, B, and A, denoted EBA, the second and third are for
the area ABGC and GFC, respectively. The point G isthe intercept of [ BF] ony. The areailluminated (t;;)



isfound by substracting ( 78) from (75).

In (78) mgg and bgg are the slope and intercept of [ BE] on y defined by the equation of the curve that has
the 2 points B and E. mgg and bgg have similar definitions. yg and yg do not depend on 6,,. Once they are
found at nadir, their values can be apply to other view angle at any given @. When 6,, > a, the amount of

shadowed surface in the triangle is calculated as follows: the integration is like the one in (75). We divide
the triangle into two parts separated by the x-axis. The areas of the two triangles are:

yi OXa y~bge O
] i EIT Vi—y2 " - gdy (79)
and
ys DXa y-bgr O
I, ET Vimyz T gdy. (80)

The shadow on the ellipse is, as above, calculated by separating the ellipse into four parts: HOAJ, GOAI,
FGOK, and EHOK.
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Figure 2: Measured and simulated tree distributions in a boreal jack pine stand (100 x 100m2). Neyman distribution
(3) with amean group size of 3 simulates well the measured distribution.
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Figure 1. Scales of canopy architecture considered in radiation models
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Figufe 4: A photograph of an old black spruce

forest, near Candle lake, Saskatchewan, Canada,

investigated in this paper.



Figure 5: Tree crown geometry and the definition of variable used.
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Figure 6: Two gap size accumulation curves measured in the old black spruce
stand using an optical instrument (TRAC) at two zolar zenith angles.
In both cases (a) and (b), teh accumulation of the gap fraction resulting
from gap of various sizes can be separated into two components:
gaps between (F;) and within (F o) tree crowns. The portion of the

curve in the A range 10-50 cm is due to branch architecture.
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Figure 7: Calculated gap size distribution in the black spruce stand at three solar zenith angle:
(@) between tre crown and (b) inside tree crowns. For the distributions between tree crowns,
(47) isused with L and W; from (41) and (42), respectively. For the distribution inside tree crowns,

L and W, are replaced by L¢ and W, respectively, where Lsis calculated from (45)
and Wy is taken to 35 mm.
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Figure 10: gap probability used in modeling the probability of observing sunlit
foliage inside atree crown from the sunlit side (Q, for viewer 1) and from the

shaded side (Q, for viewer 2)
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Meyman grouping

Figure 12: Different components of the model versus the Neyman grouping at a view angle of 35°
In the principal solar plane at a solar zenith angle of 55°.
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Figure 13:Different components of the reflectance in the principal plane at a solar zenith angle of 30°.
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Figure 14: Comparison of measured and modeled BRD in the principal plane
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(c) SZA =40° , and (d) SZA = 60°. The measurements were made by Deering et al. [9].
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Figure 15: Modeled hemispherical reflectance distributionsin the red band at four solar zenith angles.
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Figure 16: Modeled hemispherical reflectance distributions in the near-infrared band at four solar zenith angles.
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Typos, errors, or changes in papers
(from published versions)

J. M. Chen and S.G. Leblanc.
A Four-Scale Bidirectional Reflectance Model Based on Canopy Architecture.

(IEEE TGARS, 1997, vol. 35, pp.1316-1337)
(1) Equation (34), on page 1322, is not used anymore for the calculation of the mean distance between trees. Instead, the
mean distance between trees is calculated more accurately with the gap size distribution:
o
j AP(AHA
E 0
=% B
j P(AHA
0

Py is the gap size distribution between crown (Equation 47) and A isthe gap size. This is more accurate since it depends on
the non random distribution of crowns simulated by the Neyman distribution.

(2) Qqtot @nd Qyy: basically, Qqor (EQ. 58) now uses the same formulation as Q. (EQ. 62). C,, and Cg also have been
slighly changed:

C =G.-5(8.)/s(90°)

(3) Equation (65) should be:
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K( ?.) =g -G (8,0 -cas(ﬂv);’[cas(ﬂs )'}fg]

(4) in Equation (45), L =1
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