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Abstract

In dual- or multiple-channel Synthetic Aperture Radar (SAR) imaging modes, cross-channel correlation is a

potential source of information. The sample coherence magnitude is calculated over a moving window to

generate a coherence magnitude map. High resolution coherence maps may be useful to discriminate fine

structures. Coarser resolution is needed for a more accurate estimation of the coherence magnitude. In this

study, the accuracy of coherence estimation is investigated as a function of the coherence map resolution. It is

shown that the space-averaged coherence magnitude is biased towards higher values. The accuracy of the

coherence magnitude estimate obtained is a function of the number of pixels averaged and the number of

independent samples per pixel (i.e. the coherence map resolution). A method is proposed to remove the bias

from the space-averaged sample coherence magnitude. Coherence magnitude estimation from complex

(magnitude and phase) coherence maps is also considered. It is established that the magnitude of the averaged

sample coherence estimate is slightly biased for high resolution coherence maps, and that the, bias reduces with

coarser resolution. Finally, coherence estimation for nonstationary targets is discussed. It is shown that the

averaged sample coherence obtained from complex coherence maps or coherence magnitude maps is suitable

for estimation of nonstationary coherence. The averaged sample (complex) coherence permits the calculation of

an unbiased coherence estimate provided that the original signals can be assumed to be locally stationary over a

sufficiently coarse resolution cell.
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1 INTRODUCTION

In certain Synthetic Aperture Radar (SAR) imaging modes, such as multi-temporal interferometry and

polarimetry, the radar data are presented in two or more channels. The inter-channel correlations may

be used as sources of information. The magnitude of the cross-channel correlation coefficient, called the

coherence magnitude (or the degree of coherence) [1], is calculated to generate a coherence (magnitude)

map [23] which can be used for target classification [3, 11, 26]. In interferometry, the coherence magnitude

map is generated to select areas in which the “coherent” phase may be processed to extract information

about target elevation or target displacement. For example, the topography in boreal forest areas can be

estimated only for areas where the coherence magnitude is larger than about 0.2 [11]. The local precision

of a digital elevation model generated from a repeat-pass SAR interferogram depends on the coherence

magnitude [11, 16]. The coherence also may be required to calculate the effective number of looks [26],

or to measure the signal-to-noise ratio for a given system [4]. Quantitative coherence information is very

important in many applications, and as such, the coherence should be estimated accurately.

In this paper, various methods, as summarized in Figure 1, are investigated for unbiased estimation of

the coherence magnitude.

In Section 2, the sample coherence magnitude, which is frequently used to estimate the cross-channel

coherence magnitude, is considered. Its statistics are derived for Gaussian scenes, and are extended to

non-Gaussian scenes. The estimate is shown to be significantly biased under low coherence conditions,

and the possibility of deriving an unbiased estimate is investigated. The use of the Siegert relationship for

coherence magnitude estimation is also discussed.

In Section 3, estimation of coherence magnitude from coherence magnitude maps is considered. It is

shown that the averaged sample coherence magnitude is biased towards higher values. The statistics of the

sample coherence magnitude are used to remove the coherence estimate bias, and to calculate the precision

of the estimate as a function of the number of looks L contained in each sample (i.e resolution coherence

map), and the number N of averaged pixels (sample coherence magnitude). The method is validated using

actual SAR data, and the results are extended to non-Gaussian scenes.

In Section 4, coherence magnitude estimation from (complex) coherence maps is discussed. The co-

herence is calculated over a moving window, and the complex value is assigned to the map pixel at the

corresponding spatial position. The magnitude of the space-averaged sample (complex) coherence is in-

vestigated as a candidate for coherence magnitude estimation. To assess the accuracy of the estimate, the

statistics of the sample coherence are derived for Gaussian areas. It is established that the magnitude of

the averaged sample coherence estimate is slightly biased for high resolution coherence maps, and that

the bias reduces with coarser resolution. For high resolution coherence maps, the statistics of the sample

coherence are used to remove the bias estimate. An unbiased coherence estimate is also introduced for a



(a)

(b)

Figure 1: Method diagram for unbiased coherence magnitude estimation. (a) General methods and (b)

methods for jointly circular Gaussian distributed channels.



jointly circular complex Gaussian process.

Estimation of coherence for nonstationary processes is investigated in Section 5. The averaged coherence

is defined to characterize nonstationary coherence signals. Under a local stationarity assumption, the

averaged coherence can be estimated using the space-averaged sample coherence obtained from coherence

magnitude maps or complex coherence maps. The accuracy of the estimate obtained is discussed as a

function of the resolution map. Implications for the estimation in SAR interferometry of the topographic

phase corrected coherence are then explored. Finally, examples of coherence magnitude estimation are

illustrated in Section 6, using CCRS Convair 580 polarimetric SAR data.

2 THE SAMPLE COHERENCE MAGNITUDE FOR COHERENCE

MAGNITUDE ESTIMATION

2.1 Coherence magnitude estimate

The complex coherence of two zero-mean complex signals z1 and z2 is defined in [1] for (wide-sense)

stationary processes as the channel correlation coefficient for zero time shift:

∆ = ∆(0) =
E(z1z

∗
2)

√
E(|z1|2)

√
E(|z2|2)

, (1)

where E(x) is the expected value of x. The coherence magnitude D = |∆| is called the degree of coherence,

and the argument of ∆ is the effective phase difference. Under the assumption that the processes involved

in equation (1) are also ergodic (in mean), the sample coherence δ is frequently used as the coherence

estimate δ = ∆̂. Given L signal measurements, the sample coherence δ is:

δ =

∑L
i=1 z1iz

∗
2i√∑L

i=1 |z1i|2
√∑L

i=1 |z2i|2
, (2)

where i is the sample number. The coherence magnitude estimate d = D̂ can be deduced as:

d = |δ| (3)

If the coherence expression (1) is reconsidered, it can be noted that z1 and z2 which are assumed to be

stationary, are also jointly stationary. Stationarity of the processes (z1, z2, and z1z
∗
2) involved in equation

(1) is required such that the time averages of each process converge to a finite limit. Ergodicity in mean is

also required so that the different time averages of each process converge to the same limit: the ensemble

average. The ensemble averages can then be substituted in equation (1) with the time averages, and the

sample coherence of equation (2) provides a coherence estimate which should be asymptotically unbiased.



In the following (Sections 2, 3, and 4), the processes involved in equation (1) are assumed to be ergodic

in mean, and the coherence will be estimated in areas named “stationary” in which the channels z1 and

z2 are stationary and jointly stationary. Coherence estimation in nonstationary scenes will be discussed in

Section 5.

2.2 Statistics of the sample coherence magnitude within Gaussian scenes

2.2.1 Pdf and moments

The sample coherence magnitude d is the Maximum Likelihood (ML) estimate of the coherence magnitude

D. An analytical expression for its probability density function (pdf) was derived in [31] for a jointly

complex Gaussian process (z1, z2) as a function of the coherence magnitude D, the number L of integrated

independent samples (L > 2), and the hypergeometric function F :

pd(d|D) = 2(L− 1)(1−D2)Ld(1− d2)L−2F (L,L; 1;D2d2) (4)

Notice that the pdf expression does not depend on the variances (σ2
i = E(|zi|2) for i = 1, 2 ) of the zero

mean complex processes z1 and z2. Equation (4) can be used to deduce the moments of order k:

mk =
Γ(L)Γ(1 + k/2)

Γ(L+ k/2)
·3F2(1 + k/2, L, L;L+ k/2, 1;D2)(1−D2)L (5)

where pFq is the generalized hypergeometric function [7]. It can be shown that m0 = 1, as expected.

2.2.2 Bias in the sample coherence magnitude d

An analytical expression of the first moment of d, E(d), was first derived in [31]:

E(d) =
Γ(L)Γ(1 + 1/2)

Γ(L+ 1/2)
·3F2(3/2, L, L;L+ 1/2; 1;D2)(1−D2)L (6)

Figure 2 presents E(d) as a function of the coherence magnitude D.

Similar curves were obtained in [8, 10] using simulations. It can be seen that the sample coherence

magnitude d is biased towards higher values, with a resulting reduction of contrast, especially between

areas of differing low coherence. The bias decreases with increasing number of independent samples L as

the ML estimate is asymptotically unbiased.

2.2.3 Variance of the sample coherence magnitude d

The variance of d might be needed to assess the estimate precision. Its expression is given by:

var(d) = E(d2)− E(d)2 (7)



Figure 2: Coherence magnitude bias for various number of statistically independent looks.

Figure 3: Standard deviation of the coherence estimate (L=10)



where E(d2) is derived from equation (5) (k = 2), and E(d) is given by equation (6). The expression

obtained may be compared numerically to the Cramer Rao (CR) lower bound varCR derived in [14, 27].

Thus,

varCR =
(1−D2)2

2L
≤ var(d) (8)

which applies only to unbiased estimates of D. Figure 3 presents the standard deviation and the square

root of the CR lower bound for L = 10. As can be seen, the results are similar as long as the estimate is

unbiased. When the estimate is biased, the expression obtained from equation (7) gives lower values than

is obtained with the CR expression.

Hence, the variance expression of equation (7), which is more general than the CR lower bound, should

be used for error bar calculation. If the bias can be removed, the CR lower bound varCR which is more

computationally efficient, can be used. The bias on the estimate should first be calculated and removed.

Then the estimate obtained can be inserted in varCR of equation (8) to calculate the estimate precision.

2.3 Extension of the statistics to non-Gaussian distributions

The statistics derived for Gaussian scenes can be extended to K-distributed scenes, as was done in [12,

33]. Under the assumption that the scene backscattering satisfies the product model introduced in [19],

the underlying cross section variations were assumed to be due to fluctuating numbers of scatterers per

resolution cell. A target textural parameter w was defined in [12, 33] as the ratio of the number N of

scatterers per resolution cell to the scatterer number average < N > (calculated over all the resolution

cells contained in the area under study): w = N/ < N >. The product model assumes that the textural

parameter w has the same value for the channels considered. Consequently, the fluctuations that give

rise to the K-distribution cancel out when the coherence is estimated, and the coherence statistics for

K-distributed areas are identical to the ones derived for Gaussian areas. The statistics can be extended

to other distributions (than the K-distribution), provided that scene backscattering satisfies the product

model.

In the following, all the results will be derived for Gaussian scenes, and will be extended to non-Gaussian

scenes under the product model conditions.

2.4 Investigation of the function G(d) for unbiased coherence estimation

One can show directly that an unbiased estimator G(d), which is a function of the sample coherence

magnitude d, cannot be found. We proceed in the same way as [20]. If G(d) is unbiased, then E[G(d)] = D.

Using equation (4) and the series transformation of the hypergeometric function, the unbiased condition



can be shown to be equivalent to:

2(L− 1)

Γ(L)2

+∞∑

k=0

Γ(L+ k)2

Γ(1 + k)2
·A(k) ·D2k = D(1−D2)−L

·
+∞∑

j=0

Γ(L+ j)

Γ(L)Γ(1 + j)
·D2j+1 (9)

where A(k) is given by:

A(k) =

∫ 1

0
G(u)u2k+1(1− u2)L−2 du (10)

This leads to a power series in D which has to be solved for any D value between 0 and 1. The problem

has no solution since G(d) does not depend on D. This is because the power series on the left hand side

of equation (9), which involves the unknowns A(k), includes only even powers of D, while the power series

on the right hand side is a function of odd powers of D.

One might think that the problem could be solved for the squared sample coherence magnitude ρ = d2.

In this case, both power series on the right- and left-hand sides of equation equivalent to (9) would include

only even powers of D, and the equation obtained might be solved in terms of the unknown G(ρ). The pdf

of ρ is derived from the pdf of d by a simple change of variables. The condition for an unbiased estimate

i.e. E[G(ρ)] = D2, leads to:

L− 1

Γ(L)2

+∞∑

k=0

Γ(L+ k)2

Γ(1 + k)2
·B(k) ·D2k =

+∞∑

j=0

Γ(L+ j)

Γ(L)Γ(1 + j)
·D2j+2 (11)

where B(k) is given by:

B(k) =

∫ 1

0
G(ρ)ρk(1− ρ)L−2 dρ (12)

This equality must be satisfied for any D between 0 and 1. The coefficients of the power series on the

right-hand side should be equal to those on the left-hand side of equation (11). This leads to the following

set of equations with unknown G(ρ):

∫ 1

0
G(ρ)(1− ρ)L−2dρ = 0 (13)

and
∫ 1

0
G(ρ)ρj+1(1− ρ)L−2dρ =

Γ(L)Γ(j + 2)2Γ(L+ j)

(L− 1)Γ(L+ j + 1)2Γ(j + 1)
(14)

Equation (13) can be solved only if G(ρ) takes negative values, but that is not possible. Therefore, it is

not possible to derive an unbiased estimator G(ρ) which is a function of the squared sample coherence

magnitude ρ = d2.



Further, one might hope that an unbiased coherence magnitude estimate could be derived under the

more restrictive condition of jointly circular complex Gaussian distributed channels. The coherence mag-

nitude D (D = |∆|, ∆ of equation (1)) can be deduced from the correlation coefficient R of the channel

intensities I1 = |z1|2 and I2 = |z2|2 using the Siegert relationship [28]:

E[|z1|2|z2|2]

E[|z1|2]E[|z2|2]
= 1 +

|E[z1z2]|2

E[|z1|2]E[|z2|2]
(15)

which leads to [6]:

D2 = R (16)

where R is given by:

R =
E(I1I2)− E(I1)E(I2)

√
E(I2

1 )− E(I1)2
√
E(I2

2 )− E(I2)2
(17)

An equivalent equation can be derived as a function of the sample coherence magnitude d = D̂, and the

sample correlation coefficient r = R̂:

d2 = r (18)

where r is the sample correlation coefficient of I1 and I2:

r =
< I1I2 > − < I1 >< I2 >√〈
I2

1− < I2
1 >

〉√〈
I2

2− < I2
2 >

〉 (19)

with < I >= 1
L

∑L
i=1 Ii, and where i is the sample number.

The coherence magnitude estimate derived from equation (18), which is denoted dsig, will be called

the Siegert coherence magnitude estimate. Notice that in [8], the moments involved in equation (17) were

not centered, and a different expression was obtained for the Siegert estimate. The Siegert estimate is

currently used for coherence magnitude estimation from channel intensities even when channel phase is

available [8, 15, 26]. Unfortunately, since the sample correlation coefficient r of real channels is biased, as

was shown in [14, 20], the Siegert coherence estimate must also be biased. The statistics of r derived in

[5, 14] can be used to derive the analytical expression of the estimate expectation E(dsig), and the bias

on the estimate. This bias was obtained in [8] using simulations. Like the sample coherence magnitude d,

dsig is biased towards higher values with a significant bias under low coherence conditions.

It is worthwhile noting that the Siegert relationship of equation (15) was established for jointly circular

Gaussian distributed channels. In textured areas, equation (16) does not hold (R2 6= D), and different

expressions equivalent to (16) were derived in [24, 26] as a function of the statistics of the texture random

variable w (defined in Section 2.3), for scenes whose backscattering satisfy the product model. In this

case, dsig is not an estimate of D, and dsig would lead to different results than d, even in areas of high

coherence values for which the two estimates are unbiased. This result was confirmed in [26] using dsig and



d coherence maps generated from ERS-1 repeat-pass data. The ratio of the two estimates was proposed in

[24] as a tool to test whether an area is Gaussian.

In summary, it is not possible to derive from the sample coherence magnitude d an unbiased estimator

of D. However, there is an alternative approach, as explained below.

2.5 Bias removal and confidence interval

Using equation (3), an estimate of the coherence magnitude dN is obtained over an area which contains

N independent samples. The issue here is to extract from the observation dN an unbiased estimate of the

coherence magnitude D, and to calculate the associated precision.

For a large number N of independent samples, the variance of d is low, and the probability distribution

of d = dN is tightly concentrated around E(d): dN ' E(d). Since E(d) is related to the coherence

magnitude D according to equation (6) (E(d) = Func(D)), an unbiased estimate can be obtained by

inverting the equation at E(d) = dN :

D̂ = Func−1(E(d) = dN ) (20)

where Func is defined by equation (6).

If N is not sufficiently large, the estimate dispersion is significant (i.e. dN 6= E(d)), and the method

above cannot be applied. The Bayesian approach used in [4] for bias removal of the sample correlation

coefficient (of channel power spectra) may be adapted to the sample coherence magnitude d using the pdf

of equation (4). Under the assumption that the a priori probability of occurrence of D is uniform, the

Maximum a Posteriori (MAP) estimate of D given the observed sample magnitude coherence dN can be

obtained by maximizing, with respect to D, the posterior density function defined in [4]:

h(D| dN ) =
pd(dN |D)

∫ 1
0 pd(dN |D)dD

(21)

where pd is from equation (4). The Maximum Likelihood estimate D̂ of the coherence magnitude D is that

value of D for which h(D|dN ) is a maximum. The posterior density function of equation (21) can then

be integrated to determine the associated confidence interval for a given confidence level P (a, b), where

P (a, b) is the posterior probability that D lies in the interval [D̂ − a, D̂ + b].

The two methods are presented in Figure 1 (a) as the “sample coherence magnitude” methods.



3 COHERENCE MAGNITUDE ESTIMATION FROM A COHER-

ENCE MAGNITUDE MAP

3.1 Background

In interferometry, the two original complex channels z1 and z2 are combined to form different multi-look

products such as the interferogram (L-look coherence phase map) and the L-look coherence magnitude map.

Each pixel value of the L-look coherence magnitude map corresponds to the sample coherence magnitude

dL calculated over L independent samples. The pixel values are averaged within the area of interest to

provide an estimate of D. As the estimate is biased, maps of coarse resolution (i.e L of large value) are

generally used to reduce the bias, and the areas of low coherence for which the estimate is significantly

biased are disregarded. For example, in a study of ERS-1 SAR data, Hagberg et al. [11] selected areas for

which the coherence D > 0.4. Coherence magnitude maps with L ' 32 were then generated to achieve an

unbiased coherence estimate in the selected areas. The L value (L ' 32) was obtained by comparing the

speckle covariance function measured from the data to the theoretical expression for the ERS-1 impulse

response [9].

A method is proposed in the following for an unbiased estimation of the coherence magnitude, even

under low coherence conditions. The method is then validated using actual SAR data.

3.2 Bias removal and confidence interval

Coherence magnitude may be estimated from an L-look coherence magnitude map by spatially averaging

the sample coherence magnitude values over the area of interest:

D̂ = d̄L =
1

N

N∑

i=1

dLi (22)

where dL is the L-look sample coherence magnitude, i is the sample number, and N is the number of

averaged samples. Under the assumption that the original signals are stationary and ergodic (in mean) in

the area of interest, the spatial average d̄L provides an unbiased estimate of the ensemble average E(dL).

If a sufficiently large number N of independent L-look samples are averaged, d̄L tends to be distributed

normally about E(dL) with variance var(E(dL))/N (var(E(dL)) from equation (7)), which decreases as N

increases. E(dL) can be substituted with its ML estimate d̄L in equation (6) which is inverted according

to equation(20) to deduce an unbiased coherence magnitude estimate D̂. Tables of inversion might be

calculated first using equation(6) to reduce computing time. The unbiased estimate obtained is used in

equation (8) to calculate the Cramer Rao lower bound varCR value. The estimate confidence interval CI

can then be determined as:

CI = [D̂ − zc

√
varCR(D̂)/

√
N, D̂ + zc

√
varCR(D̂)/

√
N ] , (23)



for a given confidence level fixed by the confidence coefficient value zc. This scheme is represented in

Figure 1 (a) as the “averaged sample coherence magnitude” method. The method can be extended to

non-Gaussian scenes whose backscattering “locally” satisfies the product model. In this case, the textural

parameter w (defined in Section 2.3) should have the same value for the channels considered at each

(L-look) pixel averaged in the coherence estimate.

3.3 Validation based on actual SAR data

Assuming negligible additive noise, the speckle covariance function calculated from a complex SAR image

within a homogeneous area is equivalent to the system autocorrelation function [18, 25]. Since the nor-

malized system autocorrelation function has values between zero and one, an estimate of the normalized

speckle covariance function may provide a valuable tool to assess the accuracy of coherence estimates for

all possible coherence values (0 ≤ d ≤ 1) [9, 26].

As an example of this principle, consider a 1-look complex image acquired by the Canada Centre of

Remote Sensing (CCRS) Convair-580 X-band SAR [17]. Sub-pixel offsets with increments of 0.1 pixel

up to three pixels were generated in the azimuth direction. A bare, flat field containing about N=1000

independent samples was selected. Equation (3) was first used to calculate the sample coherence magnitude

dN over the whole area for each offset. An L-look (L ' 4) coherence magnitude map was then generated for

each offset using a moving 3x3 window. The coherence magnitude estimate d̄4 was obtained by averaging

the 4-look coherence magnitude samples over the selected area. Since the number N of independent L-look

samples (N = 1000) was large, the variance values of the estimates dN and d̄4 were low, and the estimates

were assumed to be equal to their expectations (i.e dN ' E(dN ), and d̄4 ' E(d4)).

Figure 4 presents, as a function of the sub-pixel offset, the speckle covariance functions obtained with

the sample coherence magnitude dN and the averaged 4-look sample coherence magnitude d̄4. The solid

curve, which corresponds to d̄4, is highly biased, except for large coherence magnitude D values. E(d4)

was substituted with d̄4 in equation (6), which was then inverted according to equation (20) to deduce the

unbiased coherence magnitude presented in the same figure. Notice that the sample coherence magnitude

dN is virtually identical to the unbiased averaged sample coherence magnitude for a wide range of coherence

magnitude values (as dN ' D for N large). For coherence magnitude values lower than 0.1, dN becomes

slightly different from the unbiased averaged 4-look coherence magnitude. This is due to the sample

coherence magnitude dN being biased for D lower than 0.1, even for a large number of independent

samples (N = 1000). This can be checked using equation (6), which also could be used to remove the bias.

In summary, the theoretical statistics derived above for the sample coherence magnitude and for the



Figure 4: Estimation of the speckle covariance function.

averaged sample coherence magnitude are in agreement with the experimental results obtained from actual

SAR data. The results can be extended to non-Gaussian scenes whose backscattering satisfies the product

models. The averaged sample coherence magnitude method was used in [32] to provide unbiased coherence

magnitude estimates which were obtained from a 20-look coherence map over Gaussian and K-distributed

scenes in ERS-1 data.

3.4 The averaged Siegert coherence magnitude estimate for a joint circular Gaussian

process

An estimate of the coherence magnitude D can be obtained for jointly circular Gaussian distributed

channels by spatially averaging the L-look Siegert coherence magnitude samples dsigL of equation (18) over

the region of interest. The coherence magnitude estimate obtained d̄
sig
L is included in Figure 1 (b) as the

“averaged Siegert coherence magnitude estimate”. Since the estimate dsigL is biased, d̄sigL is biased and a

method similar to the one presented in Section 3.2, which takes into account the statistics of dsigL given in

[5], may be applied to remove the bias. After bias removal, the CR lower band varCR can be calculated to

assess the estimate precision, as was done in Section 3.2.

Notice that the estimate bias can also be removed for non-Gaussian scenes whose backscattering satisfies



the product model. Unfortunately, the unbiased estimate obtained is not the required coherence magnitude

D in the presence of texture, as shown in Section 2.4: d̄sigL =
√̂
R 6= D̂ (R is from equation (17)).

4 COHERENCE ESTIMATION FROM A (COMPLEX) COHERENCE

MAP

4.1 Principle

In interferometry, the multi-look channel phase difference is stored along with the multi-look sample co-

herence magnitude. This phase difference is the argument of the L-look sample (complex) coherence. Like

the sample coherence magnitude, the sample coherence phase (L-look phase estimate) is biased [12, 29, 31].

This might be due to the spatial averaging performed during the estimation process being applied sepa-

rately to the phase map and to the magnitude map. In the following, spatial averaging is done using both

the magnitude and phase of L-look sample (complex) coherence, and the magnitude of the averaged L-look

sample coherence is investigated as a candidate for coherence magnitude estimation.

The complex coherence ∆ = D exp(jβ) of equation (1) may be estimated from an L-look (complex)

coherence map by spatial averaging the pixel values (L-look sample coherence) over the area under study:

∆̂ = δ̄L =
1

N

N∑

i=1

δLi (24)

where δLi is the L-look coherence sample of equation(2), i is the sample number, and N is the number

of averaged coherence samples. The magnitude of the averaged L-look sample coherence provides an esti-

mate of the coherence magnitude D̂ = |δ̄L|, and the argument of δ̄L is the estimate of the coherence phase β.

Under the assumption that the original signals are stationary and ergodic (in mean) in the area of

interest, the spatial average δ̄L provides an unbiased estimate of E(δL). If a sufficiently large number N of

independent L-look samples are averaged, δ̄L tends to be normally distributed (in complex) about E(δL).

δ̄L provides the ML estimate of E(δL) with a precision (var[δL]/N) fixed by the variance of δL, and the

number N of averaged pixels. Therefore, the accuracy and the precision of the coherence estimate δ̄L, and

consequently of D̂, depend on those of the sample coherence.

In the following, the statistics of the sample coherence δ of equation (2) are derived as a function of

the number L of integrated independent samples. The possibility of deriving an unbiased estimate G(δ)

is also discussed, and an unbiased estimate is derived under the joint circular Gaussian assumption. The

results obtained will be used in Section 4.3 to assess the accuracy and the precision of the averaged sample

coherence obtained from a complex coherence map.



4.2 The sample coherence for coherence estimation

4.2.1 Statistics of the sample coherence δ for Gaussian areas

Using the Wishart distribution for complex Gaussian processes, the joint pdf of the amplitude and phase

(d, φ) of the sample coherence δ = d exp(jφ) (of equation (2)) is derived in Appendix 1. It is used in

Appendix 2 to establish the following expression for the expectation of the sample coherence E(δ) as a

function of the number of independent samples L, the coherence ∆ = D exp(jβ) parameters D and β, and

the hypergeometric function F :

E(δ) =
Γ2(L+ 1/2)

Γ(L)Γ(L+ 1)
D(1−D2)L exp(jβ)

·F (L+ 1/2, L+ 1/2;L+ 1;D2) (25)

The variance of δ might be deduced using equation (25), and the 2nd moment of d (from equation (5)), as

follows:

var(δ) = E(d2)− |E(δ)|2 (26)

Notice that the statistics of δ do not depend on the variances (σ2
i = E(|zi|2), for i = 1, 2) of the zero mean

complex processes z1 and z2, as was the case for the statistics of the sample coherence magnitude d. From

equation (25), note that the coherence phase, estimated as the argument of the integrated coherence E(δ),

is unbiased: Arg[E(δ)] = β. The magnitude of the integrated coherence is, however, biased. Its bias is

given by the magnitude of equation (25) as a function of the number of integrated independent samples L.

|E(δ)| is presented in Figure 5 as a function of the coherence magnitude D, for different values of L. Two

points can be noted concerning the bias on |E(δ)|:

• it is smaller than the bias on the sample coherence magnitude d presented in Figure 2;

• it decreases very rapidly with increasing L, and becomes practically insignificant for sufficiently large

(but still quite small) L (L ≥ 20, say). For the same L value (i.e. L = 20), the averaged sample

coherence magnitude is significantly biased for low coherence areas, as can be seen in Figure 2.

The statistics of the sample coherence δ derived for Gaussian scenes can be extended to non-Gaussian

scenes which satisfy the product model, as was done in Section 2.3.

4.2.2 Investigation of the function G(δ) for unbiased coherence estimation

The same method applied in Section 2.4 can be used to investigate the function G(δ) for an unbiased esti-

mation of the coherence. Under the assumption that the two channel processes, z1 and z2, obey a jointly

zero mean complex Gaussian distribution, we obtain, using the statistics of the sample coherence, a double



Figure 5: Coherence magnitude estimation using the averaged Siegert coherence magnitude estimate.

integral over the two parameters d and φ, which could not be reformulated as an analytical expression as

a function of the sample coherence δ = d exp(jφ).

An unbiased coherence estimate may be derived if the channel complex signals were assumed to be

jointly circular complex Gaussian distributed. This means that, in addition to the joint Gaussian as-

sumption made above, the zero mean complex channels z1 and z2 have to satisfy the following conditions

[6]:

E[IkIl] = E[QkQl]

E[IkQl] = −E[IlQk] (27)

where Ik and Qk are the real and imaginary parts of zk (for k = 1, 2). The coherence sample δ can be

expressed as a function of the sample correlation coefficient of the real and imaginary components of the

two channels [6, 15] :

δ = rI1I2 − jrI1Q2 = rQ1Q2 − jrI1Q2 (28)

δ = rI1I2 + jrI2Q1 = rQ1Q2 + jrI2Q1 (29)

where rXY is the sample correlation coefficient r of equation (19) of two (real) channels X and Y . However,



since the sample correlation coefficient r is biased as shown in [20], the coherence estimate of equations

(28), and (29) is biased. Olkin and Pratt proposed for a jointly Gaussian process an unbiased estimate

G(r) which can be deduced from the sample correlation coefficient r [20]. The unbiased estimate G(r) was

expressed as a function of the number N of independent samples, and the hypergeometric function by:

G(r) = rF (1/2, 1/2; (N − 1)/2; 1− r2) (30)

An unbiased coherence estimate, here called δolk, can be obtained by substituting in equations (28, 29) the

correlation coefficient samples rXY with the associated unbiased estimates G(rXY ). The precision of the

unbiased estimate can be calculated using the Cramer-Rao lower band of equation (8).

In summary, the Olkin and Pratt estimator, established for real channel correlation, allows us to derive

an unbiased coherence estimate for a target whose channel signals are jointly circular Gaussian distributed

. This estimate δokl will be called “the Olkin coherence estimate”. In contrast to the Siegert estimate dsig

of equation (18), δokl can be extended to non-Gaussian scenes whose backscattering satisfies the product

model. In this case, equation (30), established under the Gaussian assumption, can be applied, and the

unbiased estimate δokl can be used provided that the zero mean complex process components (Ik, and Qk

for k = 1, 2) satisfy the joint circular Gaussian conditions of equations (27).

4.3 Coherence magnitude estimation from (complex) coherence maps

4.3.1 The magnitude of the averaged sample coherence

The coherence estimate calculated from an L-look (complex) coherence map was defined in Section 4.1 as

D̂ = |δ̄L| where δ̄L is the ML of E(δL). It was shown in Section 4.2.1 that the magnitude of the sample

coherence expectation, |E(δL)|, is practically unbiased for a relatively small number of looks L ' 20. These

results can be extended to |δ̄L|, and confirmed using the simulated offset SAR data (see Section 3.3) for

a Gaussian scene. The L-look (complex) coherence map was calculated using equation (2) with L ' 4.

N ' 1000 coherence samples were then averaged and the average magnitude |δ̄4| for different channel

offsets was used to generate the speckle covariance function presented in Figure 4. |γ̄4| is slightly biased

even for low coherence, whereas the averaged sample coherence magnitude d̄4 is highly biased. The bias of

|δ̄L| reduces with coarser resolution, and can be ignored for L ' 20 (for example, from Figure 5). For high

resolution maps, the bias can be retrieved using the statistics of the L-look sample coherence δL. E(δL) is

substituted with the estimate value δ̄L in equation (25), which is inverted to deduce an unbiased estimate

of the coherence ∆ = D exp(jβ), and consequently of its magnitude D and phase β.

The dispersion of the unbiased estimate |∆̂| can be calculated, as was done in Section 3.2. For a

sufficiently large N value, |∆̂| is distributed normally about D with the variance varCR(|∆̂|)/N (varCR is



the Cramer-Rao lower bound of equation (8)), and the estimate confidence interval is:

CI = [∆̂− zc
√
varCR(|∆̂|)/

√
N, ∆̂ + zc

√
varCR(|∆̂|)/

√
N ] (31)

for a confidence level fixed by the confidence coefficient zc.

The bias removal process using the statistics of the sample coherence can be performed on Gaussian

scenes, as well as on those non-Gaussian scenes whose backscattering locally satisfies the product model

(i.e. the texture parameter w has the same value for the two channels at each pixel averaged in the

coherence estimate). This method is included in Figure 1 (a) as the “magnitude of the averaged sample

coherence” method.

4.3.2 The magnitude of the averaged Olkin coherence estimate

Under the joint circular Gaussian assumption, the Olkin coherence estimate of equations (28) and (29)

introduced in Section 4.3 may be used to generate an L-look coherence map. The averaged Olkin coherence

estimate δ̄olkL yields an unbiased estimate of the coherence whose magnitude and phase can be taken as the

coherence parameter estimates. The dispersion of the magnitude coherence estimate |∆̂| can be calculated

using the CR lower bound varCR, as done above in equation (31).

This method is described in Figure 1 (b) as the “magnitude of the averaged Olkin estimate” method.

The method can be extended to non Gaussian scenes whose backscattering locally satisfies the product

model, provided that the joint circular Gaussian conditions of equation (27) are valid at each (L-look)

pixel averaged in the coherence estimate |δ̄olkL |.

4.4 Implications for coherence magnitude estimation in stationary areas

The following points can be made for coherence estimation in stationary scenes:

• Spatial averaging in magnitude yields biased estimates d̄L, and d̄
sig
L , whose bias can be removed as

was shown in Section 3.

• The Siegert estimate d̄sigL does not yield an estimate of D in the presence of texture.

• Spatial averaging in complex is more efficient than spatial averaging in magnitude: it permits an

immediate calculation of unbiased coherence magnitude estimates |δ̄L| (for L sufficiently value), and

|δ̄olkL |.

• The sample coherence magnitude dN method (described in section 2), which is more computationally

efficient remains the preferred method for coherence estimation in stationary scenes.

• Unfortunately, this method is limited to stationary scenes, whereas the averaged sample coherence

methods can be extended to certain nonstationary scenes, as shown below.



5 COHERENCE ESTIMATION IN NONSTATIONARY SCENES

5.1 Background

Coherence estimation was considered above in stationary scenes in which the processes (z1, z2, and z1z
∗
2)

involved in equation (1) are stationary (see Section 2.1). Such conditions are satisfied in homogeneous

scenes, as well as in non-homogeneous scenes whose backscattering satisfies the product model. In the

last case, the texture parameter w (defined in Section 2.3) which is channel independent, cancels out in

equation (1), and the scene can be considered as stationary for coherence estimation.

In nonstationary areas, the processes (z1, z2, and z1z
∗
2) involved in equation (1) might not be stationary

in mean, and the sample coherence of equation (2) leads to a meaningless value, as was confirmed experi-

mentally in [4]. In practice, stationarity in mean (the assumption that the mean E(x) does not vary) may

be relaxed: all that is required is that E(x) does not change significantly within the observation interval

[4, 13]. If such a condition is satisfied by each process involved in equation (1), the nonstationary processes

can be considered locally stationary (named “stationary in increments” in [13]), and the coherence can

be estimated over a moving stationary window. To characterize the spatially varying coherence, a new

parameter should be defined as a function of the local coherence estimate.

5.2 Estimation of nonstationary coherence signals

The correlation function z1 and z2 at observation times t1 = t and t2 = t+ τ is:

Rz1z2(t, t+ τ) = E[z1(t)z∗2(t+ τ)] (32)

The space- (or time-) averaged correlation function was introduced in [22] for nonstationary processes. It

is given for finite power signals by [18, 22]:

R̄z1z2(τ) =< R(t+ τ, t) >t (33)

where < >t indicates the space (or time) average operator:

< R(t+ τ, t) >t= lim
T→∞

1

2T

∫ T

−T
Rz1z2(t, t+ τ)dt (34)

Under the assumption that the limit R̄z1z2(τ) exists, the averaging process results in a stationary function

R̄z1z2(τ), even though Rz1z2(t1, t2) is nonstationary.

In the same way, the averaged coherence which corresponds to the normalized averaged correlation

function can be defined. For zero channel time shift, and under the assumption that the limit < ∆(t, 0) >t

exists, the averaged coherence ∆̄ is:

∆̄ =< ∆(t, 0) >t (35)



where ∆(t, τ) is given by:

∆(t, t+ τ) =
E[z1(t)z∗2(t+ τ)]

√
E(|z1(t)|2)

√
E(|z2(t+ τ)|2)

(36)

The averaged coherence might be estimated by spatially averaging the coherence sample calculated

over a moving window within which the processes can be assumed to be locally stationary. The averaged

coherence estimate ˆ̄∆ is given by:

ˆ̄∆ = δ̄L =
1

N

N∑

i=1

δiL (37)

where L is the number of looks contained in the processing window, δiL is the coherence estimate at the

spatial position i, and N is the number of L-look coherence samples contained in the area under study. ˆ̄∆

of equation (37) is identical to the averaged sample coherence ∆̂ of equation (24) defined in section 4.1 for

stationary processes. Hence, the averaged coherence magnitude δ̄L is suitable to estimate the coherence

in stationary scenes, and in nonstationary scenes which are locally stationary. |δ̄L| provides an estimate

of the magnitude of the averaged coherence: |δ̄L| = | ˆ̄∆| . An estimate of the magnitude of the averaged

coherence can also be obtained using the Olkin coherence estimate δoklL of equation (28) under the local

joint circular Gaussian assumption: | ˆ̄∆| = |δ̄oklL |.

In the same way, the space-averaged coherence magnitude D̄ can be defined, and estimated as a function

of the L-look sample coherence magnitude dL of equation (3):

ˆ̄D = d̄L =
1

N

N∑

i=1

diL (38)

ˆ̄D of equation (38) is identical to the averaged sample coherence magnitude D̂ of equation (22) defined

in Section 3.2 for stationary processes. The averaged Siegert coherence magnitude d̄sigL (where dsigL is from

equation (18)) can also be used as an estimate of the averaged coherence magnitude under the local joint

circular Gaussian assumption: ˆ̄D = d̄
sig
L .

5.3 Accuracy of the averaged sample coherence magnitude

For an area which contains n statistical ensembles, the d̄L expectation is:

E(d̄L) =
1

n

n∑

k=1

E(dkL) , (39)

where E(dkL) is the expectation of the L-look sample coherence magnitude for the kth ensemble. If the

sample magnitude coherence dkL of each ensemble k were unbiased, equation (39) would be equivalent to:

E(d̄L) = ˆ̄D =
1

n

n∑

k=1

Dk , (40)



where Dk is the coherence magnitude of the ensemble k, and d̄L would yield an accurate estimate of the

averaged coherence magnitude D̄. Notice that for a stationary target, only one statistical ensemble exists,

and the averaged coherence magnitude D̄ is identical to the coherence magnitude D of the unique statistical

ensemble: D̄ = D.

Under the assumption that the two channels are locally zero mean jointly Gaussian, the sample coher-

ence magnitude statistics derived in Section 2 can be used. The fact that the sample coherence is generally

biased (i.e E(dL)k 6= Dk), results in a biased estimate of D̄. Since different ensembles are included in the

averaged sample, the method described in Section 3.2 cannot be used to remove the estimate bias. The

user must then confront the fact that the coherence is biased under low coherence conditions. Equation (6)

can be used to fix the number of independent looks needed to obtain an insignificant bias for a coherence

value larger than a given threshold, as done in [11, 21]. The same conclusion can be extended to the

averaged Siegert estimate d̄sigL since dsig is biased. If the region is not locally Gaussian, d̄sigL would yield to

a different estimate than D̄, as E(dL)k 6= Dk for each ensemble k contained in the region of interest (see

Sections 2.4 and 3.4).

5.4 Accuracy of the averaged complex coherence

The δ̄L expectation for an area which contains n statistical ensembles, is:

E(δ̄L) =
1

n

n∑

k=1

E(δkL) (41)

where E(δkL) is the expectation of the L-look sample coherence for the kth ensemble. Under the assumption

that the two channels are locally zero mean jointly Gaussian, the statistics of the sample coherence derived

above (Section 4.2) can be used. For a sufficiently large L (L ' 20), the L-look sample coherence δL is

practically unbiased and E(δkL) = ∆k for each ensemble k. This leads to:

E(δ̄L) = ˆ̄∆ =
1

n

n∑

k=1

∆k (42)

Notice that for a stationary target, only one statistical ensemble exists, and the averaged coherence ∆̄ is

identical to the coherence ∆ of the unique statistical ensemble: ∆̄ = ∆. An unbiased estimate of ∆̄ can

also be obtained, under the local joint circular Gaussian assumption, with the averaged Olkin coherence

estimate δ̄olkL = ˆ̄∆, as δolkL is unbiased.

5.5 Implications for coherence estimation of “stationary in increments” signals

In contrast to the spatial averaging in magnitude, the averaging in complex permits the calculation of

unbiased estimates |δ̄L| (for L ≥ 20) and |δ̄olkL | for the magnitude of the averaged coherence |∆̄|. It is worth



noting that spatial averaging in magnitude yield (after bias removal) an estimate of the “incoherent”

sum D̄ (of equation (40), for n ensembles), whereas the averaging in complex leads to an estimate of the

magnitude of the “coherent” sum ¯|∆| (of equation (42)), which is generally of smaller value: |∆̄| ≤ D̄. The

last method, which permits the immediate calculation of an unbiased estimate, is preferred, provided that

the user interest is the ”coherent” sum ¯|∆| and not the ”incoherent” sum D̄. In the case of a stationary

coherence signal, the two methods estimate the same parameter |∆̄| = D̄ = D, and the unbiased estimate

|δ̄L| is again preferred to |d̄L|, which generally needs bias removal.

5.6 Estimation of the topographic phase corrected coherence in SAR interferometry

In certain non-homogeneous scenes, the processes involved in equation (1) cannot assumed to be stationary

in increments, and the coherence cannot be estimated even locally. In some applications, the source of

signal nonstationarity might be removed, and coherence can then be estimated. For example, in SAR

interferometry, the nonstationarity of the cross-channel product z1z
∗
2 is assigned to the phase changes due

to topographic variations. The phase nonstationary is compensated at the spatial position i with a phase

factor exp(−jΦi) for the local imaging geometry, and the sample phase corrected coherence δTPC is used

instead of the sample coherence δ of equation (2)[11]:

δTPC =

∑L
i=1 z1iz

∗
2i · exp(−jΦi)√∑L

i=1 |z1i|2
√∑L

i=1 |z2i|2
(43)

After phase compensation and under the assumption that the unique source of signal nonstationarity is

the topographic phase variations, all the processes involved in equation (43) are stationary in the region

of interest, and the channels can still be assumed to be zero mean jointly Gaussian. The results obtained

in stationary regions with the sample coherence of equations (2), and (3) can then be extended to the

modified sample coherence δTPC , and dTPC = |δTPC |. An unbiased estimate of the topographic phase cor-

rected coherence magnitude DTPC = |∆|TPC can be obtained using one of the unbiased methods described

previously. Averaging in complex leads immediately to unbiased estimates whereas averaging in magni-

tude yields estimates which need bias removal. The sample coherence magnitude |δTPC | can also applied

over the whole stationary (after topographic phase compensation) region of interest (see Section 2 for the

sample coherence method). This method, which is less computationally expensive can be applied only if

the topographic phase variations are well compensated. In the case of residual phase errors, the averaged

sample coherence methods can be used as long as the signal can be assumed to be stationary in increments.

One might circumvent the nonstationarity problem related to the phase variations by eliminating the

nonstationary phase term of z1z
∗
2 in equation (1), and calculating the coherence of intensity channels

(of equation (19)). This was done in [8] where the Siegert estimate was used for coherence magnitude



estimation. Note that the Siegert relationship of equation (18) was established for stationary processes.

In the case of phase nonstationarity, the sample coherence magnitude d of equation (3) is meaningless,

and the estimate obtained after bias removal (see section 3.4) is the averaged (square root of) correlation

coefficient R1/2 , given for an area of n statistical ensembles, by:

R1/2 =
1

n

n∑

k=1

√
Rk (44)

where Rk (from equation (17)) is the correlation coefficient of the statistical ensemble k. The parameter

obtained in this way is different from the topographic phase corrected coherence magnitude DTPC . Simula-

tion were carried out in [2] to assess how different the two parameters R1/2, and DTPC are. This problem is

not discussed in this paper, and only the bias on the parameter which results from the estimation process,

is discussed.

If the topographic phase does not change significantly within small areas, the coherence can be esti-

mated locally using the sample coherence of equation (2), and the nonstationary coherence signal can be

characterized with the space-averaged coherence. As explained above, the space averaging can be per-

formed in magnitude to obtain a biased estimate of the incoherent sum |D̄| (of equation (40), for an area of

n statistical ensembles), whose bias cannot be removed under low coherence conditions. The space averag-

ing can also be performed in complex, and an unbiased estimate of the coherent sum |∆̄| (of equation(42))

is obtained. The two parameters D̄, and |∆̄| used to characterize the nonstationary coherence signal are

different: D̄ ≥ |∆̄|. If the nonstationarity of the coherence signal is associated only with the topographic

phase change, the nonstationary coherence signal can be transformed to a stationary signal by compen-

sating each sample coherence with a topographic phase term [11]. The spatial averaging in complex leads

to an unbiased estimation of |∆̄TPC | (= |∆TPC | = DTPC , as one ensemble is contained in the stationary

scene after phase compensation) which is generally larger than the estimate |∆̄| obtained without phase

compensation: |∆̄TPC | ≥ |∆̄| (see [11]). Note that, in both the two cases, averaging in complex yields

unbiased estimates of the two parameters |∆̄|, and |∆̄TPC |. However, the precision of the estimate | ˆ̄∆TPC |

obtained after removing the nonstationary phase should be better than the precision of | ˆ̄∆| as all the sam-

ples belong to the same and unique statistical ensemble after phase compensation. The difference between

the three parameters D̄, |∆̄|, and |∆̄TPC | will not be discussed further in this paper.



6 EXAMPLES OF COHERENCE ESTIMATION: RESULTS AND

DISCUSSION

The various methods presented in Figure 1 are illustrated using CCRS Convair-580 SAR HH-VV data

[17]: two sets of calibrated complex data collected with the X- and C-band SAR polarimeters over a site

at Wainwright, Alberta (X-band, 1989), and another at Altona, Manitoba (C-band, 1994). The first test

scene described in [30] spans the incidence angle range 45◦-69◦ and contains an old river bed, harvested

alfalfa, wheat fields, and shrub-covered areas. The second test scene covers the incidence angle range 0◦-50◦

and contains farm and urban areas.

The sample coherence magnitude dN of equation (3) was calculated over large extended areas. Each

area contains a sufficiently large number N of independent samples that the coherence magnitude estimate

is essentially unbiased over stationary areas. The sample coherence magnitude is then calculated over

(3x3, L ' 4) and (7x7, L ' 20) moving windows to generate 4-look and 20-look coherence magnitude

and (complex) coherence maps. The averaged L-look magnitude coherence d̄L (of equation (22)), and the

magnitude of the averaged sample coherence |δ̄L| (of equation (24)) were calculated for the different samples

selected on the coherence map. Table 1 presents the magnitude coherence estimates dN and d̄4, as well as

the sample standard deviation of d4 measured from the 4-look coherence magnitude map. Equations (6)

and (7) are used with the “unbiased” estimate values dN obtained to calculate the multi-look coherence

estimate mean E(d4) and standard deviation which can be expected. These values are presented in Table 1,

as well as the error tolerance on the coherence magnitude estimates. Table 2 presents the results concerning

|δ̄4| obtained from the 4-look (complex) coherence map, where equations (25) and (26) were used for the

calculations related to the magnitude of the averaged 4-look sample coherence |δ̄4|.

As can be seen for the selected stationary areas, the multi-look coherence estimates d̄4, and |δ̄4|measured

on the 4-look coherence maps are very close to E(d4), and |E(δ4)|, respectively. This indicates that the

bias can be removed accurately from the coherence magnitude estimates d̄4 and |δ̄4|. Notice also the good

agreement between the sample standard deviation measured from the 4-look coherence maps with the

theoretical values. This good agreement with the theoretical statistics is confirmed for all of the observed

areas whose backscattering satisfy the product model. For the nonstationary urban areas, the results differ

between the three methods. The sample coherence magnitude yields erroneous results because of signal

nonstationarity, and is disregarded. The two estimates d̄4 and |δ̄4| lead to different results since the two

parameters to be estimated are different. The last method gives results close to zero because of the abrupt

change of phase which is ignored in the magnitude method.

For the larger window of 7x7 (L ' 20), Table 3 presents the results obtained over the same areas.

For the target with stationary coherence signal, the values obtained with the 20-look (complex) coherence



estimator δ̄20, are very close to the coherence values obtained with the sample coherence magnitude. In

practice, they do not need any bias removal. In contrast, the values obtained with d̄20 still need bias

removal. For urban areas, the three methods again lead to different results for the reasons mentioned

above. The results obtained with δ̄20 should be unbiased whereas the ones obtained with d̄20 are biased

(see Sections 3.2 and 4.3.1). Note the difference between the values obtained with δ̄20 and δ̄4. This

difference may indicate that the coherence signal is not locally stationary over the 7x7 moving window

(20-looks). Since the bias on δ̄4 is practically insignificant for the actual low coherence value obtained (cf.

Figure 5), the coherence estimate using the smallest window size (3x3) should be retained.

The results obtained under the joint circular Gaussian assumption with the averaged Siegert coherence

magnitude estimate d̄sigL and the magnitude of the averaged Olkin coherence estimate |δ̄olkL | over the 3x3

and 7x7 moving windows are presented in Tables 4 and 5, respectively. d̄sigL leads to biased estimates for

all the samples under study. An unbiased estimate of D can only be deduced for Gaussian areas, as was

explained in Section 3.4.

Considering the results presented in Table 5 for the the magnitude of the averaged Olkin coherence

estimate |δ̄L
olk
|, it can be seen that the coherence values obtained with L ' 4 are biased. The joint

circular Gaussian conditions (27) were then assessed. Neither condition was satisfied over the small 3x3

moving window. The differences between the terms on the right and the left sides of equations (27) are

then significant, and equations (28) and (29) cannot be used for coherence estimation. For the larger

window, the difference between the two terms becomes smaller and |δ̄olk20 | yields estimate values closer to

the ones obtained with the estimate dN . However, the results obtained with |δ̄20| are better. This indicates

that the error due to the joint circular Gaussian assumption is still significant, and that these conditions

need large areas to be satisfied. This limits the use of the coherence magnitude estimate |δ̄L
olk
|, which

in addition consumes much more computing time than d̄L. The same conclusion can be extended to the

Siegert estimate of equation (18).



Table 1: Coherence magnitude estimates from 4-look coherence magnitude map

D̂ d̄4 E(d4) σ(d4) σt(d4)

River bed 0.319 ± 0.014 0.535 ± 0.015 0.518 ± 0.006 0.21 0.21

Harvested alfalfa 0.426 ± 0.016 0.587 ± 0.017 0.567 ± 0.006 0.21 0.20

Harvested wheat 0.599 ± 0.009 0.678 ± 0.011 0.666 ± 0.005 0.18 0.19

harv. alf.-wheat 0.516 ± 0.011 0.622 ± 0.012 0.618 ± 0.05 0.20 0.20

Shrub area 1 0.348 ± 0.013 0.552 ± 0.013 0.549 ± 0.005 0.21 0.21

Shrub area 2 0.482 ± 0.013 0.618 ± 0.014 0.606 ± 0.005 0.20 0.20

Bare field (scene 2) 0.799 ± 0.002 0.811 ± 0.003 0.817 ± 0.003 0.13 0.14

urban1 (scene2) 0.449 ± 0.004 0.525 ± 0.004 0.577 ± 0.003 0.31 0.21

urban2 (scene2) 0.294 ± 0.009 0.558 ± 0.008 0.507 ± 0.010 0.33 0.21

.

TABLE 2: Coherence estimates from 4-look (complex) coherence map

D̂ |δ̄4| |E(δ4)| σ(δ4) σt(δ4)

River bed 0.319 ± 0.014 0.282 ± 0.03 0.302 ± 0.008 0.50 0.47

Harvested alfalfa 0.426 ± 0.016 0.394 ± 0.037 0.407 ± 0.07 0.48 0.45

Harvested wheat 0.599 ± 0.009 0.577 ± 0.02 0.574 ± 0.007 0.40 0.36

harv. alf.-wheat 0.516 ± 0.011 0.491 ± 0.026 0.495 ± 0.05 0.43 0.42

Shrub area 1 0.348 ± 0.012 0.338 ± 0.032 0.346 ± 0.010 0.48 0.47

Shrub area 2 0.482 ± 0.013 0.464 ± 0.030 0.456 ± 0.006 0.46 0.47

Bare field (scene 2) 0.799 ± 0.002 0.775 ± 0.006 0.779 ± 0.003 0.27 0.29

urban1 (scene2) 0.449 ± 0.004 0.08 ± 0.009 0.427 ± 0.004 0.56 0.43

urban2 (scene2) 0.294 ± 0.009 0.03 ± 0.019 0.273 ± 0.010 0.60 0.47

.



TABLE 3: Coherence estimates from 20-look coherence maps.

D̂ d̄20 |δ̄20|

River bed 0.319 0.377 0.309

Harvested alfalfa 0.426 0.455 0.419

Harvested wheat 0.599 0.612 0.589

mixture of harv. alf.-wheat 0.516 0.535 0.510

Shrub area 1 0.348 0.413 0.351

Shrub area 2 0.482 0.521 0.480

Bare field (scene 2) 0.799 0.804 0.794

urban1 (scene2) 0.449 0.380 0.130

urban2 (scene2) 0.294 0.395 0.07

.

TABLE 4: Coherence estimation using the averaged Siegert coherence magnitude estimate

D̂ d̄
sig
4 d̄

sig
20

River bed 0.319 0.551 0.410

Harvested alfalfa 0.426 0.610 0.433

Harvested wheat 0.599 0.679 0.620

mixture of harv. alf.-wheat 0.516 0.598 0.490

Shrub area 1 0.348 0.563 0.405

Shrub area 2 0.482 0.615 0.505

Bare field (scene 2) 0.799 0.788 0.821

urban1 (scene2) 0.449 0.539 0.376

urban2 (scene2) 0.294 0.580 0.479

.



TABLE 5: Coherence estimation using the magnitude of the averaged Olkin coherence

estimate

D̂ |δ̄olk4 | |δ̄olk20 |

River bed 0.319 0.268 0.303

Harvested alfalfa 0.426 0.380 0.436

Harvested wheat 0.599 0.538 0.574

mixture of harv. alf.-wheat 0.516 0.470 0.498

Shrub area 1 0.348 0.274 0.326

Shrub area 2 0.482 0.447 0.484

Bare field (scene 2) 0.799 0.764 0.793

urban1 (scene2) 0.449 0.076 0.129

urban2 (scene2) 0.294 0.068 0.111

7 CONCLUSION

In stationary regions, the sample coherence magnitude provides a coherence magnitude estimate which

is asymptotically unbiased. For a finite number of samples N , the estimate dN is biased mainly under

low coherence conditions. The statistics of the sample coherence magnitude should be used to assess the

accuracy and the precision of the estimate as a function of the number N of independent samples contained

in the area of interest. The methods proposed in Section 2 can be used to remove the eventual bias, and

to calculate the estimate precision. In nonstationary regions, the estimate leads to a meaningless value,

and the sample coherence magnitude has to be calculated in small areas in which the original signals can

be assumed stationary.

The space-averaged sample coherence magnitude d̄L calculated from an L-look coherence magnitude

map can characterize the coherence in certain nonstationary regions in which the original signals can be

assumed stationary in increments. Averaging in magnitude yields an additional bias, and the estimate

obtained is highly biased under low coherence conditions. A method is proposed for stationary regions to

remove the bias, and to calculate the estimate precision as a function of the coherence map resolution (fixed

by L), and the number N of averaged pixels. The bias cannot be removed in the nonstationary (stationary

in increments) scenes, and the user should acknowledge the fact that the estimate is significantly biased

mainly under low coherence conditions. The statistics of the sample coherence magnitude can be used to

calculate the optimum coherence map resolution (number of looks L) to be used for unbiased coherence

estimation within areas for which the coherence magnitude D is larger than a given threshold.



The coherence in nonstationary regions can also be characterized with the space averaged sample

(complex) coherence. An unbiased coherence estimate |δ̄L| can be obtained for both stationary and non-

stationary regions by spatially averaging the coherence map of sufficiently coarse resolution (L ' 20) in

which the original signals can be assumed locally stationary. Averaging in complex is preferred to the

averaging in magnitude provided that the user interest is the “coherent” sum ¯|∆|. If the “incoherent” sum

|D̄| is required, d̄L might be used with an eventual significant bias which cannot be removed under low

coherence conditions.

Coherence estimation using approximate expressions obtained under the joint circular Gaussian as-

sumption (such as the averaged Siegert estimate d̄
sig
L , or the averaged Olkin estimate |δ̄oklL |) can only

be applied on coarse resolution maps, since such an assumption needs large sample size to be realized.

In this case, an unbiased coherence magnitude D can be obtained with |δ̄oklL | in stationary and certain

nonstationary scenes, whereas d̄sigL leads to a different parameter (than D) at the presence of texture.
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Appendix 1: JOINT PDF OF THE COHERENCE AMPLITUDE AND PHASE

We use the same notation as [31]. Ikl = ĵkl where k, l = 0, 1 and jkl is an element of the coherence

matrix [J ]. The complex coherence is: δ = j12/
√
j11j22 = D exp(jβ). The complex coherence estimator is:

δ̂ = I12/
√
I11I22 = d exp(jφ). Using the Wishart distribution [5], the joint pdf of the element Ilj can be

written down [31]:

p(I11, I22, |I12|, φ) =
L2L

πΓ(L)Γ(L− 1)

|I12|(I11I22 − |I12|2)L−2

|det[J ]|L

exp
[
−L

(
σ2

2I11 + σ2
1I22 − 2D|I12|σ1σ2 cos(φ− β)

)
/det[J ]

]

(45)

If we introduce the variable h = I11I22, the following pdf can be deduced:

p(h, d, φ) = KhL−1d(1− d2)L−2 exp

[
2Lσ1σ2dD

√
h cos(φ− β)

det[J ]

]

·K0

(
2Lσ1σ2

√
h

det[J ]

)

(46)

where K0 is the modified Bessel function, and K is a constant. To derive the joint pdf expression p(d, φ),

equation (46) has to be integrated over h. The variable u =
√
h is introduced, and the following integral

analytical expression given in [7] is used:

∫ +∞

0
xµ−1 exp(−αx)Kν(βx) · dx =

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 0.5)

√
π(2β)ν

(α+ β)µ+ν

·F
(
µ+ ν, ν + 0.5;µ+ 0.5;

α− β

α+ β

)
(47)

After some manipulations, the following expression is obtained:

p(d, φ) =
(1−D2)L

πΓ(L)Γ(L− 1)
d(1− d2)L−2[Γ2(L)F (L,L; 1/2, d2D2 cos2(φ− β)) +

2Γ2(L+ 1/2)dD cos(φ− β)F (L+ 1/2, L+ 1/2; 3/2; d2D2 cos2(φ− β))]

(48)



Appendix2: EXPECTATION OF THE SAMPLE COHERENCE

E(δ) can be obtained from equation (48) by a double integration:

E(δ) =

∫ 2π

0

∫ 1

0
d exp(jφ)p(d, φ)dφ dd (49)

Equation (49) is first integrated over d. This leads to the following expression:

E(δ) =

∫ 2π

φ=0
(J1(φ) + J2(φ))dφ (50)

where J1(φ) is given by:

J1(φ) = exp(jφ)
Γ(L)(1−D2)L

4
√
πΓ(L+ 0.5)

·3 F2(3/2, L, L;L+ 0.5, 0.5;D2 cos(φ− β)2) (51)

and J2(φ) is given by:

J2(φ) =
Γ2(L+ 0.5)

πΓ(L)Γ(L+ 1)
exp(jφ)D cos(φ− β)(1−D2)L

·3F2(2, L+ 0.5, L+ 0.5;L+ 1, 1.5;D2 cos(φ− β)2) (52)

When integrated from 0 to 2π, J1(φ) leads to a null expression. To calculate the integral of J2(φ), the

variable x = sinφ is introduced and the following analytical expression derived in [7] is used:

∫ 1

0
(1− x)µ−1xν−1 ·p Fq(a1, .., ap; b1, .., bq; ax)dx =

Γ(µ)Γ(ν)

Γ(µ+ ν)
·p+1 Fq+1(ν, a1, .., ap;µ+ ν, b1, .., bq; a) (53)

After some manipulations, equation (25) is obtained.
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