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RÉSUMÉ

Au cours des cinq prochaines années, une série de
capteurs satellitaires seront lancés offrant la possibilité
d'acquérir des images monochromes à des résolutions
spatiales variant de 1 à 3 mètres et des images
multispectrales à des résolutions plus faibles variant de
4 à 15 mètres. La cartographie topographique (Konecny,
1996) à grande échelle (1:50000 ou plus) constituera
une application potentielle importante pour ces données.
Des techniques d'extraction d'information automatisées
seront donc requises pour permettre l'exploitation de
cette source de données à grand volume. Quoique des
progrès importants aient été réalisés dans des secteurs
comme la génération de modèles numériques d'élévation
(MNE), d'autres secteurs, notamment l'extraction des
caractéristiques plan-imétriques, font encore appel à une
main-d'oeuvre intensive (Leberl, 1994). La communauté
civile de télédétection qui a surtout traité des images
multispectrales à résolution moyenne ou faible (10 à
1000 mètres), a concentré ses efforts sur l'exploitation
des attributs spectraux plutôt que les attributs spatiaux
spécifiques des images pour déterminer l'utilisation
thématique du sol. Quoique ces réalisations aient été
significatives pour les besoins de la cartographie
synoptique, elles seront d'intérêt limité pour la
cartographie à grande échelle dans le contexte des
nouveaux capteurs. D'autre part, des recherches ont été
réal-isées parallèlement au cours des deux dernières
décennies pour développer des systèmes informatisés
d'analyse d'images aéroportées. Ces recherches ont été
financées en grande partie par les militaires, ce qui
explique qu'on ait négligé les aspects reliés au domaine
des applications.  Toutefois, cela a permis le
développement d'une série de technologies d'analyse
spatiale conçues pour des images monochromes à haute
résolution spatiale qui peuvent, en théorie, être
généralisées à des applications portant sur une variété
plus grande de scènes. Dans cet article, on présente une
revue des derniers développements dans le domaine des
systèmes d'analyse d'images, incluant un survol des
méthodologies principales, de même qu'un inventaire des
systèmes intégrés d'analyse d'images les plus importants.
En conclusion, nous présentons une discussion sommaire
sur les secteurs spécifiques vers lesquels il faudra
orienter le développement dans le futur dans le contexte
de l'application de cette technologie au domaine de
l'automa tisation de l'extraction d'information
planimétrique.

SUMMARY

Within the next five years a series of satellite sensors
will be launched that will be capable of providing
monochrome imagery with spatial resolutions in the
range 1 to 3 metres and multispectral imagery at lower
resolutions in the range of 4 to 15 metres. A key
potential application of such data will be fine scale (i.e.
1:50000 or better) topographic mapping (Konecny,
1996). To exploit this high volume data source,
automated information extraction techniques will be
required. While great strides have been made in areas
such as digital elevation model (DEM) generation,
other areas, in particular planimetric feature
extraction, remain operator intensive (Leberl, 1994).
The civilian remote sensing community, which has
dealt largely with moderate to low resolution (10 to
1000 meter) multispectral imagery, has concentrated
on exploiting spectral rather than detailed spatial
image attributes to infer thematic landcover. While
these achievements have been impressive for synoptic
mapping purposes, they will be of limited value for fine
scale mapping from the new sensors. On the other
hand, parallel research has been on-going for the past
two decades to develop computer-based aerial image
under-standing (IU) systems. This research has been
largely military-sponsored and as a result has had a
narrow applications focus; however, it has resulted in
the development of a host of spatial reasoning
technologies which are tailored to high spatial
resolution monochrome images and which can, in
theory, be generalized to apply to a broader range of
landscapes. In this paper a review is presented of the
state of-the-art in aerial IU, including overviews of
some of the key methodologies, as well as a survey of
major integrated IU systems. The paper concludes with
a summary discussion of selected areas requiring
further development if this technology is to be applied
to automating planimetric information extraction.
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INTRODUCTION

Most image processing algorithms developed and
employed by the civilian remote sensing community

have been tailored for the analysis of medium to low spatial
resolution (10-1000 meter) images. Typically these algorithms
exhibit the following characteristics:

(a) Processing is pixel-based, relying on spectral dimension-
ality rather than spatial context to accurately ‘classify’
images.

(b) When spatial information is included, it is based on the
relative radiometric attributes of pixels within fixed
windows, usually referred to as image texture (e.g.
Haralick, 1979). Generally, textures are encoded in the
form of pseudo-bands which can be readily processed in
conjunction with conventional spectral bands using
per-pixel processes such as supervised classification.
Empirical post-classification processing is also used to
encapsulate context, for example, the application of
classification map filtering.

As image spatial resolution increases, greater local radio-
metric heterogeneity can be expected and hence the need for
more sophisticated methods to directly quantify and interpret
spatial information. As resolutions approach 1 metre, many
man-made objects such as buildings will be discernable as
discrete image features. As a result, traditional low resolution
thematic classes such as ‘suburban’ will disaggregate into a
diversity of functionally-related subcomponents (e.g. house,
driveway, lawn, street).

In parallel, but in general isolated from civilian remote sensing
activities, there has been on-going computer vision research
directed at the analysis of  high resolution monochromatic
aerial photos. These endeavours have led to the development of a
rather different approach to scene interpretation, usually referred
to as ‘image understanding’ (IU). The key characteristics of IU
are summarized below.

(a) IU involves feature, rather than per-pixel, based processing
and manipulation. Images are partitioned into ‘feature’
components such as segments, lines, etc. Class labels are
assigned to each such ‘feature’ based on its intrinsic
attributes or its context vis-a-vis neighbouring features. 

(b) While per-pixel classification relies on ‘training’ pixels to
quantify statistical image attributes of classes, image under-
standing relies on knowledge of the generic structural
characteristics of physical objects (e.g. buildings, roads,
etc.), their expected spatial and functional relationships
and imaging models to predict their corresponding image
feature characteristics. 

(c) In the most general case, interpretation is conducted at a
range of levels of spatial context, employing both image-
directed (bottom-up) and model-driven (top-down)
processing. For example, initial labels may be assigned to
features based on their in-situ attributes. This is followed

by model-driven spatial reasoning to resolve conflicting
classifications, infer missing object components and
construct scene models of increasing spatial extent.

(d) Since military applications have been a prime driver of IU
technology, limited-goal strategies have been emphasized.
In such scenarios, scene interpretation is limited to the
location and identification of only a subset of ‘objects’,
usually man-made ones such as  aircraft, vehicles, special-
purpose buildings, etc. As a result, a typical processing
strategy may involve two steps, first, full scene
‘reconnaissance’ processing to locate regions of interest
(e.g. an airfield) followed by in-depth analysis of these
restricted regions to detect and identify those specific
objects of interest (e.g. aircraft).

(e) Early work in IU was directed at the analysis of single
images hence research addressed problems related to the
derivation and interpretation of monocular cues. For
example,  attributes related to height had to be inferred
from the presence or absence of shadow. Recent work
has addressed the analysis of digital stereo image pairs
and the integration of photogrammetric methods with IU
image processing.

(f) Great effort has been put into both using existing collateral
information in scene interpretation and generating new
collateral information from interpreted images. These goals
are dictated by the nature of the major applications of most
military-sponsored IU systems, which are reconnaissance
and intelligence gathering. In a typical scenario, the system
operator (photointerpreter) begins with a ‘site folder’, i.e. a
database which includes both a current site model (i.e. a
summary of the site contents, e.g. locations and types of
buildings, roads, airport runways, etc.) and the data from
which that model has been derived (e.g. raw and interpreted
images). The model itself may consist of both graphical
(i.e. digital maps, images, etc.) and textual data (i.e. a
summary description). The ‘ideal’ IU system goals are to (a)
ingest new imagery, (b) spatially integrate it with existing
data, (c) derive a scene model from it using as a seed the
existing site model, (d) report the locations of potential
change and the nature of that change and (e) aid the
operator in assessing and validating changes and updating
the site model (including the generation of textual reports).
The integration of image and textual data is not one which
has been seriously addressed in civil remote sensing but
which is of pivotal importance in, for example, automated
map updating.

Given the approaching launch of operational civilian sensors
with geometric fidelity rivalling that of aerial photography, it is
imperative that existing IU tools be critically assessed within
the context of specific civilian remote sensing applications. In
this paper we  survey IU research and discuss its potential for
automating planimetric feature extraction in support of
topographic mapping. 
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REVIEW OF RELEVANT WORK IN AERIAL

IMAGE UNDERSTANDING

There are numerous textbooks which describe fundemental image
processing techniques used in IU as well as knowledge issues
(e.g. Ballard and Brown, 1982; Haralick and Shapiro, 1992;
Sonka et al., 1993). The reader is referred to these for background
material. As this paper presents an in-depth review of selected
topics relevant to planimetric feature extraction, we will refer
directly to specific research articles. Two key ingredients of all IU
systems are (a) baseline image processing functions for the
extraction and description of primitive image features (i.e. edge
and segment structures) and (b) ‘knowledge engineering’ issues
which encompass spatial reasoning strategies and methods for
knowledge encapsulation. We briefly review these elements in
this section. This is followed by a survey of current IU system
implementations.

Image Feature Extraction and Description
Region Boundary Extraction
Boundary delineation is a complex process involving
(a) estimation of edge magnitude and direction at every pixel
location, (b) edge thinning, (c) thesholding to eliminate noise-
related responses, (d) hierarchical linking of edge information
first at the pixel level into logically-connected chains and
ultimately into groupings of chains, (e) gap filling and (f)
detection of nodes, i.e. points such as corners which link inter-
secting edge chains. In general only a single edge type is being
sought, however, there are numerous formulations of detection
criteria, each of which lead to a distinct set of edge response
templates. The most frequently employed algorithms in aerial
image processing include (a) an ideal zero-width step (Nevatia
and Babu, 1980), (b) derivative of a gaussian (Canny, 1986)
which rationalizes 3 measures of performance, namely ‘good’
detection (low probability of missing real edges and detecting
noise) , ‘good’ position estimation and single response to each
edge, which also accomodates edges of a finite width, and
finally (c) the Laplacian of a Gaussian or second derivative of
a gaussian (Marr and Hildreth, 1980).

Nevatia and Babu also propose methods for the remaining
steps although linking is limited to the labelling of linear chains
and the pairing of antiparallel chains for the purpose of detecting
roads. Important refinements and extensions applied in aerial
image IU systems include utilization of B-splines to model
chain curvature thereby aiding in corner detection (Medioni
and Yasumoto, 1987), incorporation of extrapolation methods
in road tracking (McKeown and Denlinger, 1988), linking of
linear chains to locate shadow cues in the identification of
rectangular buildings (Huertas and Nevatia, 1988), linking
collinear line fragments (Venkateswar and Chellappa, 1992),
perceptual grouping methods to identify  collated features
(Mohan and Nevatia, 1988, 1989) and ‘model-driven’ edge detec-
tion which utilizes cost functions to derive best fitting curvilinear
features through noisy edge data (Fua and Hanson, 1988).

Segmentation
Segmentation can be defined as the process of subdividing an
image into a set of ‘homogeneous’ regions. In the simplest case,
the homogeneity criterion can be equated to uniform image
brightness, however, in the current application this must be
generalized to include uniform texture as well. Segmentation
techniques can be conveniently classed as boundary-based,
region-based or hybrid (combination of the two). As with edge
detection, the literature on this topic is too vast to cover in
detail (e.g. see for examples recent surveys by Pal and Pal
(1993), Reed and du Buf (1993)), so we limit this discussion to
papers dealing with techniques which have been directly
applied to aerial images.

Boundary-based methods involve tracing closed boundaries
around regions, usually via edge detection and linking. Perkins
(1980) proposed an effective method, involving only local
operations which addresses two practical issues, namely, gap
filling and the discrimination of edge responses of region
boundaries from those associated with intra-region texture. Gaps
are filled through a succession of edge dilation/thinning opera-
tions while connectivity criteria are employed to distinguish
between texture and boundary-induced edge responses.

Region growing, on the other hand, involves seeding a large
number of regions then, through a series of split-and-merge
operations based on region homogeneity and adjacent-region
similarity criteria, attaining a final consistent partitioning.
Recently, Pan (1994) proposed a promising variation which
uses iterative smoothing to initially fragment an image into a
large number of regions. The subsequent merging is governed
by a goal of  global (i.e. scene-wide) information preservation,
a concept proposed and developed by Leclerc (1988, 1989). 

Both boundary and region methods each have their limitations,
hence hybrid methods have also been proposed. In general these
have been developed for restricted object types and landscapes
(e.g. road finding (McKeown and Denlinger, 1988) and large scale
building delineation (Liow and Pavlidis, 1990)). In addition, they
tend to go beyond simple image processing and incorporate object
knowledge to guide the overall process. For example Liow and
Pavlidis look for cast shadows to find high contrast edges which
are most likely associated with building roofs, then use region
growing to find the remaining sun-facing sides.

Knowledge Engineering Issues

In this subsection we address two key issues related to the
utilization of computer-based reasoning namely process control
strategies and knowledge representation. More details can be
found in papers addressing the role of artificial intelligence in
photogrammetry (Sarjakoski,1988; Forstner, 1993) and system
implementation issues ( e.g. Matsuyama, 1987; Xu, 1992).

Process Control
Machine interpretation of complex imagery requires a compre-
hensive suite of processing modules each with unique inputs,
functional limitations and outputs. Process selection and control is
then a critical issue and, at its highest level, is a decision as to
whether processing should be image or object-driven. For a
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excellent overview discussion of this topic see Matsuyama (1987).
In an image-driven scenario, also referred to as bottom-up control,
processing proceeds from raster image to image feature extraction
to feature description to recognition. Bottom-up processing is the
approach taken in conventional image processing. On the other
hand, model-driven or top-down control begins with a set of
assumptions/properties of an expected object list. These object
properties are tested against a sequence of image representations
of ever decreasing levels of abstraction. Through a series of
test/validate processes one eventually reaches an interpretation at
the parent image level. The two control strategies each have their
own inherent advantages. For example, a bottom-up approach is
particularly useful for providing initial estimates of labels for a
subset of features, while a model-driven approach does well at
inferring ‘missing parts’ given an initial incomplete interpretation.
Effective system performance requires a combination of the two
within the confines of an iterative refinement strategy (Nicolin and
Gabler, 1987; Matsuyama, 1987; McKeown et al., 1989).

Knowledge Representation
IU systems typically contain a diverse set of knowledge whose
elements can be conveniently grouped into object and image-
related categories. Object-related elements can be further
categorized as one of three forms, (a) intrinsic properties such
as object size, shape, etc. (see for example Perkins et al., 1985),
(b) relational information which defines the expected spatial rela-
tionships among collections of objects of different classes (e.g.
houses are spatially adjacent to driveways) and (c) procedural
knowledge, typically in the form of  ‘condition-action’ pairs
which dictate actions to be undertaken to test a labelling
hypothesis. Symbolic representations of objects, such as in the
form of generalized cylinders, has proven to be successful
(Bogdanowicz and Newman, 1989; Brooks, 1981) but have
limited applicability beyond a restricted range of man-made targets
such as aircraft components. On the other hand, there are a number
of knowledge characteristics which a respresentation model should
be capable of handling. First, object knowledge should be
expressable in a generic or proto-typical form, making it
applicable to a wide range of instances (i.e. landscapes).
Second, some object knowledge is strictly semantic, which
makes its definition difficult to formulate within a precise math-
ematical framework. And third, for most if not all physical
object classes of interest there will be no single definitive attribute
that will unambiguously identify them in an image. As a result, the
knowledge model must allow for cumulative evidence gathering
to support intepretation hypotheses, imprecision in evidence and
multiple interpretations of individual image features. Frame-based
representations provide a viable means of encapsulating these
properties (Mundy et al., 1992) while object-oriented program-
ming languages provide a suitable implementation environment.

The effectiveness of image processing (IP) tasks in extracting
features which can be easily related to physical objects of interest
requires expertise in both the selection of processing parameters
and in sequencing task executions. While most commercial IP
packages rely solely on human expertise, pioneering work in
developing rule-based systems to exploit this knowledge has
already been carried out both in the remote sensing community

(e.g. Goodenough et al., 1987; Fung et al., 1993) and in the IU
community (e.g. Matsuyama, 1987; Bjorklund et al., 1989). In
many IU scenarios, rule selection is dictated by a limited
interpretation goal, e.g. the identification of examples of a
single class of object  (e.g. houses) based on expected in-situ
image feature properties (e.g. rectangular in shape and with a
specific areal extent). In general achievement of this goal will
be at the expense of overall scene processing performance. A
frame-based encapsulation can also be employed both to define
required in-situ image feature properties and the procedures (IP
tasks) necessary to extract them. 

Finally, independent system developments at a variety of
academic and private sector institutions have led both to
duplication of effort and difficulties in results sharing
(McConnell and Lawton, 1988). As a result, there are on-going
efforts to develop a common software development environment
(Mundy et al., 1992; Bremner et al., 1996) and to integrate key
IU components on a single platform (Edwards et al., 1992).

REVIEW OF MAJOR IMAGE

UNDERSTANDING SYSTEMS

Table 1 summarizes some of the major systems developed to
date for aerial IU. Each can be categorized into one of three
classes, (a) systems which attempt to provide full scene
interpretation, (b) goal-directed systems which attempt to
delineate and characterize a limited set of objects (e.g. buildings,
roads, vehicles) and (c) ‘interpreter-aid’ systems which provide
automated functionality in areas such as image rectification,
diverse data integration and enhanced visualization but which
still rely on human interpretation. Rather than presenting
overviews of all of the systems in Table 1, a representative subset
is discussed in detail. This is supplemented with additional
information of unique features of the remainder. 

SPAM (System for Photo Interpretation of Airports
Using MAPS)

SPAM was first developed at the Carnegie-Mellon University
in the mid-1980’s to analyze airport scenes (McKeown et al.,
1985) but has undergone numerous improvements and has been
subsequently applied to urban scene interpretation(see
McKeown et al., 1989, Harvey et al., 1992, McKeown et al.,
1994). It is of particular interest because of its spatial reasoning
methodology and its comprehensive functionality.Airports are
ideal candidates for study because of their well defined, generic
functional components and component spatial relationships.
SPAM begins by segmenting an image into a set of regions and
deriving a set of spatial/spectral attributes for each region.
Classification proceeds through a bottom-up hierarchy of
interpretation phases. Phase 1 consists of generating a classifi-
cation of as many regions as possible based solely on region
attributes and knowledge about the scale and structure of class
objects. These classified regions are referred to as fragments.
Phase 2 uses knowledge of the spatial relationships among classes
to check the consistency of adjacent fragment interpretations. In
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Table 1.
Summary of Aerial Image Understanding Systems.

System Name Reference(s) Comments

ACRONYM                                                         Brooks (1981)     - symbolic model representation of  features                                    
(generalized cylinders)
- bottom-up reasoning only
- applied to aircraft recognition

ARF  McKeown and Denlinger (1988) -  high resolution road tracker
( A Road Tracker)

BABE                                                        
(Built-up Area Building Extractor)

Shufelt and McKeown (1993) - building detection based primarily on monocular cues 
(e.g. shadows)

- applied to large rectangular buildings in dense urban areas

CANC Mohan and Nevatia  (1989) - employs perceptual grouping of  low-level                                    
collated image features
- applied to delineation and matching of rectangular                                      
buildings  in stereo image pairs 

CYCLOPS Barnard (1990)  - automated cartography including orthorectification, 
DEM reation,  perspective viewing

COBIUS                                                   
( Constraint-Based Image                             
Understanding System)

Bjorklund et al . (1989) - key functions include generic domain object 
representations, knowledge control, compensation  for 
unreliable segmentation

 - applied to aircraft recognition

MULTIVIEW                                          
(Multi-Image Building Extraction)

Roux et al . (1995) - building detection and delineation based on direct 
matching of cues in multiple images

PACE Corby et al . (1988) -compiles multiple images into a common 3-D reference 
frame
- synthetic image generation/display
- applied to aircraft surveillance

ROADF Zlotnick and Carnine (1993) - road tracking system

SCORPIUS Bogdanowicz and Newman (1989) - object-directed recognition of man-made objects
- automated generation of assessment reports                                      
to aid human interpreters
- symbolic representation of objects                                  
(generalized cylinders)

SIGMA Matsuyama (1987) - both bottom-up, top-down processing
- frame-based knowledge representation
- applied to suburban scenes

SPAM Harvey et al . (1992) - multiple spatial levels of reasoning
( System for Photo Interpretation of 

Airports Using MAPS)
McKeown et al . (1989)                               
McKeown et al . (1985)

- accuracy assessment, performance                                  
evaluation modules                                                                         
- automated knowledge acquisition                                                 
- applied to airport and suburban scenes

TRIPLE Bhanu and Ming (1988) - emphasis on system learning
(Target Recognition Incorporating                                

Positive Learning Expertise)
- applied to military vehicle detection                                                    
and identification

3DIUS Fischler and Bolles (1994) - human interpreter aid
- major components include image integration                                   
via  photogrammetric tools, texture-mapped  rendering, 
object model-image integration
- builds upon Cartographic Modelling Environment                                         
(CME) of  Hanson and Quam (1988)



Phase 3 an attempt is made to group collections of local
fragments into functional areas thereby creating a larger scale
interpretation. In this process, knowledge of the the functional
components and their spatial relationships can be used either to
rationalize ambiguous fragment interpretations or to predict the
classes of previously unclassified regions based on a ‘missing
part’ analysis of the area. Finally, functional areas are merged
and rationalized to generate a full scene model.

A significant effort has been put into the analysis of system
characteristics and performance of SPAM. A complex user
interface was developed (a) to  employ ‘ground truth’ in the form
of manual segmentations to update attribute characteristics for
classes, (b) to edit/delete/modify rules and (c) track the perfor-
mance impact of individual rules within the context of a complex
knowledge environment. Assessment of scene models can be
undertaken through comparison with human interpretations.
Recent enhancements include methods for automated
knowledge acquisition (Harvey et al. 1992), the employment of
parallel processing to improve computational performance
(McKeown et al., 1994) and tools for refining knowledge bases
(Harvey and Tambe, 1993).

BABE (Built-Up Area Building Extractor)

The previously described system, SPAM, was designed to
generate full scene models, i.e. by labelling every image
segment. Most IU systems have much more modest goals,
either to detect and describe selected object classes or to aid a
human operator in manual interpretation. BABE is an early
example of the former class and is of particular interest because
it’s evolution parallels many of the major directions in aerial
image understanding research.

The original BABE system addressed the problem of detecting
building candidates in single, near-nadir viewing images. In
general these scenes encompassed only dense urban settings
such as the cores of large cities where man-made objects
constitute most of the ground cover and buildings tend to be
rectangular high-rises with flat roofs. Building detection is
accomplished through a combination of edge detection and
line-corner analyses to first identify closed rectangular image
features (Huertas and Nevatia, 1988). Monocular cues such as
shadow area delineation by grey level thresholding and detection
of roof-shadow boundaries are then sought in order to distinguish
raised  from ground-level enclosures (Irwin and McKeown,
1989; Shufelt and McKeown, 1993; Lin and Nevatia, 1996).

In simple situations, for example isolated buildings on level
ground, monocular shadow cues such as shadow length can be
used to infer building height as well. In general, however, pairs
of matched stereo images are required. Conventional area based
image matching is of limited use to estimate the parallax shift
due to height because of elevation discontinuites associated with
building-ground level boundaries and structural occlusions
associated with off-nadir viewing. Alternate approaches have
been investigated including ‘waveform’ matching of radiometric
profiles extracted along epipolar lines (Perlant and McKeown,
1990; Hsieh et al., 1992) combined with image segmentation to
identify flat roofs of near constant reflectance (McKeown and

Perlant, 1992). Ford and McKeown (1992) have also shown that
if multispectral rather than monochrome imagery is available,
improved recognition can be achieved from the addition of
cues derived from conventional spectral classification.

Another important recent trend has been the incorporation of
photogrammetric modelling within aerial IU systems. As a
result, rigorous analysis can now be undertaken of images
acquired at extreme oblique viewing angles. With the aid of
‘vanishing point’ or perspective geometry, edge detection can be
improved since the absolute orientation of line segments in object
space can be inferred. Intersecting vertical-horizontal line pairs
(e.g. associated with building walls) can be distinguished from
intersecting horizontal pairs (e.g. roof or ground level boundaries)
thereby greatly aiding in the extraction of self-contained building
structures (McGlone and Shufelt, 1993). In addition, the ability
to accurately relate image and object space allows one to
successfully execute feature matching in images acquired with
very different viewing perspectives (Mohan and Nevatia, 1989;
Murphy, 1993; Venkateswar and Chellappa, 1992; McKeown
et al., 1994), locate buildings in images which match an object
space template (Meuller and Olson, 1993; McGlone and Shufelt,
1994), and extract 3-D object space models of buildings from
real scenes and subsequently view them from any arbitrary view-
point (Roux and McKeown, 1994; Shi and Shibasaki, 1996).

Because of the difficulties in extracting coherent building
structures and matching them in stereo imagery, there have
been few studies which address critical accuracy issues such as
horizontal positioning of buildings and their absolute height
estimation (Dessard and Jamet, 1995).

ARF (A Road Follower)

Image processing to extract road networks consists of three
steps, (a) road finding, the process of locating ‘seed’ points on
one or more of the roads present in a scene, (b) road tracking,
which involves tracing a road from a starting seed location and
(c) road linking, the connection of discrete road sections into a
consistent, logical network (Zlotnick and Carnine, 1993).
Extensive research has been undertaken to extract roads in low
resolution satellite imagery (see, for example, Wang and Liu
(1994) for a comprehensive review of this topic). In such
imagery, roads widths are typically less than or comparable to
the scale of  the processing windows of feature operators
(typically high pass filters) employed to highlight them and
therefore roads can be considered to be ‘line-like’. On the other
hand, on  metre-resolution imagery, roads are fully resolved and
exhibit two distinct boundaries as well as internal structures and
textures. This added complexity, while making road delineation
potentially more complicated, also opens the door to the utilization
of a wider suite of detection tools, such as structural analysis, and
to the extraction of a more comprehensive set of attributes (e.g.
width, surface material, traffic characteristics).

McKeown and Denlinger (1988) developed ARF to track
roads from manually-located seeds. The approach involves
extraction of a local image intensity profile, normal to the road
direction at a seed location, then tracking of the road  based on
region and correlation-based profile matching. This differs
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while robust automated methods for orthorectification and
digital elevation model extraction are available, planimetric
information extraction remains a primarily operator-intensive
operation. On the other hand, aerial IU technology contains
methodological ingredients which have the potential to
automate at least part of the planimetric feature extraction
process. In this section we address a selected set of  key image
processing issues and propose directions for further research with
the objective of  developing  practical tools for an operational
mapping environment. It is recognized that extracting and
manipulating planimetric information involves much more than
image processing; however such issues as GIS, databases and
semantics go beyond the scope of this paper and will not be
addressed here. 

Intelligent Image Segmentation

While numerous segmentation strategies and variants have
been proposed, most have been applied to relatively limited
image datasets, usually of unspecified spatial resolution. A  sys-
tematic evaluation of the most promising methods is needed,
directed specifically at metre-scale resolution imagery and
encompassing a broad range of landscapes. Relative and
absolute performance measures must be linked to operational
criteria such as map production throughput and cartographic
accuracy. As an example, the ability of a method to generate
segments which exhibit a one-to-one mapping with physical
objects or object components is highly desireable since both
over-fragmentation or over-generalization pose problems for
efficient labelling. Second, while most segmentation algorithms
rely solely on statistical decision making, the development of
intelligent goal-directed process control, i.e. the tailoring of
segmentation parameters to expected scene thematic content, is
critical and holds more promise for improved performance than
the search for new segmentation and edge detection methods
(Matsuyama, 1987).

Diversification of Functional Area Models

Systems, such as SPAM, which attempt to derive full scene
interpretations, employ image reasoning on a hierarchy of
structural scales. Critical ingredients in this process are
functional area models and knowledge which relate neighbouring
objects since only this type of information can resolve conflicting
feature classifications which arise when only in-situ character-
istics are considered. While some success has been achieved in
developing functional spatial models for a restricted class of
man-made settings (i.e. airports and simple suburban residential
areas), most IU research is directed at the extraction of isolated
feature types (e.g. roads, buildings) and therefore do not
attempt to exploit thematic context. To be of operational value,
IU technology will must include a suite of robust models that
encapsulate the structural content of a broad range of ‘cultural’
settings (e.g. rural-agricultural, urban-industrial, urban-commer-
cial, urban-dense residential) as well as ‘natural’ landscapes where
hydrological-land cover relations are encapsulated. Limited work
in natural settings has been already been undertaken, for example
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from road boundary detection techniques which rely on edge
following (e.g. Heipke et al., 1994). Additional reasoning methods
are included to detect a suite of road characteristcs including inter-
sections, road width changes, surface changes, overpasses,
vehicles and occlusions. A related system, ROADF (Zlotnick and
Carnine, 1993), attempts to automate the seeding process. This
system searches for antiparallel sets of edge chains to act as initial
road fragments. Higher level linking is then undertaken to join
intermittent road sections and to eliminate ‘false’ seeds. 

Neither of the above systems is currently robust enough for
‘general purpose’ road network retrieval. As with low resolution
road finders they work best in simpler landscapes such as rural
or low density suburban settings. In denser built-up areas,
conflicting cues arise, for example, ‘false’ seeds associated with
parallel building roof and shadow boundaries. Since building
detection and road detection methods rely on the similar
pre-processing methods, it seems unlikely that extraction
systems for either class in isolation will be successful and therefore
a comprehensive knowledge base of potentially conflicting objects
must be included. The tools for higher level reasoning needed to
satisfactorily link disjoint road sections other than by simple
mathematical extrapolation do not currently exist although
research is underway in this area (e.g. Barzohar and Cooper, 1996).

3DIUS (3-Dimensional Image Understanding System)

The previous examples described efforts toward the goal of fully
automated object detection and classification. There are, however,
parallel developments designed to support conventional human
interpretation by addressing 2 key areas, namely, (a) methods for
generating fully integrated site models consisting of multiple
images and associated collateral data and (b) sophisticated visual-
ization to improve human interpretation (Gee and Newman,
1993). Pioneering work in these areas has been conducted at
SRI  with the development of the Cartographic Modelling
Environment (CME) (Hanson and Quam, 1988). The CME
provides tools for spatial integration of diverse data sets such as
stereo imagery, DEMs and 3-D object space models and for
viewing these data from arbitrary perspective directions.
Subsequently, the CME has evolved to 3DIUS a system which
incorporates more sophisticated uses of photogrammetry and
image rendering. A spin-off research activity is the generation
and manipulation of  ‘virtual’ worlds, i.e. landscape databases
which encompass fully integrated  object models derived from
multisensor inputs with conventional geographic and image data.
While the principal applications of these databases have been in
the areas of military mission planning and dynamic simulation
(Fischler and Bolles, 1994; McKeown et al., 1994; McKeown et
al., 1996), civilian applications, such as urban planning, are also
being pursued (e.g. Sinning-Meister et al., 1996).

RESEARCH AND DEVELOPMENT

REQUIREMENTS

From reviews of the state-of-the-art of digital mapping systems
(e.g. Heipke, 1993; Derenyi,1993; Leberl, 1994), it is clear that
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reconstruction from stereo images (Dang et al ., 1994)
However, the application potential of this concept is much
broader. In the mapping area, models of the spatial organization
of urban street networks could be employed to connect
fragmentary elements found by conventional road finding
algorithms. A second application area is image-map matching. In
scenarios where high resolution imagery is to be used to update
existing low quality maps, precise image-map registration may
be impossible because of poor map geometric accuracy. Rather
than using ground control points for registration, control
‘groups’  could be extracted and matched to provide high     pre-
cision local registration. A control group would consist of a set
of logically associated objects such as road intersections (Haala
and Vosselman, 1992; Hu and Pavlidis, 1996).

CONCLUSIONS

A perceived benefit of operational spaceborne high resolution      (1
- 3 metres) imagery will be its utility for detailed mapping world-
wide. A processing bottleneck in map generation is currently in the
area of planimetric information extraction, a process which
remains labour intensive. Information extraction techniques which
have been developed for low resolution spaceborne imagery are
predominately data driven and are of limited use for this new
imagery. On the other hand, extensive research has been conducted
in aerial image understanding, primarily for the identification and
assessment of a limited set of man-made objects. These techniques
make extensive use of model-driven spatial reasoning, an
approach which is readily generalized to a broader range of plani-
metric features. We have presented a review of IU technology and
identified a number of areas requiring further development. These
include model-driven image partitioning, diversified functional
area models, integration with collateral image and textual
information and perceptual organization.

Finally, migration to full automation in planimetric information
extraction is unlikely to be swift but rather will be a phased
process involving the evolution of semi-automated systems with
ever increasing useage of computerized processing components.
The acceptance of automation by the mapping community will be
contingent on the development and application of rigorous
performance measures which clearly demonstrate automation as a
robust, accurate and cost-effective alternative to operator-intensive
processing. Unfortunately, until recently (see Hsieh, 1995) little
effort has been expended on developing measures to assess the
impact of partial automation on overall system performance.
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