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RÉSUMÉ

Des techniques fondées sur la détection des frontières comme mesure de performance pour l'évaluation de filtres destinés à
réduire le chatoiement sont proposees dans le présent article. Étant donné que le chatoiement a pour effet non seulement de
masquer l'information sur les frontières reelles, mais également de provoquer l'apparition de frontières artificielles, les filtres
doivent être évalués en fonction de leur capacité à identifier les frontières réelles et à supprimer les frontières artificielles.

Les auteurs ont utilisé les frontières de champs agricoles observées sur des images RAS pour estimer le taux de frontières réelles
identifiées avec deux modèles de filtres adaptatifs, soit le filtre Frost et le filtre Lee Sigma. L 'étude des frontières artificielles,
d'un autre côté, s'avère difflicile avec les images réelles en raison du fait que nous ne connaissons pas de façon précise les
propriétés de rétrodiffusion des cibles en présence. Nous avons donc utilisé des images simulées pour analyser ce problème et,
finalement, pour élaborer des modèles permettant d'évaluer la performance des deux filtres en question.

Les filtres Frost et Lee sont des fillres « adaptatifs » en ce sens qu'ils fixent le niveau de filtrage spatial en un point donné en
fonction d'une mesure du contenu en frontières à l'intérieur de la fenêtre du filtre. Tout bruit résiduel est mulliplicatif: En
conséquence, la densité et l'importance des frontières artificielles sont fonctions de l'information réelle, c'est-à-dire que des taux
élevés de frontieres artificielles seront observés dans les regions où la rétrodiffusion radar est importante. En raison de cette
relation, des precautions doivent être prises dans l'interprétation du contenu en information spatiale des images RAS, telle la
texture d'image. Les auteurs proposent que les seuils délimitant l'importance des frontières soient déterminés à partir des
modeles de performance et qu'ils soient d'abord appliqués à des images réelles pour éliminer les frontières qui sont
potentiellement associées au bruit et non pas à la variabilité réelle de la rétrodiffusion des surfaces.

SUMMARY

Certain techniques are proposed to evaluate speckle-reducing fitters based on edge detection as a performance measure. Since
speckle not only masks real edge information but also can trigger spurious edges (artefacts), it is argued that fitters must be
gauged both in terms of real edge recovery and artefact suppression.

Agricultural field boundaries observed in airborne SAR images have been used to estimate real edge recovery rates for two
adaptive fillers, the Frost and the Lee Sigma fitters. Studies of artefacts, on the other hand, are rendered difficult with real image
data since a precise knowledge of the backscatter properties of surface targets is not available. Therefore, we have used
simulated imagery to analyze this problem and, ultimately, to develop overall edge detection performance models for the two
fitters in question.
Both the Frost and Lee fitters are "adaptive" in the sense that they determine the level of spatial averaging at a given image
location according to the perceived edge content within the fitter window. Any residual noise remains multiplicative, and, hence,
the density and magnitude of artefacts retain a signal dependence;  that is, high artefact levels will be observed in regions of high
radar backscatter. Because of this signal dependence, caution must be taken in interpreting the spatial information content of
SAR images such as image texture. It is proposed that edge magnitude thresholds be determined from fitter performance models
and first applied to real imagery to eliminate that portion of the overall edge content potentially associated with noise and not
with real variability in surface backscatter.



INTRODUCTION

For many applications, the presence of speckle in synthetic aperture
radar (SAR) images is detrimental to data interpretation. Numerous
filters have been proposed to suppress speckle (e.g., Frost et al.,
1982; Lee, 1983, 1987; Crimmins, 1985). The utility of these filters
has been gauged on the basis of both applications-specific criteria,
such as observed improvement in agricultural field boundary
definition (Goodenough et al., 1984) and crop identification
(Durand et al., 1987), or on improvements in image primitive
extraction, such as edge and linear feature detection (e.g.,
Modestino and Fries, 1977; Machuca and Gilbert, 1981; Wood,
1985; Touzi et al., 1987).

The purpose of this paper is to extend the analysis of filter
performance with regard to edge detection. The following three
objectives have been established:

• to establish methods quantifying the improvement in edge
extraction provided by a speckle-reducing filter . It is argued
that filter performance must not only be gauged in terms of the
resulting enhancement of real edge detectability, but also by
the level of false edges (i.e., artefacts) triggered by residual
noise;

• to demonstrate the utility of simulated imagery in assessing
filter performance;

• to develop filter performance models and to demonstrate their
use for confidence testing of the edge information extracted
from real SAR images.

A comparison of the adaptive Frost filter (Frost et al. , 1982) and
the multiplicative Sigma filter (Lee, 1983) has been undertaken to
demonstrate the methodology set out in this paper. We have used
the edge detection and thinning algorithms proposed by Nevatia
and Babu (1980) as our edge primitive extraction standard.

TEST FILTERS

Both the Frost and Sigma filters are exhaustively described in the
appropriate references; hence, only brief descriptions of their
salient features are given.

The filters are similar in that they involve replacement of the grey
level of each pixel, at location (i,j), and by the spatial average of
some or all of the grey levels of pixels within a window of fixed
size centred on (i,j). The filters differ in the pixel selection and
weighting strategies used in their spatial averaging process. In
addition, the Sigma filter can be applied recursively.

In the case of the Frost filter, spatial averaging is accomplished
through the application of a radially symmetric, exponential
weighting function. The "decay factor" of the exponential selected
for each pixel location depends on the observed grey level mean
square to variance ratio of pixels within the filter window. The
closer this ratio is to the number of looks of the scene (assumed to
be known a priori), the larger the decay factor and, hence, the
greater the level of spatial averaging.

On the other hand, the Sigma filter uses radiometric criteria to
select pixels for spatial averaging. The grey level of the central
pixel in the window is compared with the grey levels of all other
window pixels. Only those window pixels exhibiting a grey level
within an acceptance range are selected for averaging. If the grey
level of the central pixel is Zij and the number of looks of the scene
is NL, the grey level acceptance range is selected to be

(l – m NL)zij to (l + m NL)zij,

where m is a constant. Adaptation of the filter to multiplicative
noise is accounted for since the acceptance grey level range is
proportional to the grey level of the central pixel.

Sharp spot noise (i.e., isolated bright or dark pixels) will not be
eliminated with this algorithm alone. Hence, Lee has proposed
an additional threshold, K, be included. If the number of pixels
within the acceptance range is less than K, the radiometric
criterion is replaced by a simple averaging of the central pixel's
four nearest neighbours. K is selected to be much less than the
total number of window pixels in order to prevent the
obliteration of fine scale features. Lee has also proposed that a
series of Sigma filters can be applied sequentially to the same
image, each successive filter being of smaller size and lower
threshold.

Given that the objective of this paper is the development of
performance evaluation methodologies and that these filters are
used primarily for illustrative purposes, we have not attempted
to optimize the selection of filter parameters. For the Frost
filter, we have selected a window size of 15 by 15 pixels, while
for the Sigma case we have considered the effects of a 3 pass,
m = 2 Sigma filter process whose filter window sizes and
thresholds are 15 x 15, 7 x 7, 3 x 3, and K = 7, 3, 1,
respectively. These are relatively large window sizes, but
previous experience with automated matching of SAR edge
image pairs indicates that extensive spatial averaging will be
required for operational processing of low look SAR images
(Guindon, 1985, 1986).

IMAGE DATA

Both real and simulated test scenes have been employed in our
analyses. The real image data consist of airborne C-band
amplitude scenes acquired over Melfort, Saskatchewan, on July
31 and August 13, 1983 (Brown et a/., 1984). The images, with
a resolution of 11.2 metres and a pixel spacing of 5.6 metres,
are particularly well-suited to the present study since they
contain straight edge and line features corresponding to field
boundaries and the road network. Ancillary information in the
form of colour infrared photography also was acquired and has
been used to identify candidate edges for detailed analysis.

Simulated images have been used also to develop performance
models and to estimate artefact generation. These images
consist of an underlying control signal in the form of either
checkerboard or line patterns. Multiplicative noise was then
introduced to simulate the effects of multilooking in a power
image using the analytic description of speckle given by Lee
(1987). The mean grey level of the homogeneous regions is
restricted to the 60-160 range (in an 8-bit image) to prevent
saturation effects. The oversampling characteristics of the real
imagery has also been emulated.

EDGE AND LINE FEATURE EXTRACTION
ALGORITHM

We have opted to use the edge detection component of the
linear feature extraction algorithm proposed by Nevatia and
Babu (1980) as our reference edge operator. Our reasons for
this selection are twofold: first, the algorithm is widely used as
a primitive in computer vision work (Huertas and Nevatia ,
1988: Medioni and Nevatia , 1984); and second, edges are
characterized by direction as well as by magnitude, a feature
not retained with classical operators such as the Sobel operator
and that is necessary for edge thinning operations. A brief
description of the algorithm follows.



Edge thinning is accomplished by retaining, as edges, only those
pixels that meet the following criteria:

•  the edge magnitude of the pixel in question exceeds the edge
magnitude of its two neighbours in directions normal to this
edge;

•  the edge directions of these two neighbours differ by no more
than 30 degrees from the edge direction of the central pixel;
and

•  the edge magnitude exceeds a predefined threshold level. The
threshold has been selected to be the magnitude for a random
radiometric noise level of one grey level.

The major edge detection steps are illustrated in the sequence of
example images in Figure 1.

METHODS FOR MEASURING AND PREDICTING FILTER
PERFORMANCE

We propose to rate a given filter based on its ability to improve real
edge detection and on the level of false edges (artefacts) that are
detected arising from residual, unsuppressed noise.

Real Edge Recovery

Consider the case of a boundary between two homogeneous regions
m and n on a SAR image. By homogeneous, we mean that the
observed mean square to variance ratio of the region's pixel

A 5 × 5 neighbourhood around each image pixel is convolved
with six different edge masks corresponding to edge
directions of 0, 30, 60, 90, 120, and 150 degrees. The
magnitude of the convolved output, hereafter referred to as
the edge magnitude, and the direction of the mask giving the
highest response at each pixel are recorded as edge data.

Figure 1
An example of the application of the Nevatia and Babu edge detection algorithm to

SAR imagery:
a) input filtered image, b) response from the convolution of edge masks, c) binary

image following thinning.



grey levels is equal to the number of looks. If the scene is first
filtered to reduce speckle and then processed with an edge
detector, the performance of the filter can be gauged by the
parameter Fmn the fraction of boundary edge pixels that are
detected. Different filters can be compared through a statistical
analysis of their resulting Fmn values using the classical binomial
distribution theory (Snedcor and Cochran, 1976).

To use the above methodology with real imagery, one must first
identify image segments containing regions that closely
approximate the homogeneity condition and whose real edges can
be identified by independent means. A set of potential candidates
has been extracted from the Melfort SAR scene, which consists
of field boundaries meeting the following criteria:

•  The boundary is at least 30 pixels in length; and

•  A visual inspection of aerial photography does not reveal the
presence of surface cover variations within the bounding
fields (i.e., the presence of standing water or regions of
retarded crop growth.)

Apparent field homogeneity at optical wavelengths does not
necessarily ensure homogeneity at radar wavelengths. To further
identify potential problem cases, the grey level mean square to
variance ratio (MSVR) for each bounding field was computed.
Although we are using an amplitude image, the dynamic range of
the fields in question is small enough that we may assume the
MSVR for those fields that are "homogeneous" should be
approximately the same and correspond to the effective number
of looks of the scene. Therefore, we have computed the average
value and standard deviation of the distribution of MSVR's for all
candidate fields. All fields whose ratio differed from the mean by
more than two standard deviations were then eliminated. The
average MSVR of the remaining fields was computed to be 17.

     As a precursor to estimating Fmn for a given candidate
boundary, a best estimate of the true boundary location was made
from a visual inspection of the raw SAR image. This best
estimate will be referred to as the 'reference boundary'.
Following filtering and edge detection, a real boundary pixel is
deemed to be recovered if an edge pixel exists in the recovered
edge map at a reference edge location, and the edge directions of
the recovered and reference boundaries agree to within 30
degrees (i.e., the angular quantization the edge templates). If
positional coincidence is not found for a given reference pixel, a
search is also made in the two adjacent pixel positions
perpendicular to the boundary direction for a recovered edge.
This extended search area has been included to allow for possible
errors in the manual positioning of the reference boundary.

     A compilation of measured Fmn values is presented in Table 1
for the application of each of the filters on each of the test bound-
aries. We have applied a binomial analysis to determine the
significance of the difference between the two Fmn values for the
same boundary (Snedcor and Cochran, 1976). If the difference in
Fmn values exceeds the 95 per cent limit in the uncertainty of the
lowest recovery rate, we deem the recovery rate of the other filter
to be significantly better.

     An inspection of Table 1 indicates that, overall, in the cases of
33 of the 45 boundaries, application of the Frost filter results in a
greater recovery rate than smoothing with the Sigma filter. In
addition, of the 15 cases where there is a significant difference,
12 cases arise when the Frost filter outperforms the Sigma filter.
We conclude that the Frost filter is preferred from the point of
view of extracting real edge information when these filters are
used in this configuration.

MODEL BASED PREDICTION OF REAL EDGE RECOVERY
RATE

     Although the evaluation of filters using candidate edges from real
scenes is desirable, use of simulation is attractive as well since it allows
one to study a more diverse set of conditions affecting edge detectability
and to classify detected edges as real or as artefacts since the underlying
image signal is controlled and known precisely. In this and the following
section, we derive predictive models for real edge recovery and artefact
generation. These models are useful not only for further filter comparison
but are of value for confidence testing of the edges found in real scenes.

          To develop a predictive model, one must first identify those scene
parameters likely to affect the edge recovery rate. Consider the case of a
SAR scene of NL looks and a boundary in that scene between two
homogeneous regions whose mean grey levels are m



and n. One obvious parameter affecting the detectability of the
boundary will simply be its contrast, ∆ mn, where

∆ mn =  m − n .

A second factor will be noise level characterized by NL since noise
can corrupt boundary edge magnitude or directional fidelity. Since
residual noise will even persist following filtering, it is necessary to
understand the nature of this residual noise.

     In the case of both the Frost and Lee Sigma filters, the residual
noise will be multiplicative. This arises because, in every region
deemed to be homogeneous, the same level of spatial averaging is
applied independent of the region's signal level. The effect of spatial
averaging is a reduction of the noise in all homogeneous regions by
the same scaling factor, but not to the same grey level sigma. In other
words, the effect is equivalent to multilooking.

     In conclusion, the so-called 'adaptiveness' of these filters applies
only to their ability to adapt the level of spatial averaging to the
perceived presence or absence of edge content within the filter
window. Since the residual noise remains multiplicative, we predict
that boundary detection will be a function of region brightness as
well as boundary contrast. We quantify this brightness as the mean
grey level of the two regions:

mn = ( m + )/2.

Our final model for a given filter will then be of the form:

 Fmn = f( mn.  ∆ mn, NL).

For the purpose of comparison with the real candidate boundaries
(i.e., NL = 17 looks), one need only predict Fmn as a function of mn
and ∆  mn. For a given ( m, n) set, we can predict Fmn by
generating a test pattern consisting of two blocks with the mean
grey levels gm and gn, injecting 17 look multiplicative noise, fil-
tering with the desired filter, applying edge extraction, and
counting the number of recovered block boundary pixels. Since this
procedure would be tedious for general purpose prediction, we
have instead generated Fmn estimates on a regular ( mn,  ∆ m) grid
and approximated the recovery rate surface by a two-dimensional
polynomial function of the form

Fmn = a + b*  mn + c*∆  mn + d*  mn + e*( ∆ mn)2,

where a, b, c, d, and e are the least squares polynomial coeffi-
cients. The term in  mn

2 was discarded since its coefficient was
found to be statistically insignificant. The polynomial provides a
rapid method of performance prediction for any grey level com-
bination.

     To illustrate the results, Figures 2(a) and 2(b) show profiles of
the surface in planes of constant  mn and ∆  mn, respectively. The
recovery rate dependence on each parameter is evident.

     To assess the accuracy of these performance models, predic-
tions of Fmn values have been calculated for the 45 test boundaries
compiled from the Melfort scene. Plots of observed versus
predicted F mn are presented in graphical form in Figures 3 and 4
for the Sigma and Frost filters, respectively. If the models are
accurate, the relationship between observed and predicted F mn in
each case should be linear with a slope of 1. We have computed the
least squares slope for each dataset using the constraint that the
fitted line pass through the origin. The fitted slopes and the one-
sigma uncertainties were found to be:

Frost filter: slope = 0.976 ± 0.096
Sigma filter: slope = 0.963 ± 0.069

We conclude that these simulation-based models provide good
predictive capabilities for real edge recovery.

ARTEFACT LEVEL ESTIMATION AND COMPARISON

     The analysis of artefacts is accomplished most easily by
studying the derived edge content of filtered homogeneous regions.
Since we do not have a precise knowledge of the scattering prop-
erties of the agricultural fields of the real image, we have generated
simulated images of homogeneous regions composed of an under-
lying signal of a constant grey level with 17-look speckle noise
added. Hence, any edges detected following filtering can only be
artefacts arising from residual noise.

     We quantify the artefact level by two parameters, namely, the
fraction of pixels exhibiting an edge (FA), and an edge magnitude



threshold that encompasses 95 per cent of the detected edges (T95).
Figures 5 and 6 illustrate the dependencies of FA and T95 on the
homogeneous region signal level (i.e., mean grey level) for 17-look
speckle. Besides the test filters, artefact levels for the case of no
filtering prior to edge detection are included for comparison. The
principal results of the comparisons are summarized as follows:

•  If no filtering is applied, significant levels of false edges will be
found. Both filters are found to be useful in significantly reducing
artefact levels, particularly in low signal level regions.



•  Of the two filters, the Frost filter is significantly better at
reducing both the density and magnitude of artefacts. A
quantitative understanding of this result can be gained by
comparing Frost and Sigma filtered images of the same
parent noisy region. An example case of two regions of
constant grey level is shown in Figure 7. Figures 7(a) and
7(b) show the Frost filtered and Sigma filtered images,
respectively, while Figures 7(c) and 7(d) show their
respective edge images. Since the Frost filter selects the
level of spatial averaging based on a statistic derived from
all pixels within the filter window, and since the window is
large, this statistic, and hence the averaging process, does
not vary significantly on a pixel to pixel scale. The residual
grey level fluctuations following Frost filtering are therefore
of a low spatial frequency.

On the other hand, the specific pixels selected for aver-
aging with the Sigma filter can vary dramatically from
anyone pixel to its neighbour since the grey-level selection
range is governed by the central pixel's grey level. In
addition, averaging can be limited to four pixels,
independent of the filter window size, if the central pixel is
particularly bright or dark. This limited averaging tends to
result in a grey-level segregation between these deviant
pixels and the rest of the population. The ultimate result is a
residual high frequency noise, which triggers artefacts of
higher density and magnitude than is the case for the Frost
filter.

•  For null filtering, T95 increases monotonically with region
mean brightness, but FA remains approximately constant at
about 0.10. This constancy reflects the fact that the principal
edge thinning criteria (i.e., comparative edge magnitude
dominance and directional consistency) are independent of
absolute edge magnitude. Although bright homogeneous
regions will exhibit brighter edges, the spatial randomness
of the parent noise and subsequently the thinned edge
density should be brightness-independent.

     From this discussion, we conclude that artefacts will be
present even following filtering and that these should be excluded
by edge magnitude thresholding. To illustrate this point, we
consider the example problem of determining whether a set of
fields, extracted from the Melfort SAR scene, exhibit significant
within-field texture. Sequences of images of a proposed analysis
procedure are shown in Figures 8 and 9 for two example cases. In
each sequence, images (a) and (b) illustrate the Frost filtered
image and all recovered edges, respectively. Since the level of
artefact generation within any field will be a function of the
field's mean grey level, the magnitude of the artefact threshold
(i.e., T95) must be selected and applied on a per field basis. The
third image in each sequence shows the remaining edges
following thresholding of the central portions of each field. Two
conclusions can be drawn from these figures:

•  most within-field edges observed in Figures 8(b) and 9(b)
exhibit magnitudes at levels expected from residual noise;
and

•  the apparent relationship of high-edge density with high
mean field brightness is accountable by the multiplicative
nature of the residual unfiltered noise.

     The implications of this analysis are equally applicable to
SAR imagery of any terrain type, namely, that the effects of
signal



dependence and spurious texture levels expected for a
nominally 'homogeneous' region should be determined and
removed before any interpretation of image tonal variations.

CONCLUSIONS AND DISCUSSION
Methods have been developed to evaluate the relative and
absolute effectiveness of speckle-reducing filters. The
performance of a given filter is gauged from the characteristics
of edges extracted from the resulting filtered image. Edge
extraction has been selected since it constitutes a basic
operation in image segmentation, texture, and linear feature
extraction. Two adaptive filters (Frost and Lee Sigma) and the
edge extraction algorithm of Nevatia and Babu (1980) have
been employed to illustrate the proposed evaluation
methodologies. The important issues noted in this paper are
summarized as follows:

•  The presence of speckle not only masks real edge
information but also triggers spurious edges (artefacts)
unrelated to variations in the backscatter properties of the
reflecting surface. Therefore, filters must be gauged in
terms of both real edge recovery and artefact suppression.

•  Adaptive filters such as the Frost and Lee Sigma filters are
adaptive in the sense they vary the level of spatial
averaging according to the perceived edge content within
the filter window. Residual speckle, following filtering,
retains its multiplicative character.

•  Filter performance with regard to real edges can be
quantified by a real edge recovery rate Fmn. This para-
meter is simply the fraction of boundary edges between
two homogeneous regions (mean grey levels m and n,
which are detected following filtering. Given the
multiplicative nature of residual noise, Fmn can be
expected to be a function of absolute region grey level, as
well as boundary grey level, contrast. This prediction has
been confirmed with the aid of simulated imagery. Models
of real edge recovery performance can also be derived
using simulation.

•  Artefact generation also has been explored with the aid of
simulation. Because of the multiplicative nature of
residual noise, the level of artefact generation (both
magnitude and spatial density) increases with increasing
region brightness.

•  Comparative performance studies with the proposed
measures are easily achieved since the statistical signif -
icance of observed differences can be estimated with
binomial statistical theory.

•  Based on tests with 17-look imagery, the Frost filter
outperforms the Lee Sigma filter in this configuration.

The existence of artefacts must be accounted for when an
interpretation is made of SAR image parameters derived from
local grey level variability. A principal example is the case of
texture measures, such as those proposed by Haralick (1979).
Our proposed method consists of applying the sequence of
filter and texture algorithms to simulated imagery to estimate
the magnitude and signal-dependence of the spurious texture
generated by speckle alone. For any image sub-area of interest
(e.g., an agricultural field), one can compare the observed
texture magnitude and density distribution with the expected
artefact levels to test for the existence of additional texture
related to surface cover variability, and apply thresholding to
minimize the artefact contribution.

The signal dependence of residual noise is a significant drawback for
the adaptive filters described here. In theory, this problem can be
eliminated by converting to a log power scale, thereby transforming
speckle to an additive noise. Alternate, nonparametric measures of
spectral homogeneity, which exhibit signal independent characteristics,
are currently being investigated and will be presented in a future
publication.
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