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ABSTRACT

The objective of this study was to develop a robust method for identifying contaminated
pixels from AVHRR composite data sets intended for biospheric studies. Of particular
interest were land pixels partially contaminated by clouds, smoke or other atmospheric
aerosols, as well as pixels with partial snow or ice cover. The method developed for this
purpose, dubbed CECANT (Cloud Elimination from Composites using Albedo and
NDVI Trend), uses channel 1 surface reflectance to identify fully cloud-, snow- , and ice-
covered pixels; and two parameters (R, Z) to distinguish bright (in channel 1), clear-sky
pixels from intrinsically darker but partly contaminated pixels. R and Z are based on the
seasonal NDVI trajectory. Three thresholds are required to apply this approach; they are
obtained from the histograms of channel 1, R and Z. The thresholds are adjusted
separately for each compositing period. Tests with multidate histograms and single-date
images indicated the consistency and robustness of the method in an area where most
seasonal NDVI trajectories have a single peak. An application of the CECANT procedure
to AVHRR composites over Canada for 1993 showed that an average 51%  of the land
pixels were fully or partly contaminated (37%±5% in the June to August period), with a
range from 31% (mid-summer) to 91% (October). The method should be applicable to
other geographic regions where seasonal AVHRR composite data sets (minimum is
channel 1 and NDVI for each composite period) are available.

1. INTRODUCTION

Medium resolution satellite optical sensors have become a fundamentally important tool
for the monitoring of the changing land surface conditions on a global basis. The initial
success applications of the NOAA Advanced Very High Resolution Radiometer
(AVHRR) on various continents (Justice et al., 1985; Goward et al., 1987; Goward and
Dye, 1987), led to the specification of similar sensors for the late 1990s such as the
Moderate-Resolution Imaging Spectroradiometer and the Medium-Resolution Imaging
Spectrometer. Because most land areas on images obtained by these sensors are obscured
by clouds, image compositing over periods of 5-30 days is usually carried out as a pre-
processing step (Gatlin et al., 1984; Holben, 1986; Allison et al., 1989; D'Iorio et al,
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1991; Townshend et al., 1994). The maximum value of the normalized difference
vegetation index (NDVI) has most often been used as a compositing criterion (Cihlar et
al., 1994; Townshend et al., 1994). The reason is that NDVI is reduced by most
atmospheric and bidirectional effects which modify the land surface reflectance in
AVHRR channels 1 and 2  (Holben, 1986; Holben et al., 1986; Lee and Kaufman, 1986;
Cihlar and Huang, 1994). Although various studies indicated the shortcomings of this
approach (Qi and Kerr, 1994; Cihlar et al., 1994; Gutman, 1991) no superior alternative
has yet been found. The compositing process thus provides partial cloud screening.
However, in practice the resulting composites may still contain substantial residual
clouds, either when no cloud-free pixels were available during the compositing period or
as subpixel clouds which are not easily discerned within the pixel  (e.g., Cihlar and
Howarth, 1994).  As an example,  Figure 1 shows several NDVI curves from the boreal
coniferous forest in central Canada for 1993. The observed features include frequent
single-period dips, occasional multiple-period dips, multiple-period suppressed increases,
and an occasional large rise between periods. These are related to various sources of
noise in the data: mostly clouds (thick to thin or sub-pixel), snow, or land ice but also
pixel misregistration (which can result in sharp NDVI increase or decrease), and likely
small effects of bidirectional reflectance variations. The composite product does not
contain explicit information as to which pixels are contaminated or the degree of
contamination.

 Various cloud screening methods have been developed (e.g., Simpson, 1994). Most of
these operate on single date images using multispectral analysis, spectral differencing or
other transforms, spatial coherence or texture, clustering, and thresholds of in individual
channels or channel combinations. Single-date approaches present substantial challenge
over land because of the temporal and spatial variability of the background surface, and
ingenious solutions have been designed in cloud screening software packages to
overcome these (Saunders and Kriebel, 1988, Stowe et al., 1990; Gallaudet and Simpson,
1991). However, because of the complexity of cloud identification and the operational
implications of the cloud screening procedures developed so far, most present operational
programs concerned with the preparation of AVHRR data for land studies do not rely on
cloud screening during preprocessing. Rather, the compositing approach is used to
implicitly screen out cloudy pixels (Robertson et al., 1992; Townshend et al., 1994;
Anonymous, 1994; Smith, 1994). Thus, given the unavoidable residual contamination of
the composite images, cloud masks are an important ancillary data set for the analysis of
these composites over land. The basic reason is that the contaminated pixels need to be
flagged or excluded from further processing of NDVI or of individual channels.

In a noisy composite data set, the problem is identifying pixels/periods which are
unacceptable because of excessive contamination. Two approaches have recently been
developed which make use of the fact that in most instances vegetated land surfaces are



typified by monotonic NDVI profiles, increasing before the growing season peak and
decreasing thereafter.  Sellers et al. (1994) and Los et al. (1994) used an average NDVI
curve, calculated as the best fit through all the measured NDVI points during the season,
and a statistical measure based on multiple fractions of the median difference between
measured and predicted values as a measure of pixel contamination. This method can
detect deviations from the expected average NDVI value. Since it applies one threshold
for the whole season, it is sensitive to the average contamination of the pixel but not to
the time-specific variability of the measured NDVI. It also does not employ directly the
information on the expected monotonic relationship between adjacent periods for the
same pixel.

Cihlar and Howarth (1994) proposed an algorithm which tracks the change in NDVI
between successive periods. They assumed that whenever NDVI decreases (increases)
before (after) the seasonal peak, the pixel is contaminated. This approach can locate
pixels with single-period and multiple-period decreases. It cannot find pixels with small
NDVI increases between successive periods which may still be contaminated (Figure 1),
without making arbitrary assumptions about a minimum necessary increase for an
uncontaminated pixel. Qi and Kerr (1994) proposed a variation of the same principle for
AVHRR compositing. - Although this approach is very sensitive to detecting anomalies
in the temporal trend, it is unforgiving to individual measurements in that it does not
accept even small decreases in NDVI, such as might be caused by bidirectional effects.

For biospheric studies employing AVHRR composites over land there is a need for a
screening method which can detect partial contamination by clouds, smoke, etc.  in
individual pixels with various clear-sky reflectance and at different times in the growing
season. Secondly, there is a need to detect partial contamination by snow or land ice
because of its strong effect on reflectance and NDVI. This is especially important at
northern latitudes where snow/ice cover infringes on the growing season. For vegetation
studies, both effects can be treated as undesirable. This is useful because although snow-
cloud separation has been demonstrated (e.g., Li and Leighton, 1991) its sensitivity to
subpixel contamination remains in question until more spectrally appropriate data
become available (e.g., a 1.6 ÿm channel).  Thirdly, change in the size of the original
pixel (due to viewing angle differences) or spatial misregistration during geocoding may
also introduce undesirable noise in the composite images.

The purpose of this paper is to describe a simple and robust method for the detection of
such contaminated pixels which could be routinely applied to AVHRR composites in
studies of vegetation dynamics over large land areas. Specifically, the objective is to
detect pixels which should be excluded from further analysis because of atmospheric or
snow/ice contamination or pixel misregistration, but to retain pixels with 'acceptable'
noise caused by these or other (e.g., bidirectional reflectance) effects.



2. RATIONALE and ALGORITHM

In land composites, completely cloud- or snow/ice-covered pixels are readily evident
from the high albedo, and can be easily identified using a threshold value. Although both
visible and thermal AVHRR channels can be employed to identify such pixels (e.g.,
Saunders and Kriebel, 1988), the use of the reflected radiation is preferable because it
avoids the sensitivity of the measured satellite signal to surface and cloud temperatures
which in turn require threshold adjustments or ancillary information (e.g., Derrien et al.,
1993; Loudjani et al., 1994; Smith, 1994). As the proportion of cloud/snow within the
pixel decreases and/or the clear-sky albedo increases (e.g., bare sand), it becomes
increasingly more difficult to find a clear demarkation line between the two trends. The
method described here, dubbed CECANT (Cloud Elimination from Composites using
Albedo and NDVI Trend), therefore employs surface reflectance and temporal
consistency requirements for a composite land pixel to be considered uncontaminated.
Three features of the annual surface reflectance trend are used: the high contrast between
the albedo (represented by AVHRR channel 1) of land, especially when fully covered by
green vegetation, and clouds or snow/ice; the average NDVI value  (expected value for
that pixel and period); and the monotonic trend in NDVI. The procedure builds on
algorithms developed  by Sellers et al. (1994) and Cihlar and Howarth (1994),
respectively. It is based on the following assumptions:

1. For a given pixel, at least some compositing periods during the growing season contain
uncontaminated pixels.
2. The first peak in the AVHRR channel 1 histogram (corresponding to surface
reflectance below about 0.20) contains clear-sky, snow/ice-free, land pixels.
3. NDVI values for a given pixel increase monotonically from the beginning of the
growing season until they reach the seasonal peak green (maximum NDVI) for that pixel.
4. The shapes of the average and the ideal NDVI curves can be calculated.

The development of the procedure is detailed in the following sections. Figure 9
summarizes the steps involved in the derivation and application of the decision criteria.

2.1 R criterion

Assuming that most images in the temporal sequence were correctly registered, the NDVI
value calculated for a pixel (i,j) at compositing period t, by fitting an average curve
through all the measured NDVI values, represents the best estimate of the expected
average NDVI value for that location and period.  The magnitude of the decrease of the



measured NDVI(i,j,t) below the estimated average value NDVIa(i,j,t) is therefore a

measure of the degree of contamination of the pixel. The criterion is defined as

R(i,j,t) =  ÿNDVI(i,j,t)/M(i,j), (1)

 ÿNDVI(i,j,t)=NDVI(i,j,t)-NDVIa(i,j,t), (2)

where M(i,j) is the median for the set  |ÿNDVI(i,j,t)| for all values of t.

R thus measures the deviation of NDVI(i,j,t) from the expected average value in units of
'average scatter' around the seasonal curve. The median is chosen because it is less
sensitive to large deviations from the average curve than other measures of central
tendency (see also Loss et al., 1994).

The histogram of R values for all pixels (i,j) and a given period t and the geographic area
of interest can be visualized as a distribution of R values orthogonal to the time axis
(parallel to the NDVI axis in Figure 1 and placed in the time period t), where low (high)
R represents a pixel much below (above) its respective average curve NDVIa(i,j,t). The

lower foot of the R histogram contains pixels which are most likely contaminated for
that period. 'Most likely' is determined from the deviation ÿNDVI(i,j,t) and the average
scatter is represented by the median difference. A high R is a result of high ÿNDVI(i,j,t)
or low M(i,j). The likelihood of contamination is thus determined in R through a
comparison to the same pixel during the rest of the growing season. As R(i,j,t) increases,
the likelihood of a pixel being contaminated decreases until near the peak of the R
histogram there is no evidence (by this criterion) that the pixel is contaminated. If the
pixel is fully cloud- or snow/ice-covered in all periods both ÿNDVI(i,j,t) and M(i,j) will
be small but R could be high or low due to the variability in the data. Since frequent large
ÿNDVI(i,j,t) variations produce higher M(i,j), R values for such pixels will tend to be
lower compared to otherwise similar pixels with only occasionally high ÿNDVI(i,j,t).

The high-end tail of the R histogram contains pixels with NDVI(i,j,t) much above the
NDVIa(i,j,t) for that period. These should be the most likely correct NDVI values,

uncontaminated by other effects (e.g., Holben, 1986; Los et al., 1994). The most probable
exception is due to pixel misregistration, e.g. because of topographic displacement or to
inaccuracies in the geometric transformation used.

2.2 Z criterion

NDVIa is not an optimal estimate of the original NDVI value because the various sources

of noise in satellite measurements decrease the computed NDVI. For this reason, a more
meaningful estimate is the upper envelope bounding the measured values, and substantial



decreases below this envelope therefore also imply the presence of contamination. A
second measure Z(i,j,t) is used to test the magnitude of the decrease:

Z(i,j,t) =  (NDVImax(i,j,t) - NDVI(i,j,t))/NDVImax (i,j,t), (3)

where NDVImax is the value of the upper envelope for (i,j,t).

Z tests for the monotonic behaviour of the seasonal NDVI profile. It implies that a
decrease in NDVI below the value expected by the monotonic trend is caused by pixel
contamination. Conceptually, Z is similar to the Cihlar and Howarth's (1994) test
[NDVI(i,j,t-1) - NDVI(i,j,t)] < 0 (for the first part of the growing season) and [NDVI(i,j,t-
1) - NDVI(i,j,t)]  > 0 (after seasonal peak). Ideally, Z would range between 0 and 1 but in
practice the range may be greater, depending on the accuracy of estimating NDVImax.
For example, negative Z shows that the measured value was higher than NDVImax, and

high positive value could indicate poor fit by the model of the upper envelope of the
NDVI curve.

In the optimum case when there are no residual clouds, snow/ice or other noise in the
data over land during the growing season, NDVI=NDVImax, R=0, and Z=0. As the

deviations from the average curve increase, R will increase (decrease) as well but only
for anomalously high (low) NDVI, the magnitude of the anomaly being compared to the
same pixel in other periods.  Similarly, as NDVI decreases below NDVImax, Z will

increase and a limit will be reached beyond which the noise is not acceptable and the
pixel should be eliminated. This happens e.g. prior to peak green when the NDVI(i,j,t)
value suddenly drops below (NDVI(i,j,t-1), or when it remains constant or even gradually
increases over several time periods but at a slower rate (Figure 1).

2.3 C1 criterion

Although R and Z respond to short-term pixel contamination, they are not likely to detect
all cloud- and snow/ice-covered pixels. If a pixel has consistently (constant or slowly
varying) high albedo then R and Z may be low because NDVIa and NDVImax will

follow the same trend. However, for land vegetation studies (other than snow or ice)
these pixels represent noise and should be eliminated. This can be achieved by using an
albedo threshold, represented in CECANT by AVHRR channel 1 (C1). This threshold
should be sufficiently high to ensure that no clear-sky land pixels with high albedo are
eliminated.

The three parameters (C1, R, Z) are used in combination to separate pixels with a
relatively high albedo which could nevertheless be caused by intrinsically high surface
reflectance, from pixels with a similar albedo caused by a mixture of a dark surface and



cloud/snow/ice. They therefore operate in the trailing edge of the first peak in the
AVHRR channel 1 histogram, as discussed below. The challenge is to establish the limits
for C1, R and Z. Four thresholds are required in CECANT to identify partially
contaminated pixels:

C1: the maximum channel 1 reflectance of a clear-sky, snow- or ice-free land pixel in
the data set.

Rmin: the maximum acceptable deviation of the measured value NDVI(i,j,t)
below the estimated NDVIa(i,j,t). Pixels with lower NDVI are considered

contaminated by atmospheric components (clouds, aerosols) or snow/ice.
Rmax: the maximum acceptable deviation of the measured value NDVI(i,j,t)

above the estimated NDVIa(i,j,t). Pixels with R values higher than Rmax
represent anomalously high NDVI.

Zmax: the maximum acceptable deviation of the measured value NDVI(i,j,t)
below the estimated NDVImax(i,j,t). Pixels with lower NDVI are
considered unacceptable even if NDVI>NDVIa, pixel misregistration

being one example.

Note that a Zmin could also be used to further constrain the anomalously high NDVI
values but this does not appear necessary because Rmax provides that limit. The C1, R

and Z criteria are self-calibrating because the thresholds can be chosen individually for
each compositing period. This partly compensates for inaccuracies in NDVIa and
NDVImax estimation.

3. DATA AND METHODOLOGY

An AVHRR composite data set of NOAA-11 ascending passes was prepared by the
Manitoba Remote Sensing Centre using the GEOCOMP system (Robertson et al., 1992).
Briefly, GEOCOMP performs sensor calibration, orbital modelling, and precise
geometric registration with Landsat image chips, and image resampling of daily images
over the North America north of  42o N. Sensor calibration coefficients given by Cihlar
and Teillet (1995) were used. Resampling was performed using Kaiser window damped
16-point (sinx)/x algorithm (Friedel, 1992).  Composite images were created every 10
days between 11 April and 31 October, 1993 using the maximum value of NDVI as the
compositing criterion. Viewing geometry-dependent atmospheric correction of the
composites was then carried out using the SMAC algorithm (Rahman and Dedieu, 1994).
The atmospherically corrected NDVI values were further corrected for solar zenith angle
effects, using the empirical coefficients derived by Sellers et al. (1994) for a global



AVHRR data set. No bidirectional reflectance corrections were carried out on channels 1
or 2.  The procedures are described in more detail elsewhere (Cihlar et al., in
preparation). The result of the preprocessing was a sequence of 20 composite NDVI
images calculated from surface reflectance values. Since each single channel GEOCOMP
image is 55 MB in size, the data set was subsampled every 6th line and 6th pixel to
produce a subset of 247,960 pixels for analysis.

The average NDVIa(i,j,t) curves were calculated using the FASIR method which

employs third-order Fourier transform (Sellers et al., 1994).  First, NDVI=0 values were
substituted for any missing value among the 20 periods and two NDVI=0 values were
added at each end of the growing season to better accommodate the cyclical nature of the
model. The Fourier series were then fitted through the data using least squares method:

([F]T * [F]) * [c] = [F]T * [Y], (4)

where [Y] are the measured NDVI values, [c] are the Fourier constants to be found, and
[F] are the values of cos((j-1)ÿt) and  sin((j-1)ÿt) corresponding to each period t. This

calculation produces Fourier coefficients which can be used to compute the average
NDVI curve, NDVIa. NDVIa computed in this way was found to provide a good average

fit of the measured NDVI(i,j,t) points through visual inspection of randomly selected
pixels. The median values M(i,j) were also saved in a separate file.

The next step in the FASIR method is the calculation of the NDVImax by using empirical

weights. These weights are computed from functions which vary with (i,j,t) depending on
the difference between NDVI and NDVIa (Sellers et al., 1994). Essentially, the computed
weights are near 0 for NDVI values much below NDVIa, near 1.0 when NDVI~NDVIa,
and up to 10 or more when NDVI is much above NDVIa. This step produces
NDVImax(i,j,t) for all periods t.

A land mask based on the World Data Bank data (U.S. Department of Commerce, 1977),
subsampled similarly as the satellite data,  was used to eliminate most open water.
Because of the spatial resolution of this water mask or of AVHRR, many water bodies
could not be eliminated and the final data set therefore includes some pixels with water,
open or covered with ice. Fortunately, the compositing procedure typically selects cloudy
pixels over open water bodies and these, along with ice, can be eliminated using the
albedo criterion.

The NDVIa, NDVImax, and M data were used to compute R and Z for all land pixels

(i,j,t) of the GEOCOMP data set (Figure 9). The histograms were then prepared for each
period and used to select threshold values for contaminated pixels as described below.



4. RESULTS AND DISCUSSION

4.1 DERIVATION OF THRESHOLDS

Figure 2 shows examples of  channel 1 histograms for four periods from the 1993
GEOCOMP data. In April (period 2), a large part of the Canada's land surface was
covered by snow/ice and the histogram shows a strong bimodal distribution. The values
above 1.0 result from the conversion of satellite measurements to surface reflectance for
very high solar zenith angles. These values are not acceptable but can be easily
eliminated by the albedo (C1) threshold or by choosing a maximum acceptable solar
zenith angle.

Of particular interest for land biospheric studies is the first peak in Figure 2 histograms
which contains data for vegetated (and other dark) surfaces. This peak is typically narrow
and falls off rapidly as the reflectance increases. The width of the peak decreases and the
rate of fall-off increases as the growing season progresses (compare periods 2 and 11).
Pixels well within this peak can be considered cloud- (including haze) and snow/ice-free.
On the other extreme, pixels with high reflectance are contaminated and can be excluded
using C1 threshold. Partly contaminated or otherwise doubtfully useful pixels are
adjacent to the descending foot of the first histogram peak. This region contains
uncontaminated pixels representing bright targets as well as darker pixels with partial
cloud contamination. The overall channel 1 reflectance in a given period can be identical
in the two cases. Their separation is possible because the bright cloud-free pixel will
appear bright in other periods (thus having lower M, lower R and higher Z) while the
contaminated pixel is likely to be darker and will have higher R and lower Z for the
period of interest. The pixels adjacent to the first histogram peak of channel 1 must
therefore be examined in more detail to determine if their channel 1 value is due to partial
contamination or to inherently high surface reflectance.

To determine appropriate R and Z thresholds, four C1 thresholds with progressively
higher reflectance values were determined for each of the 20 periods using channel 1
histograms of the GEOCOMP data set:

- T1: C1 value obtained by a linear extension of the descending branch of the first
histogram peak to zero frequency of observations.



- T2: C1 values at the foot of the descending branch of the first histogram peak, i.e. the
point where a fixed decrease in C1 is accompanied by the highest increase in the number
of pixels;
- T3: C1 value where the histogram levelled off following the first peak;
- T4: the maximum C1 value observed (i.e., no threshold);
In addition, a fixed threshold C1ÿ0.3 was used.

As channel 1 reflectance decreases from T3 to T1, the number of the remaining
contaminated pixels also decreases. Since these pixels have lower R and lower Z values,
they may be singled out if appropriate R and Z thresholds are used. R and Z thresholds
were thus derived for the 1993 GEOCOMP data by calculating NDVIa(i,j,t), M(i,j), and
NDVImax(i,j,t) (Equation 4) for each pixel and period (see also Figure 9). Histogram

curves were then plotted for each period, separately for pixels below each of the four
channel 1 threshold criteria.

Figure 3 shows the resulting R histograms for four periods in 1993. Although specific
values differ, the trend is consistent in all cases. First, many pixels were eliminated by the
weakest threshold T3. These bright pixels (including open water for which the maximum
NDVI compositing criterion tends to select cloudy pixels; snow/ice; clouds) had the full
range of R values but the change is particularly noticeable near R=0 where
NDVI=NDVIa. Such pixels could not be eliminated using R but a C1 criterion can be

very effective. Second, the progressively more stringent C1 thresholds had a diminishing
effect on the number of eliminated pixels. The magnitude of this effect varies between
periods, as does its distribution with respect to the R axis (compare Figure 3a, 3b, 3c).
Third, the values near the extremes of the histograms represent pixels with NDVI much
above or below the expected average value NDVIa. Pixels much below are highly likely

cloud contaminated and should be eliminated. Pixels much above may also be suspect,
not because of contamination but because they are so different from the remainder of the
seasonal series; misregistration is the most obvious reason. Fourth, the R histogram does
not consistently peak at R=0, thus indicating that NDVI(i,j,t) 's are not always uniformly
distributed around NDVIa. This could be due to the inaccuracies in NDVIa(i,j,t)

estimation or the more pervasive cloudiness in period t. Since most  R mean values
(Rmean; 16 out of 20 for the C1ÿ0.3 threshold for 1993) were positive, the model

mismatch appears to be the major cause of the fluctuation.  These observations lead to
using Rmin and Rmax to trim the wings of the R histogram, while accounting for the
displacement of the R histogram peak from Rmean=0.

The actual thresholds for R are necessarily somewhat arbitrary since the distributions are
continuous. After examining various options, the following thresholds were adopted:



Rmin(t)=Rmean(t)-1; [5]

Rmax(t)=Rmean(t)+4, [6]

where Rmean is computed only for pixels with C1ÿ0.3.

Since R values are normalized by M(i,j), the above thresholds correspond to 1*M(i,j)
below and 4*M(i,j) above Rmean(t). For Rmin, the threshold cutoff was found to fall
consistently adjacent to the main peak in the R histogram. For example, the Rmin  values

for the four dates in Figure 3 were -0.51 (Figure 3a), -0.68 (3b), -0.32(3c), and -0.33(3d;
see also Figure 5). The value of Rmax was chosen to minimize the possibility of
eliminating a cloud-free pixel; this could result in retaining some misregistered pixels. In
Figure 3, Rmax was 4.49 (3a), 4.32 (3b), 4.68 (3c), and 4.67 (3d) - in all cases in the tail

of the R histogram.

The histograms for Z are shown in Figure 4 for the same four periods. For most
composites in early and late seasons there is a smaller second peak when all pixels are
considered (no C1 threshold), also visible in periods 2(4a), 6(4b), and 16(4d). The peak
disappeared during the summer (periods 9-13) and in all cases where a C1 threshold was
used (including Figure 4a-4d). Since high Z values correspond to low NDVI values, the
valley between the two peaks separates pixels with large NDVI decreases below
NDVImax (refer also to Figure 5). The pixels in the secondary peak are therefore not

acceptable, even though their R values might be. The Z value for the valley was stable
and could be approximated by

Zmax(t)=Zmean(t)+2*|Zmean(t)|, [7]

where Zmean is computed only for pixels with C1ÿ0.3.

The Zmax threshold was close to the observed valley for all dates; for example, the

values were 0.53 (Figure 4a), 0.51 (4b), 0.29 (4c), and 0.59 (4d) which are consistent
with the position of the valley. The threshold for Z is thus specified in units of  'average
contamination' and, because of the use of Zmean, it also accounts for the imperfect fit of
NDVImax.

Figure 5 shows R vs. Z contour plots for the same periods as Figure 3 and 4. There is
generally a weak relationship between R and Z which varies with the period. The
correlation coefficient r between R and Z was -0.1 (Figure 5a), -0.17 (5b), -0.1 (5c), and -
0.07 (5d). Among all the dates, the r values were all negative; 17 were between -0.01 and
-0.24, and the highest r was -0.45 (period 12). Note that in all cases, the threshold R



values computed using Eq. 5 and 6 separated the small secondary peak corresponding to
contaminated pixels near the lower tail of the R histogram (it is distinct in Figure 5c and
5d, and implied by the contours in Figure 5a and 5b). The weak correlation between R
and Z indicates that the two measures capture different aspects of the NDVI trajectory as
intended. Figure 5 also suggests that while separate R and Z thresholds may not be as
optimal as using a linear combination of the two, the error is relatively small.

The above results indicate that C1, R and Z thresholds consistently separated the
contaminated pixels in a statistical sense. An additional assessment was performed by
using single-date AVHRR images where the cloud structure is more readily visible. To
this end, a one-day composite AVHRR image was prepared over Canada for 95/07/06.
The data were corrected for atmospheric effects and NDVI(i,j) was computed. The R(i,j)
and Z(i,j) images were prepared using Equations 1 and 3. The cloud mask for 95/07/06
was produced using Equations 4-7 in which the Rmin(t), Rmax(t), Zmax(t), NDVIa(i,j,t)
and NDVImax(i,j,t) were those determined (using the seasonal data) for period 9. A

constant threshold of C1ÿ0.3 was employed. The resulting cloud mask (Figure 6)
consistently identified all visible clouds of various types. Figure 6a shows that visible
clouds were clearly detected but also identifies as contaminated pixels which could not be
visually considered cloudy in AVHRR channels 1 and 2 as well as in NDVI. They
include pixels obtained at different viewing directions (note the image seam in Figure 6a)
and pixels sufficiently far from cloud structures which would visually be considered
cloudfree. Figure 6b shows that the pixels labelled as contaminated had in most cases
lower NDVI than the NDVI of the corresponding composite (period 9). For a
1000x1000km area (of which Figure 6b is a subset) 22.12% pixels were labelled clear
while in 76.27% pixels the NDVI(i,j,93/07/1-10) was higher than NDVI(i,j,95/07/06).
These pixels were thus correctly identified as contaminated by definition since their
NDVI values were lower than those from other dates in the same period.

Although the above discussion refers to limited periods of the growing season, the same
trend was observed on other dates. The same procedure (Figure 9) was also applied to
1994 data over the same area and found similar characteristics of R and Z and their
thresholds. The described behaviour may therefore be considered representative of data
sets collected at northern latitudes. It is also evident that the C1, R and Z criteria may
overlap and therefore a given pixel eliminated by more than one. This is in fact it is
preferable because it strengthens the justification for eliminating that pixel.

5.2 APPLICATION OF THRESHOLDS

Figure 7 shows examples of pixels from the 1993 GEOCOMP data set after applying the
CECANT procedure. In general, pixels with high channel 1, low NDVI, temporary



decrease in NDVI, or pixels with increasing NDVI between dates but below the expected
value, were identified. As expected, pixels near the NDVImax envelope passed as

uncontaminated. The complementary value of C1 is evident in cases where NDVI alone
does not provide sufficient discrimination, especially near the end of the growing season
when the low NDVI is caused by snow cover. Figure 7 also shows that the NDVImax  for

coniferous forest had a tendency to two peaks. In many cases this was consistent with the
data but at times the second peak value was much higher than justified by the seasonal
trend (e.g., Figure 7a, 7d); in these cases, possibly cloud-free pixels are screened out by
the Zmax criterion.  This suggests a need for refining Equation 4 to provide a better

match for pixels with a broad plateau in the NDVI curve. The results for pixels with a
narrower NDVI peak were very good, virtually without exception (Figure 7e-7h). Figure
7e illustrates the high sensitivity of the procedure in cases where the small deviations
from the expected trend occur, resulting in low M and high R values.

Figure 8 shows results of applying the above procedure to the 1993 GEOCOMP data set.
The C1 criteria retained similar proportions of pixels (Figure 8a), especially for T2, T3
and 0.300. Threshold T1 differed significantly from the others, suggesting that it might
go too far by eliminating possibly cloud-free pixels. The constant C1ÿ0.3 tends to pass
more pixels than other thresholds and appears thus to be a good conservative choice. The
pronounced seasonal trend in Figure 8a indicates the presence of snow at these latitudes.
The decrease between periods 1 and 2 is due to the missing coverage of some Arctic
islands during period 1 which led to a higher proportion of pixels being snow/ice-free; if
present in the composites, these pixels would have been snow/ice-covered and thus
eliminated by the C1 criterion. On the average, C1ÿ0.3 threshold eliminated 32%
(standard deviation 23%) of all land pixels. Figure 8a also shows that at these latitudes, a
large fraction of pixels will have missing data (except for mid-summer) when one is
interested in the surface itself (as opposed to snow). Interpolation or assimilation
techniques will therefore be necessary to effectively use such data sets.

Figure 8b shows the proportions of pixels passing the R thresholds. The number of pixels
eliminated by Rmin was relatively stable during the growing season but increased at the

extremes, especially in the fall. The reason for this trend is not clear but may be related to
the number of non-cloudy images used in the compositing process. Relatively few pixels
were eliminated by Rmax. The reason for using Rmax is to identify misregistered pixels,
especially near water bodies, whose number is expected to be larger than identified by the
Rmax threshold used (1.5% on the average for the data set). It is thus possible that the
Rmax threshold (Equation 6) was too high or, alternatively, that such pixels are

misregistered frequently and thus have high M(i,j) values. It may be possible to improve
the definition of Rmax, especially for the cases where misregistered pixels are in highly

contrasting neighbourhoods.  Overall, the two R criteria eliminated  38±13% pixels. -
Pixels retained by the Z threshold are shown in Figure 8c. The Z threshold histograms



showed seasonal trend, somewhat similar to the R histograms, with 25 ±12% pixels
eliminated on the average.

Combined R and Z criteria are given in Figure 8d. The seasonal trend resembles those of
R and Z. On the average, 57±11% pixels passed both R and Z thresholds, while 82±10%
pixels passed one or the other. This indicates the complementarity of the two criteria and
confirms the low correlation between them.  Combining all the criteria (Figure 8e) shows
the complementary functions of C1 and R, Z. In mid-summer, most of the pixels are
eliminated by R+Z, although some of these are also identified by C1. This is evident by
comparing the fractions of retained pixels for periods 8-13 in Figure 8e (C1+R+Z) with
those for R+Z (8d). At the ends of the growing season, C1 is the more active criterion due
to the effect of snow cover (compare 8e with 8a). With the combination of C1+R+Z the
resulting data sets are thus much reduced, with an average 51±17% pixels labelled as
contaminated; the proportion of clear pixels ranged from 9% (period 20) to 69% (period
10).

Figure 9 summarizes the steps in CECANT when applied to a data set. Given a
multitemporal composite (minimum set is channel 1 or equivalent and NDVI or
equivalent), values NDVIa and NDVImax are computed (Equation 4) for each pixel (i,j)

and all periods t, followed by computation of R (Equation 1) and Z (Equation 3). From R
and Z images, Rmean(t), (Zmean(t) and thresholds Rmin(t) (Equation 5), Rmax(t)
(Equation 6) and (Zmax(t) (Equation 7) are determined. A simple decision rule is then

applied to decide if a pixel (i,j,t) is contaminated.

5. 3 COMMENTS

The high proportions of contaminated pixels testify to the residual noise in the AVHRR
composites for biospheric studies, especially at northern latitudes. This is mainly due to
the presence of snow/ice in the spring and fall seasons but residual clouds are also
significant. For example, in the June-August time frame (periods 6-14) 37±5% pixels
were labelled as contaminated. The residual clouds could be partly eliminated by using
longer compositing intervals but this approach does not consistently or fully compensate
for residual clouds, and it has the additional disadvantage of decreasing the temporal
resolution of the rapid seasonal vegetation changes at northern latitudes (Cihlar and
Howarth, 1994).

The above results show that the CECANT procedure can be effective in identifying
contaminated land pixels in AVHRR composite images for the purpose of biospheric
studies. The accuracies of estimating NDVIa and NDVImax are very important, although

the procedure does allow to compensate for systematic bias in the estimation of these



values in different periods. The Fourier series approach to computing NDVImax  seems

flexible enough to approximate various shapes of the NDVI seasonal trajectory, e.g.
double-peak, thus providing the possibility of applying this method in various managed
ecosystems. However, NDVImax trajectories for pixels with a broad seasonal peak tend

to be overestimated through this method, thus introducing errors in the calculation of Z.

CECANT assumes regular behaviour of the seasonal NDVI trajectory. As described here,
it may therefore be confused by vegetation that burns during the season. The likelihood
of confusion depends on the deviation of the NDVI values after the burn from the
expected nominal trend (i.e., type of fire, degree of combustion, etc.). Such pixels should
have high M(i,j) values (unless the fire took place very early in the season) and both
spatial and temporal contiguity; it may thus be possible to devise detection algorithms to
deal specifically with these. - As pointed out above, CECANT is also not able to deal
with permanent ice/snow fields on land. This is not a problem in biospheric studies but
presents problems e.g. for land cover mapping. As in the case of burns, special algorithms
would be required here. For example, ice/snow covered pixels would have consistently
high C1, low NDVI, and low M(i,j).

Although the procedure described has been designed to detect cloud- and snow- free land
pixels, it could also be used to identify temporarily snow-covered pixels provided that
clouds and snow can be differentiated in this subset. This may be possible using data
from other AVHRR channels (e.g., Stowe et al., 1991).

6. CONCLUSIONS

A new method, dubbed 'Cloud Elimination from Composites using Albedo and NDVI
Trend' (CECANT) was developed for the elimination of contaminated pixels from
AVHRR composite images. The procedure aims to identify land pixels that are unsuitable
for the study of biosphere dynamics due to residual clouds or other atmospheric
contamination (e.g., smoke, aerosols), intermittent snow/ice, or pixel misregistration. It
employs thresholds of three parameters, one for albedo (C1, channel 1 reflectance) and
two (R, Z) representing the NDVI trend. While the C1 threshold need not vary with time,
composite period-specific R and Z thresholds should be chosen. An application of this
procedure to 1993 composite data over a part of North America north of 42o showed that
close to 50% of all the land pixels were contaminated in early spring and late fall, and
about 35% during the peak green season. The procedure is easily adaptable to other
geographic areas, subject to the estimation of average and maximum NDVI values.

Collectively, the C1, R and Z criteria explicitly account for possible interactions between
atmosphere/snow/ice contamination, geographic location/surface cover, and season.



Compared to other procedures previously developed, CECANT covers two dimensions.
First, it considers the temporal trend individually for each pixel ( for the whole season
through R and for adjacent periods through Z). Second, it considers the variations among
all pixels in a given composite period (through period-specific thresholds).  It does not
dynamically set the thresholds for each pixel and each period. In this respect it is similar
to other cloud screening methods, including those designed to work with single-period
images.
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OF FIGURES

Figure 1. Examples of original NDVI curves for boreal coniferous forest computed from
atmospherically corrected 1993 GEOCOMP data over Canada. Note the irregular
behaviour of NDVI caused by pixel contamination

Figure 2. Channel 1 histograms from 1993 GEOCOMP composites for Canada:  period 2
(04/21-04/30); period 6 (06/01-06/10); period 11 (07/21-07/31); period 16 (09/11-09/20).
The major peak corresponds to clear pixels, the extended peak at higher values represents
clouds or snow covered pixels. Reflectance values above 1.0 result from high solar zenith
angles.

Figure 3. R histograms for 1993 GEOCOMP composites of Canada for four different
channel 1 thresholds: 3a) period 2 (04/21-04/30); 3b) period 6 (06/01-06/10); 3c) period
11 ((07/21-07/31); 3d) period 16 (09/11-09/20). All values above |7.0| were combined.
See text for discussion.

Figure 4. Z histograms from 1993 GEOCOMP composites of Canada for four different
channel 1 thresholds: 4a) period 2 (04/21-04/30); 4b) period 6 (06/01-06/10); 4c) period
11 ((07/21-07/31); 4d) period 16 (09/11-09/20). See text for discussion.

Figure 5. Contour plots from 1993 GEOCOMP composites of Canada for the R and Z
criteria and four compositing periods: 5a) period 2 (04/21-04/30); 5b) period 6 (06/01-
06/10); 5c) period 11 ((07/21-07/31); 5d) period 16 (09/11-09/20). Rmin, Rmax and
Zmax thresholds derived using Eqs. 5-7 are shown as dotted lines. All pixels with R
values above |7.0| or Z values above |5.0| were combined.  See text for discussion.

Figure 6. An example of the mask applied to a single date image. AVHRR channel 1
image is shown for a 400x400km area in central Canada, extracted from a mosaic of
images obtained on 93/07/06. CECANT thresholds were those derived for period 9



(93/07/1-10): 6a) clear pixels are masked out; 6b) the mask covers pixels for which
NDVI(93/07/06)<NDVI(93/07/1-10). See text for discussion.

Figure 7. Examples of NDVI (heavy line), NDVImax (light solid line), NDVIa (broken
line),  and channel 1 surface reflectance (broken dotted line) for selected coniferous (6a-
6d) and cropland/rangeland (6e-6h) pixels from the 1993 GEOCOMP data set. Pixels
identified as contaminated are marked by rectangles.

Figure 8. Proportions of pixels labelled as cloud-free in 1993 GEOCOMP data for
Canada on the basis of various thresholds: 7a) channel 1; 7b) R; 7c) Z; 7d) R plus Z; 7e)
channel 1 plus R plus Z.

Figure 9. Flowchart summarizing steps in CECANT processing.

1. Input (minimum set):
composite images of C1, NDVI

2. Determination of thresholds:
2.1 For each pixel (i,j,t):

Calculate NDVIa(i,j,t), NDVImax(i,j,t) (E. 4)

Calculate R(i,j,t), Z(i,j,t) (Eqs. 1,3)

2.2 For each period t:
Calculate Rmean(t), Zmean(t)
Calculate Rmin(t), Rmax(t), Zmax(t) (Eqs. 5,6,7)

3. Derivation of contamination mask:
For each pixel (i,j,t):
IF [C1(i,j,t)ÿ0.3 and <Rmin(t)<R(i,j,t)ÿRmax(t)> and Z(i,j,t)ÿZmax(t)] then clear

ELSE contaminated.
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