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ABSTRACT

This paper presents a method of generating precise multi-source ortho-images using a
digital elevation model  and a few ground control points (4-7).  This method has been
integrated to take into account the geometric distortions of the full viewing geometry
(sensor - platform - Earth), and unified to process raw images from different sensors
(visible and radar) on various platforms (airborne and spaceborne) at different
resolutions.  Results from eight types of images show an absolute accuracy of 1/3 of a
pixel for satellite images in the visible, one resolution cell for satellite radar images and
one to two resolution cells for airborne images.  Furthermore, a relative registration
accuracy of one pixel is achieved in the data fusion.  Integration (mosaics and colour
composites) of these ortho-images with the road network overlaid confirms the relative
and absolute accuracies.

1. INTRODUCTION

Cartographic and thematic applications in remote sensing use and process multi-source
data (multi-date images from different sensors, topographic and thematic maps, raster and
vector data) to take advantage of their complementarity (visible vs radar; airborne vs
spaceborne; raster vs vector).   However, the ability of various sensors to measure specific
geophysical parameters is not completely well understood; neither is the potential of
combining images with proper data analysis into useful applications solutions.  Another
question is whether and how a combination of multi-sensor, multi-platform and multi-
resolution data would create an added value to geoscientific work. There is a lack of
proper tools to combine the data and to evaluate its usefulness. Therefore, when assessing
the applicability of multi-source data synergy, problems of registration and the creation of
multi-source data sets in a common ground reference system have to be solved in an
optimal and user-friendly manner.

Since remote sensing data were first used in 1972, the requirements and standards for data
rectification and integration has evolved due to different factors:

•  the images have an off-nadir-viewing and the pixel size is smaller (10 m and less);
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•  the resulting products are digital;
•  the interpretation of the products is done digitally (sometimes automatically) on a

computer;
•  the fusion of multisource data (sensor, platform) is common; and
•  the integration of multiformat data (raster/vector) is increasing with geographic

information system technology.

The registration of remote sensing data and their integration with vector data bases
require then precise and robust geometric processing, as well as user friendly systems to
meet these needs and standards. The polynomial, spline or kriging functions often used
with images which have large distortions due to off-nadir viewing, fine resolution or
airborne motion  cannot achieve pixel accuracy or better. Furthermore, these methods
correct distortions locally at the ground control points (GCPs), and do no take into
account terrain elevation, which is a major factor in these distortions.

A large number of people still use these functions, not realizing the impacts on the data
fusion and feature extraction.  The resulting errors of this kind of geometric processing
create mixels (“mixed pixels”) in the radiometry of the composite image, thus generating
wrong information or artefacts which do not correspond to the physical realities.
Consequentely, the best available information from each image of the data set is not
preserved in the composite ortho-images.

Considerable research has been carried out to develop robust and rigorous mathematical
models describing the acquisition geometry related to different types of images (Visible
and Infra-Red, VIR, and Synthetic Aperture Radar, SAR) and of platforms (spaceborne
and airborne): for visible satellite images (Masson d'Autume, 1980; Sawada et al., 1981;
Friedmann et al., 1983; Guichard, 1983; Toutin, 1983; Salamonowicz, 1986; Gugan,
1987; Konecny et al. 1987; Kratky, 1987; Paderes et al., 1989; Westin, 1990); for SAR
satellite images (Rosenfield, 1968; Gracie et al., 1970; Leberl, 1978, Wong et al., 1981;
Curlander, 1982; Naraghi et al., 1983; Guindon and Adair, 1992; Toutin and Carbonneau,
1992a); for visible airborne images (Gibson 1984; Ebner and Muller, 1986; Hofmann,
and Muller, 1988); and for airborne SAR images (LaPrade, 1963, Rosenfield, 1968;
Gracie et al., 1970;  Derenyi, 1970; Leberl, 1972; Konecny and Schurr, 1984; Toutin et
al., 1992) and many others.

Some studies reported promising results for one specific image or one specific platform.
To date, no mathematical model and system can geometrically correct different images
(visible and radar) from different platforms (spaceborne and airborne) precisely.

This paper will present a more general approach using an integrated and unified method
and a user-friendly system to geometrically correct raw spaceborne and airborne, VIR and
SAR images with a digital elevation model (DEM).  The mathematical model is derived
from the collinearity equations with photogrammetric method (Toutin, 1983).  It
integrates the complete viewing geometry with the position and the velocity of the
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platform,  with the parameters of the sensor and with the characteristics of the Earth and
of the cartographic projection.

Quantitative and qualitative results will be presented for eight different types of images:
MOS-MESSR, Landsat-TM, SPOT-XS/P, ERS-1 SAR, SEASAT-SAR, airborne SAR
and airborne CCD MEIS sensor.  The 1:50 000 digital topographic map is used to verify
the accuracy.

2. INTEGRATED AND UNIFIED GEOMETRIC MODELLING

This geometric correction modelling was originally developed for SPOT-HRV (Guichard,
1983; Toutin, 1983) and tested on Landsat-TM (O'Brien and Handy, 1991), on MOS-
MESSR  and SEASAT-SAR (Toutin and Carbonneau, 1992a) and on airborne-SAR
(Toutin et al., 1992).  This approach has been now adapted in an operational environment
at the Canada Centre for Remote Sensing (CCRS) as an integrated and unified geometric
modelling,  to geometrically process most of the commonly used remote sensing images.

The geometric modelling is integrated because in the final equations which represents the
collinearity condition, it takes into account, the different distortions relative to the global
geometry of viewing i.e.:

•  the distortions relative to the platform (position, velocity, orientation);
•  the distortions relative to the sensor (orientation angles, instantaneous field of

view, detection signal integration time);
•  the distortions relative to the Earth (geoid-ellipsoid including elevation); and
•  the distortions relative to the cartographic projection (ellipsoid - cartographic

plane).

The geometric modelling is unified because it has been adapted to indiscriminately
process spaceborne or airborne data, and raw VIR and SAR data.

In summary, the collinearity equations of a ground point are first written in the
instrumental reference system and converted into the cartographic projection system
using elementary transformations (rotations and translations) which are functions of the
parameters describing the distortions previously mentioned (Toutin, 1983).  The model
integrates the following transformations:

•  rotation from the sensor reference to the platform reference;
•  translation to the Earth’s centre;
•  rotation which takes into account the platform time variation;
•  rotation to align the z-axis with the image centre (M0) on the ellipsoid;
•  translation to the image centre (M0);
•  rotation to align the y-axis in the meridian plane;
•  rotation to have xM0 y tangent to the ellipsoid;
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•  rotation to align the x-axis in the image scan direction; and
•  rotation-translation into the cartographic projection.

The integration of the different distortions and the derivation of the equations are outside
the scope of this paper, and are described for SPOT data by Toutin (1983), and for the
SAR data in Toutin et al. (1992), and Toutin and Carbonneau (1992 a)

For example, with VIR data, the derivation of the equations has resulted in eight (8)
unknowns for the modelling:

•  the two cartographic coordinates of the image centre;
•  the orientation at the image centre according to the cartograpbic North of the

projection defined by the user;
•  the two scale factors in along-track and across-track directions;
•  the two parameter functions of the levelling angles in along-track and across-track

directions; and
•  a parameter function of the Earth rotation.

Each of these unknowns is in fact the combination of several correlated variables of the
viewing geometry, so that the number of unknowns has been reduced to an independent
set.  As examples of combinations of several variables, we have:

•  the orientation of the image is a combination of the platform heading due to orbital
inclination, the yaw of the platform, the convergence of the meridian;

•  the scale factor in along-track direction is a combination of the velocity, the altitude
and the pitch of the platform, the detection signal time of the sensor, the component
of the Earth rotation in the along-track direction; and

•  the levelling angle in the across-track direction is a combination of platform roll, the
viewing angle, the orientation of the sensor, the Earth curvature; etc.

For the SAR data, the images used are SAR standard products generally available to
users.  They are generated digitally during post processing from the raw signal SAR data
(Doppler frequency, time delay).  Errors present in the input parameters to the image
geometry model will propagate through the image data.  These include errors in the
estimation of the slant range and of the Doppler frequency and also errors due to the
satellite’s ephemeris data and the ellipsoid.  Assuming the presence of some geometric
error residuals, the parameters of the geometric correction model reflect these residuals.
Furthermore, the slant range direction distortions in radar are comparable to those
encountered in oblique photographic viewing.  The radar perspective represented in an
image is portrayed as being orthogonal to the radar direction of illumination (Figure 1).
Consequently, a viewing angle α of  less than 900 , usually employed on SAR systems,
has about the same effect as an equivalent angle 900 - α  for the oblique optical viewing.
Therefore, the elevation displacement occurs in the “opposite direction”.  Given this
relationship, the applicability of the SPOT data, or any other optical model becomes more
apparent.  But, some known second order parameters of the geometric modelling for VIR
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data are considered as unknowns for SAR data to take into account this relationship
(Toutin et al., 1992).

Figure 1: Relationship between the “radar image perspective” and the “visible
image perspective”. “A” is the elevation displacement away the optical sensor for the
visble image, and “B” the elevation displacement towards the radar sensor for the radar
image.

3. PROCESSING STEPS

Figure 2 is a flow chart of the geometric correction process used in this study.

The key processing steps are:

1. acquisition and pre-processing of the remote sensing data (images and if they
exist, ephemeris and attitude);

2. acquisition and management of reference points (cartographic and image
coordinates);

3. computation of the geometric correction model(s); and

4. ortho-image generation and mosaicking with a DEM.
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Figure 2: Flow chart of the geometric correction process.  Tthe “shaded” rectangle
are the four modules of the SRIT software.
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In relation to these four steps, and  to the geometric modelling, the software SRIT
“Système de Rectification des Images de Télédétection"   has been developed.  This was
originally done for satellite VIR data (Toutin et Carbonneau, 1992b), and later adapted to
process airborne and satellite SAR data.  It is now operational at CCRS and in Canadian
private companies.

Here is a more detailed description of the different steps.The input data are:

•  the images to be geometrically corrected, stored on magnetic tapes. They should be
raw data for VIR and in slant or ground range presentation for SAR;

•  the localization and the cartographic coordinates (XYZ) of the reference points;
•  the DEM; the rectification process will address the DEM accuracy requirements.

The acquisition and the preprocessing of remote sensing data consists of reading the
images and the ephemeris and attitude data, when available. The results are three types of
files:

1. the attitude file gives the effect of the attitude variation on the ground for every line;
this file only exists for VIR images;

2. the orbit file gives the geometry parameters.  As an example for SPOT data, they are:

•  instantaneous field of view;
•  viewing angle;
•  detection signal integration time;
•  radial velocity;
•  angular speed;
•  earth centre - satellite distance;
•  satellite height;
•  orbital inclination;
•  ascending node longitude;
•  satellite argument on its orbit;
•  image centre coordinates (latitude, longitude, line, pixel);

3. the image files with one file for each spectral band.  Radiometric preprocessing
can be applied as linear stretched for VIR or speckle filtering for SAR.

There is no module for image visualization in the SRIT. Thus, the image coordinates can
be acquired on any image analysis system.  The definition of the reference points which
are used in the geometric process is specific to each type of image because different
sensors present different sensing geometries (incidence angle, resolution, etc.) and
responses to illumination by the sun or the active sensing system; e.g. roads intersection
are better defined on SPOT images, while river and lake intersections are more visible on
ERS-1 SAR images.  The accuracy of the geometric correction process depends mainly
on the quality of the reference point in terms of image coordinates and cartographic
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coordinates. The effort and the time spent on this processing step depends on the
application and the accuracy the user wants to achieve.

The reference point management module enables the user to interactively visualize and
manage the reference points, their coordinates ( image and cartographic), their status
(active or inactive), their types (control, homologous or tie, check), etc..

From this module, the geometric model can be computed.  For each image to be
processed, the orbital parameters are used first to initialize the geometric model: then an
iterative least- square adjustment is used to solve the equation of observations with GCPs
(each contributing to two equations). Four or seven GCPs are the minimum required to
solve the 8 or 13 unknowns for VIR or SAR images, respectively.  The adjustment
procedure can be applied for one image and also simultaneously for images combining
the equations of the different  processed images. In this case, some tie points can be
added to increase accuracy between the images.  Each group of equations is then
weighted as a function of the accuracy of the image data and of the cartographic data.
Furthermore, complementary equations on some parameters have been added to take into
account the accuracy of the ephemeris data, when available.

The results of these last two modules (point management and model computation) are:

•  the geometric model parameters for each image;
•  the residuals on the GCPs and the errors on the Independent Check Points, ICPs,  (if

any); and
•  the computed cartographic coordinates for each point.

The last module is for the rectification to generate ortho-image and mosaics in the
conformal  cartographic projection system defined by the user (UTM, MTM, Lambert,
etc).  It uses the parameters of the geometric model determined in the least-square
adjustment.  Since the geometric model takes into account the elevation distortion, a
DEM is needed to create more precise ortho-images. But if no DEM is available, different
altitude levels can be input for different parts of the image to minimize this altimetric
distortion.  Figure 3 gives the planimetric error on the ortho-image as a function of the
viewing angle and the DEM accuracy.  These curves were mathematically computed with
the elevation distortion parameters of the geometric modelling.  For example, for a SPOT
image acquired with a viewing angle of 100 and with a 45-m DEM accuracy, the error
generated on the ortho-image is 9-m.  Inversely, if a 4-m planimetric accuracy for the
ortho-image is required with a 10-m DEM accuracy, the image should be acquired with a
viewing angle less than 200.  The same curves can be applied to SAR data by using the
right angle complement of the viewing angle as shown in Figure 1.
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Figure 3: Relationship between the acquisitionviewing angle, the DEM accuracy
and the planimetric error on the ortho-image.

In summary, the main user- friendly characteristics of this method and system are:

- it is the same to operate for any image;
- throughout the processing steps, the user does not have to worry about the type of

images.  The relevant information on the images(s) is taken directly from the tape,
and transferred to the other processing steps;

- the user can process and tie one, two or more images together in the least square
adjustment, giving a better relative accuracy between the different ortho-images
and mosaics;

- other satellite and airborne data (IRS, JERS-1,Radarsat, MOMS,) can be added
easily ; and

- the user controls the full process from the input of raw images to the production of
ortho-images. Error propagation can be monitored and the data (GCP and DEM
accuracies, image viewing angle, ...) can be selected accordingly to fit the
accuracy requirements of the application (Figure 3).

4. DATA SET

The topographic data are the Sherbrooke Data Set for the topographic applications of
remote sensing (Lassere et Lemieux, 1990).  The study area is made up of two half map
sheets of the province of Quebec (Canada), and represents land coverage of
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approximately 26 x 40 km, with an altitude variation of about 350 metres.  The data used
in this experiment are:

•  235 reference points which have been obtained using an STK-1 stereocomparator.
The root mean square error of the cartographic coordinates are better than three
metres.  These points are mainly intersections of expressways, highways, roads,
streets or railroads.  Of these 235 points, 215 are located in the two half map sheets,
and the other 20 are outside.  This distinction between the reference points is useful in
subsequent tests of the geometric modelling;

•  a  DEM with a 50-m grid, generated from the 1:50 000 contour lines (10-m intervals).
The accuracy is in the order of five metres;

•  the vector data of the digital topographic map.  All the elements are positional
data, as observed on the surface of the Earth in X, Y and Z coordinates and
without movement of the element due to cartographic generalization.   The
accuracy is in the order of five meters.

 
The remote sensing data are summarized in Table 1.  There are eight types:

•  six acquired by spaceborne platforms (MOS, Landsat, SPOT, SEASAT, ERS) and
two by airborne platforms (Falcon, Convair) ; or, according to sensor

•  five VIR (MESSR, TM, XS, P, MEIS) and three SAR.

The VIR data have been linearly stretched over 8 bits.  No radiometric processing has
been applied to the SAR data.

5. RESULTS

5.1 Quantitative Results

The number of points (of the 235 reference points) acquired on each image and their
accuracy vary according to the spectral  response of each sensor, which can affect feature
visibility and the shape and appearance of the targets. The image coordinate accuracies
are 1/3 to 1/2 of pixel for VIR data and one to two pixels for SAR data.

Two tests have  been performed for the quantitative results analysis:
•  Test 1: all the identifiable reference points have been used as GCPs for  each image to

compute the geometric model (e.g. for SPOT-P 139 GCPs and for ERS-1 SAR 25
GCPs).  Therefore, there are no ICP; and

•  Test 2: only the identifiable reference points (of the 20)outside the map sheets have
been used as GCPs for each image to compute the geometic model (e.g. for SPOT-P,
19 GCPs, and for ERS-1 SAR, 10 GCPs).  The other reference points (of the 215)
inside the map sheets are used as ICPs to check the accuracy (e.g. for SPOT-P, 120
ICPs, and for ERS-1 SAR 15 ICPs).
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Table 2 gives the full results of two modelling tests with the root mean square (RMS) and
maximum residuals on the GCPs, and the RMS, maximum and bias errors on the ICPs.
The residuals reflect the modelling accuracy, and the errors reflect the restitution
accuracy.  As the plotting error on the ICPs is included, the ortho-image accuracy is better
than the restitution accuracy.

In contrast to polynomial methods, which are sensitive to the number and spatial
distribution of the GCPs and their elevation, this model is not affected by these factors
because it retains the complete geometry of viewing precisely, including the terrain given
that there is no extrapolation in planimetry and also in altimetry.  These issues have been
already addressed quantitatively for different data in previous research (Toutin and
Carbonneau, 1989, 1992a).  The same research has shown that eight GCPs is a good
compromise to get the same accuracy, as shown in Table 2, because the geometric
modelling corrects the image globally, when the polynomial modelling corrects locally.

In the first test, as the RMS residuals are on the same order of magnitude as the plotting
error (1/3 - 1/2 pixel for satellite VIR images and 1 - 2 pixels for the others) and as the
maximum error is less than three times the RMS residuals (this statement is also valid for
the second test on the GCPs and ICPs), the mathematical model properly describes the
viewing geometry of image acquisition, but it is also stable and robust for the full image
without generating local errors.  Furthermore, as the bias errors on the ICP for the second
tests are small, the mathematical model does not introduce trends or systematic errors.
These results give a good level of confidence for the geometric correction and
rectification of all these types of images with different terrain and geometric
configurations.

In summary, the general results are:

•  one third of pixel accuracy for the satellite VIR data; and
•  one to two pixel accuracy for the other data (SAR and airborne)

For the MOS-MESSR image, the results are half pixel because no ephemeris and attitude
data were available; and in optical systems, angles are one of the important keys.  When
attitude data are available, the same one-third of pixel accuracy could be achieved.

For the SAR satellite images, the pixel spacing is 12.5 metres, but the resolution cell is
25-30 metres.  To maintain consistency for comparison with VIR image accuracies, this
results in one-half to one pixel resolution cell accuracy for satellite SAR images and one
to two resolution cells for airborne images.  Furthermore, no ephemeris data was
available for the SAR images.

For the airborne images, the difference in results may be explained by the airborne motion
which is less stable than the satellite.  High frequency distortion cannot be corrected
without precise attitude and position data.
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Platform Sensor Level of
 Processing

Acquisition
Date

Supplemental
 Data

Ground
Coverage (km)

Pixel  Size
(m)

Viewing Angles
(deg)

Convair SAR-C-HH slant range 90/09/11 yes 16 x 40 4 x 4.31 45 / 76

Falcon CCD-MEIS raw 90/06/11 yes 6 x 40 5 x 4 -20 / +20

SPOT HRV-P raw 87/06/20 yes 70 x 60 12 x 10 27.2/31.3

ERS-1 SAR-C-VV ground range 92/06/16 no 100 x 100 12.5 x 12.5 21 / 25

SEASAT SAR-L-HH ground range 78/09/17 no 100 x 100 12.5 x 12.5 19 / 25

SPOT HRV-XS raw 87/08/02 yes 60 x 60 22 x 20 -10.7 / -6.6

LANDSAT TM bulk 89/08/27 yes 88 x 94 30 x 30 0 / 7

MOS MESSR raw 89/06/22 no 100 x 100 50 x 50 -3  / +3

TABLE 1:  CHARACTERISTIC OF THE IMAGE DATA SET

TABLE 2:  RESULTS OF THE GEOMETRIC CORRECTION FOR THE TWO TESTS

Test Image MESSR TM HRV-XS SEASAT-SAR ERS1-SAR HRV-P MEIS SAR

GCP
Number ICP

Number

89
0

95
0

154
0

24
0

25
0

139
0

69
0

44
0

1 Res. X Y X Y X Y X Y X Y X Y X Y X Y

GCP RMS 18.3 17.2 13.1 9.5 7.1 7.0 13.7 11.7 22.3 21.1 3.4 3.1 6.1 5.3 6.6. 5.6

MAX -45.1 37.3 -32.8 26.7 -20.9 -18.8 -30.8 -22.4 -42.5 -50.8 -8.7 -9.0 15.4 -12.4 13.1 -16.9

GCP
Number ICP

Number

12
77

17
72

19
135

10
14

10
15

19
120

12
57

12
32

Res
Error

X Y X Y X Y X Y X Y X Y X Y X Y

2 GCP RMS 16.2 13.2 10.7 6.6 6.3 7.0 15.1 7.8 12.2 25.0 2.7 3.1 4.7 9.0 6.3 4.9

MAX -38.4 25.2 -17.6 -16.0 12.1 16.3 -30.8 -14.2 23.1 32.3 -5.0 7.6 -8.3 -17.5 -10.2 -9.9

RMS 23.4 20.5 12.5 10.1 8.0 8.2 18.8 14.7 39.9 20.1 3.8 3.4 7.3 7.5 10.9 6.0

ICP MAX -55.8 45.9 23.8 22.9 23.7 -23.6 35.5 -29.3 -75.8 32.3 -8.7 -9.9 -15.0 -18.1 -24.4 -20.2

BIAI -9.2 -3.9 -1.9 4.6 3.5 -4.5 7.5 -1.4 -1.7 5.3 1.4 -0.1 0.4 0.0 0.3   -0.3
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5.2 Qualitative Results

Finally, with the last  SRIT module, ortho-images have been generated for the different images,
using a DEM.  That enables more complex products such as mosaics or colour composite images
to be created.

Figure 4 is a mosaic of the eight ortho-images previously described.  The image is 39 x 29 km
large with a common 10-m pixel size.  From west to east, or north to south, there are the airborne
SAR (C-HH), airborne CCD-MEIS sensor, SPOT-P, ERS-1-SAR (C-VV), SEASAT-SAR (L-
HH), SPOT-XS (Band 2) , Landsat-TM (Band 3)and MOS-MESSR (Band 2).  The mosaic
becomes fuzzy when viewed diagonally from the 4-m (airborne data) to the 50-m (MOS-
MESSR) pixel size, resampled at 10 metres.

Figure 4:  Ortho-mosaic of the two aiborne and six satelliteVIR and SAR  images (39 km by 29
km; 10-m pixel spacing) with the road network (red: main; blue: secondary; yellow: city).
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This Figure displays a mean pixel intensity difference for the different sensors; it is particularly
evident for ERS-1.  These differences are mainly due to the following factors:

•  the image sensor wave-lengths are quite different;
•  the dynamic range is specific to each sensor (HRV, MESSR, TM, SAR, etc.) and to each

spectral band (visible, L, C).  Furthermore, linear stretch (on 8 bits) for VIR increases the
variation in the dynamic range;

•  for the SAR, the system configurations are completely different: the sensor response is
related to the frequency, to the polarization (VV penetrates vegetation less than HH), and also
to the incidence angle.  Furthermore, the dielectric constant is related to the frequency; and

•  the data has not been absolutely calibrated.

However in this study, the calibration was not an important issue because the purpose of the
research was not to extract and compare radiometric responses related to geophysical parameters.
Figure 5 is an enlargement (17 x 15 km) in the North-West part of the Figure 4 with the road
network overlaid.

Figure 5:  Enlargement of the NW part of the previous  ortho-mosaic with the road network.
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Figure 6 is also an enlargement (10 x 10 km) in the North-West of a colour composite ortho-
image of SPOT-P and two airborne SAR from opposite-side flight lines using the intensity-hue-
saturation coding (SAR to intensity and saturation and SPOT-P to hue).  The roads network has
been overlaid.  The pixel size of this image is five metres, which is a good compromise between
the original 4-m and 10-m pixel sizes of airborne SAR and SPOT-P images, respectively.

Figure 6:  Enlargement of a colour composite ortho-image of SPOT-PLA and two airborne SAR
(10 km by 10 km; 5-m pixel spacing)

The qualitative viewing of these ortho-mosaics and colour composite ortho-image confirms the
quantitative results of 1/3 to 1/2 pixel accuracy for VIR satellite images and one to two pixel
accuracy for the other images.  Linear features are good elements to verify visually the quality of
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the mosaicking.  Some roads and power line clearcuts have been marked on Figure 4 with the
letters “a” and “b” respectively; there is no discontinuity in both X and Y directions at the
junction between the different images.  In some areas, maximum errors appear (20 m for airborne
CCD sensor and SAR; 50-60 m for spaceborne SAR) in accordance with the statistics of Table 2.
There is no strong local distortion, greater than the tolerance; that is one of the qualities of this
geometric modelling which corrects the images globally.  The topographic file has an accuracy of
five meters, which is in the same order of magnitude as errors on some images (SPOT and
airborne).  Therefore, the topographic file cannot be considered as an absolute reference, when
compared to SPOT data or airborne data.

Futhermore, Figure 6 shows qualitatively that this geometric correction method adapted to the
nature and the characteristics of the images generates high quality colour composite images,
which are sharp and precise containing well defined cartographic elements and information that
are easy to interpret.

6. CONCLUSIONS

This paper has shown a method and a system with a DEM to geometrically correct raw images.
The mathematical model is based on the collinearity condition and represents the physical
realities of the full viewing geometry, platform- sensor-Earth.  The method has been tested at
CCRS on different images (SPOT-HVR, Landsat-TM, MOS-MESSR, SEASAT-SAR, ERS-1
SAR, airborne VIR and SAR). The method and the mathematical model are now integrated and
unified to process indiscriminately images from different sensors (VIR and SAR) on different
platforms (spaceborne and airborne) from different resolutions.

The operational SRIT software, based on this method with DEM, enables the generation of
ortho-images and mosaics of the previously mentioned images. Because the information relative
to the platform and the sensor are directly extracted from the tape and transferred to the other
processing steps the user does not have to consider image type, except for the GCP acquisition
step.  One of the major advantages of the method is that only one image correction system is
needed for different types of sensors and platforms. Since this initial research, the system has
been now adapted and tested for processing other data sources:  the airborne SAR images from
the Jet Propulsion Laboratory (USA), the SAR images from the shuttle SIR-C, the images from
JERS-1 and the LISS images from the Indian Remote Sensing satellite.  In the near future, it will
be adapted for other data (MOMS, RADARSAT).

Processing different images MOS-MESSR, Landsat-TM, SPOT-P/XS, SEASAT-SAR, ERS-1
SAR, airborne SAR and CCD sensors, this method has achieved accuracies of:

•  1/3 of pixel for satellite VIR images;
•  1 resolution cell for satellite SAR images; and
•  1-2 resolution cells for airborne images.
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The difference in the result are due to:

•  a better definition and quality of the GCPs on VIR images; and
•  a better stability and knowledge of the spaceborne path than the airborne path.

Using a DEM, different ortho-images and their fusion (mosaics, colour composite) have been
generated to qualitatively check the relative accuracy between the different ortho-images.  Linear
features are used to visually verify the connection between the images.  The road network has
been overlaid to check the absolute accuracy.  It confirms the quantitative results on check
points, but for some data (SPOT and airborne), the road network cannot be used as an absolute
reference, because it has an accuracy of five metres, the same order of magnitude as the SPOT
ortho-image accuracies (3 m for P; 7 m for XS) and as the airborne ortho-image accuracies (7.5
m for CCD-MEIS; 6 - 10 m for SAR).
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